Skip to main content

A Global Isostatic Load Model and its Application to Determine the Lithospheric Density Structure of Hotspot Swells

  • Chapter
Oceanic Hotspots

Abstract

The concept of “continental drift” advocated by A. Wegener from about 1912 until his death in 1930 was based on geological observations and (for those times) modern principles of isostasy. His idea about the “wandering continents” was complemented and strengthened later on by important notions, among which were the rejuvenation of the oceanic lithosphere and its absorption in the inner Earth after subduction that later evolved as the theory of “plate tectonics” and gained general acceptance in the 1970S. Plate tectonics introduced the radically new notion in geodynamics of the large horizontal motion of about 100 km thick lithospheric plates that were gliding on their substratum, the asthenosphere. The dynamics of the plates, thought to be driven by convection currents in the asthenosphere, determines the relief of the Earth’s crust.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Angenheister G, Gebrande H, Miller H (1979) First results from Reykjanes Ridge Iceland Seismic Project 1977. Nature 279:56–60

    Google Scholar 

  • Angenheister G, et al. (1980) Reykjanes Ridge Iceland Seismic Experiment (RRISP 77). J Geophys 47:228–238

    Google Scholar 

  • Asada T, Shimamura H (1976) Observation of earthquakes and explosions at the bottom of the Western Pacific: Structure of oceanic lithosphere revealed by Longshot Experiment. In: The geophsysics of the Pacific Ocean basin and its margins. Geophysical Monograph 19:135–154 American Geophys Union, Washington D.C.

    Google Scholar 

  • Avedik F, Howard D (1975) Preliminary results of a seismic refraction study in the Meriadzek-Trevelyan area, Bay of Biskay, In: Montadert L, Roberts DG (eds) Initial report of Deep Sea Drilling Project, Vol. XLVIII. Washington D.C., 48:1015–1023

    Google Scholar 

  • Bath M (1960) Crustal structure of Iceland. J Geophys Res 65:1793–1807

    Google Scholar 

  • Beblo M, Björnsson A (1978) Magnetotelluric investigation of the lower crust and upper mantle beneath Iceland. J Geophys 45:1–16

    Google Scholar 

  • Binard N, Hekinian R, Cheminée JL, Searle RC, Stoffers P (1991) Morphological and structural studies of the Society and Austral hotspot regions in the South Pacific. Tectonophysics 186:293–312

    Google Scholar 

  • Birch F (1961) The velocity of compressional waves in rocks at pressures to 10 kbar. J. Geophys Res 71:3459–3556

    Google Scholar 

  • Bjarnason IT, Menke W, Flovenz OG, Caress D (1993) Tomographic image of the Mid-Atlantic plate boundary in southwestern Iceland. J Geophys Res 98:6607–6622

    Google Scholar 

  • Bodine JH, Steckler MS, Watts AB (1981) Observations of flexure and the rheology of the oceanic lithosphere. J Geophys Res 86(B5):3695–3707

    Google Scholar 

  • Bott MHP (1985) Plate tectonic evaluation of Icelandic transverse ridge and adjacent regions. J Geophys Res 90:9953–9960

    Google Scholar 

  • Bott MHP, Gunnarsson K (1980) Crustal structure of the Iceland-Faeroe Ridge. J Geophys 47:221–227

    Google Scholar 

  • Bourdon E, Hémond C (2001) Looking for the ‘missing end-member’ in South Atlantic Ocean mantle around Ascension Island. Miner Petrology 71:127–138

    Google Scholar 

  • Bram K (1980) New heat flow observations on the Reykjanes Ridge. J Geophsy 47:86–90

    Google Scholar 

  • Brandsdottir B, Menke W, Einarsson P, White RS, Staples RK (1997) Faroe-Iceland Ridge Experiment 2. Crustal structure of the Krafla central volcano. J Geophys Res 102:7867–7886

    Google Scholar 

  • Bruck R, Carbotte SM, Mutter C (1997) Controls on extension of mid-atlantic ridges. Geology 25:935–938

    Google Scholar 

  • Calmant S, Cazenave A (1986) The effective elastic lithosphere under the Cook-Austral and Society Islands. Earth Planet Sei Lett 77:187–202

    Google Scholar 

  • Calmant S, Cazenave A (1987) Anomalous elastic thickness of the oceanic lithosphere in the southcentral Pacific. Nature 328:236–238

    Google Scholar 

  • Calmant S, Francheteau J, Cazenave A (1990) Elastic layer thickening with age of the oceanic lithosphere: A tool for prediction of the age of volcanoes or oceanic crust. Geophys J Int 100:59–67

    Google Scholar 

  • Cannat M, et al. (1999) Mid-Atlantic Ridge-Azores hotspot interaction: Along axis migration of a hotspot derived event of enhanced magmatism 10 to 4 MA ago. Earth Plan Sci Lett 173:257–269

    Google Scholar 

  • Caress DW, McNutt MK, Detrick RS, Mutter JC (1995) Seismic imaging of hotspot related crustal underplating beneath the Marquesas islands. Nature 373:600–603

    Google Scholar 

  • Carlson RL, Raskin GS (1984) Density of ocean crust. Nature 311:555–558

    Google Scholar 

  • Carlson RL, Herrick CN (1990) Densities and porosities in the oceanic crust and their variations with depth and age. J Geophys Res 95:9153–9170

    Google Scholar 

  • Case JE, Ryland SL, Simkin T, Howard KA (1974) Gravitational evidence for a low density mass beneath the Galapagos Island. Nature 181:1040–1043

    Google Scholar 

  • Charvis P, Recq M, Operto S, Brefort D (1995) Deep structure of the Northern Kerguelen Plateau and hotspot related activity. Geoph J Int 122:899–924

    Google Scholar 

  • Charvis P, Laesanpura A, Gallart J, Hirn A, Lepin JC, de Voogt B, Minshull TA, Hello Y, Pontoise B (1999) Spatial distribution of hotspot material added to the lithosphere under La Réunion, from wide-angle data. J Geophys Res 104:2875–2893

    Google Scholar 

  • Cheminée JL, Hekinian R, Talandier J, Albarede F, Devey CW, Francheteau J, Lancelot Y (1989) Geology of an active hotspot: Teahitia-Mehetia region in the south central Pacific. Mar Geophys Res 11:27–50

    Google Scholar 

  • Chocran JR (1979) An analysis of isostasy in the World’s oceans. 2. Mid-Ocean Ridge crests. J Geophys Res 84B9:4713–4729

    Google Scholar 

  • Christensen N (1974) Compressional wave velocities in possible mantle rocks to pressures of 30 kbar. J Geophys Res 79:407–412

    Google Scholar 

  • Clouard V, Bonneville A, Barsczus HG (2000) Size and depth of ancient magma reservoirs under atolls and islands of French Polynesia using gravity data. J Geophys Res 105:8173–8191

    Google Scholar 

  • Collette BJ, Slootweg AP, Verhoef J, Roest WR (1984) Geophysical investigation of the floor of the Atlantic Ocean between 10° and 38°N (Kroonvlag-project). Proc Ned Akad Wet 87(B):1–76

    Google Scholar 

  • Crough ST (1975) Thermal model of the oceanic lithosphere. Nature 256:388–390

    Google Scholar 

  • Crough ST (1978) Thermal origin of mid-plate hotspot swells. Geophys J R Astron Soc 55:451–469

    Google Scholar 

  • Crough ST (1983) Hotspot swells. Annu Rev Earth Planet Sci 11:165–193

    Google Scholar 

  • Darbyshire FA, Bjarnason IT, White RS, Flovenz OG (1998) Crustal structure above the Iceland mantle plume imaged by the ICEMELT refraction profile. Geophys J Int 135:1131–1149

    Google Scholar 

  • Darbyshire FA, White RS, Priestly KF (2000) Structure of the crust and uppermost mantle of Iceland from a continental seismic and gravity study. Earth Planet Sci Lett 181:408–428

    Google Scholar 

  • Detrick RS, Crough ST (1978) Island subsidence, hotspots, and lithospheric thinning. J Geophys Res 83:1236–1244

    Google Scholar 

  • Detrick RS, Sclater JG, Thiede J (1977) The subsidence of aseismic ridges. Earth Planet Sci Lett 34:185–196

    Google Scholar 

  • Doin MP, Fleitout L (2000) Flattening of the oceanic topography and geoid: Thermal versus dynamic origin. Geophys J Int 143:582–594

    Google Scholar 

  • Escartin J, Cannat M, Pouliquen G, Rabain A, Lin J (2001) Crustal thickness of V-shaped ridges south of the Azores: Interaction of the Mid-Atlantic Ridge (36°–39° N) and the Azores hotspot. J Geophys Res 106(B10):21719–21735

    Google Scholar 

  • Feighner MA, Richards MA (1994) Lithospheric structure and compensation mechanisms of the Galapagos Archipelago. J Geophys Res 99:6711–6729

    Google Scholar 

  • Flovenz OG, Gunnarsson K (1991) Seismic crustal structure in Iceland and surrounding area. Tectonophysics 189:1–17

    Google Scholar 

  • Foucher JP, Le Pichon X, Sibuet JC (1982) The ocean continent transition in the uniform lithospheric stretching model: Role of partial melting in the mantle. Phil Trans R Soc London A305:27–43

    Google Scholar 

  • Gallart J, Driad L, Chauris P, Sapin M, Hirn A, Diaz J, de Voight B, Sachpazi M (1999) Perturbation to the lithosphere along the hotspot track of La Réunion from an offshore-onshore seismic transect. J Geophys Res 104:2895–2908

    Google Scholar 

  • Gebrande H, Miller H, Einarsson P (1980) Seismic structure of Icealnd along the RRISP profile 1. J Geophys 47:239–249

    Google Scholar 

  • Gerdom M, Trehu AM, Flueh ER, Klaeschen D (2000) The continental margin off — Oregon from seismic investigations. Tectonophysics 329:79–97

    Google Scholar 

  • Goldflam P, Weigel W, Loncarevic BD (1980) Seismic structure along RRISP — Profile I on the southeast flank of the Reykjanes Ridge. J Geophys 47:250–260

    Google Scholar 

  • Goodwillie AM, Watts AB (1993) An altimetric and bathymetric study of elastic thickness in the central Pacific Ocean. Earth Planet Sci Lett 118:311–326

    Google Scholar 

  • Goslin J, Beuzart P, Francheteau J, Le Pichon X (1972) Thickening of the oceanic layer in the Pacific ocean. Mar Geophys Res 1:418–427

    Google Scholar 

  • Gradstein FM, Agterberg FP, Ogg JG, Hardenbol J, van Veen P, Thierry J, Huang Z (1994) A Mesozoic timescale. J Geophys Res 99:24051–24074

    Google Scholar 

  • Grevemeyer I, Flueh ER (2000) Crustal underplating and its implications for subsidence and state of isostasy along the Ninetyeast Ridge hotspot trail. Geophys J Int 142:643–649

    Google Scholar 

  • Grevemeyer I, Weigel W, Whitmarsh RB, Avedik F, Deghani AG (1995) The Aegir Rift: Crustal structure of an extinct spreading axis. Mar Geophys Res 19:1–23

    Google Scholar 

  • Grevemeyer I, Flueh ER, Reichert C, Bialas J, Klaeschen D, Kopp C (2001) Crustal architecture and deep structure of the Ninetyeast Ridge hotspot trail from active-source ocean bottom seismology. Geophys J Int 144:414–431

    Google Scholar 

  • Grevemeyer I, Weigel W, Schüssler S, Avedik F (2001) Crustal and upper mantle seismic structure and lithospheric flexure along the Society Island hotspot chain. Geophys J Int 147:123–140

    Google Scholar 

  • Gudmundsson O, Brandsdottir B, Jacobsdottir S, Stefansson R (1994) The crustal magma chamber of the Katla Volcano in south Iceland revealed by two-dimensional seismic undershooting. Geophys J Int 119:227–296

    Google Scholar 

  • Gutscher MA, Olivet JL, Aslanian D, Eissen JP, Maury R (1999) The “lost Inca Plateau”: Cause of flat subduction beneath Peru? Earth Plan Sci Lett 171:335–341

    Google Scholar 

  • Hayes DE (1988) Age-depth relationship and depth anomalies in the Southeast Indian Ocean and Atlantic Ocean. J Geophys Res 93:2937–2954

    Google Scholar 

  • Hekinian R, Bideau D, Stoffers P, Cheminée JL, Mühe R, Puteanus D, Binard N (1991) Submarine intraplate volcanism in the south Pacific: geological setting and petrology of the Society and Austral region. J Geophys Res 96:2109–2138

    Google Scholar 

  • Hirn A (1988) Features of the crust mantle structure of Himalayas-Tibet: A comparison with seismic traverses of Alpine, Pyrenean and Variscan orogenic belts. Phil Trans R Soc London A 326:17–32

    Google Scholar 

  • Hirn A, et al. (1984) Crustal structure and variability of the Himalayan border of Tibet. Nature 307:23–25

    Google Scholar 

  • Hohertz WL, Carlson RL (1998) An independent test of thermal subsidence and asthenosphere flow beneath the Argentine Basin. Earth Plan Sci Lett 161:73–83

    Google Scholar 

  • Hotta H (1970) Stability of the crust mantle structures and tectonics of Island arc and trench systems. J Phys Earth 18(1):79–113

    Google Scholar 

  • Hughes DS, Maurette C (1956) Variation of elastie wave veloeit ies in granites with pressure and temperature. Geophysics 11(2):277–284

    Google Scholar 

  • Hughes DS, Maurette C (1957) Variation of elastic wave velocities in basic igneous rocks with pressure and temperature. Geophysics 12:23–31

    Google Scholar 

  • Ito G, Clift PD (1998) Subsidence and growth of Pacific Cretaceous Plateaus. Earth Plan Sci Lett 161:85–100

    Google Scholar 

  • Ito G, McNutt M, Gibson RL (1995) Crustal structure of the Tuamotu Plateau, 15° S, implications for its origin. J Geophys Res 100:8097–8114

    Google Scholar 

  • Keen C, Tramontini C (1970) A seismic refraction survey on the Mid-Atlantic Ridge. Geoph J R Astr Soc 20:473–491

    Google Scholar 

  • Kern H, Popp T, Gorbatsevitch F, Zharikov A, Lobanov KV, Smirnov YP (2001) Pressure and temperature dependence of V p and V s, in rocks from the superdeep well and from surface analogues at Kola and the nature of velocity an isotropy. Tectonophysics 338:113–134

    Google Scholar 

  • Klingelhöfer F, Minshull TA, Blackmann DK, Harben P and Childers V (2001) Crustal structure of Ascension Island from wide angle seismic data: Implication for the formation of near-ridge volcanic islands. Earth Plan Sci Lett 190:41–56

    Google Scholar 

  • LADLE Study Group (1983) A lithospheric seismic refraction profile in the western North Atlantic ocean. Geophys J R Astr Soc 75:23–69

    Google Scholar 

  • Leeds AR (1975) Lithosphere thickness in the western Pacific. Phys Earth Plan Interiors 11:61–64

    Google Scholar 

  • Le Pichon X (1969) Models and structure of the oceanic crust. Tectonophysics 7:385–401

    Google Scholar 

  • Lindwall DA (1988) A two-dimensional seismic investigation of crustal structure under the Hawaiian Island near Oahu and Kauai. J Geophys Res 93:12107–12122

    Google Scholar 

  • Louden KE (1980) The crustal and lithospheric thickness of the Philippine Sea as compared to the Pacific. Earth Plan Sci Lett 50:275–288

    Google Scholar 

  • Ludwig WJ, Nafe JE, Drake CL (1970) Seismic refraction. In: Maxwell AE (ed) The sea, 4, Part 1: New concepts of sea floor evolution. John Wiley & Sons, Inc., New York, pp 53–84

    Google Scholar 

  • Marechal JC (1981) Uplift by thermal expansion of the lithosphere. Geoph J R Astr Soc 66:535–552

    Google Scholar 

  • McNutt MK (1984)Lithospheric flexure and thermal anomalies. J Geophys Res 89:11180–11194

    Google Scholar 

  • McNutt MK (1988) Superswells. Rev Geophys 36:211–244

    Google Scholar 

  • McNutt MK, Fischer KM (1987) The South Pacific superswell. In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, islands, and atolls. Geophysical Monograph 43, American Geophys Union, Washington D.C., pp 25–34

    Google Scholar 

  • McNutt MK, Judge AV (1990) The Superswell and mantle dynamics beneath the South Pacific. Science 248:969–975

    Google Scholar 

  • McNutt MK, Menard HW (1978) Lithospheric flexure and uplifted Atolls. J Geophys Res 83:1206–1212

    Google Scholar 

  • Mello SLM, Cann JR (1999) Anomalous mantle at 45° N Mid-Atlantic Ridge. J Geophys Res 104(B12):29335–29349

    Google Scholar 

  • Menke WB, Brandsdottir B, Einarsson P, Bjarnason IT (1996) Reinterpretation of the RRISP-77 Iceland shear wave profiles. Geophys J Int 126:166–172

    Google Scholar 

  • Menke W, West M, Brandsdottir B, Sparks D (1998) Compressional and shear velocity structure of the lithopshere in northern Iceland. Bull Seism Soc Am 88:1561–1571

    Google Scholar 

  • Minshull TA, Brozena JM (1997) Gravity anomalies and flexure of the lithosphere at Ascension Island. Geophys J Int 31:347–360

    Google Scholar 

  • Montagner JP (1986) First results on the three-dimensional structure of the Indian Ocean infer red form long period surface waves. Geophys Res Lett 13:315–318

    Google Scholar 

  • Morgan WJ (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Google Scholar 

  • Morgan WJ (1971) Plate motion and deep mantle convection. Geol Soc Am Memoir 132:7–22

    Google Scholar 

  • Morgan WJ (1983) Hotspot tracks and the early rifting of the Atlantic. Tectonophysics 94:123–139

    Google Scholar 

  • Nafe DA, Drake CL (1963) Physical properties of marine sediments. In: Hill MN (ed) The sea. Wiley Interscience, New York, 794–815

    Google Scholar 

  • Nagumo S, Ouchi T, Kasahara J, Koresawa S (1986) P-wave velocity in the lower lithosphere in the Western North West Pacific basin observed by an ocean bottom seismometer long range array. Bull of the Earthquake Res Inst University of Tokyo 61:403–414

    Google Scholar 

  • Nagumo S, Ouchi T, Kasahara J, Koresawa S (1987) P-wave velocity structure of the lithosphere-asthenosphere beneath the western Northwest Pacific basin determined by an ocean seismometer array observation. Bull of the Earthquake Res Inst University of Tokyo 62:15–22

    Google Scholar 

  • Navin DA, Peirce C, Sinha MC (1998) The RAMESSES experiment-II. Evidence for accumulated melt beneath a slow spreading ridge from wide-angle refraction and multi channel reflection seismic profiles. Geoph J Int 35:746–772

    Google Scholar 

  • Nolasco R, Tarits P, Filloux JH, Chave AD (1998) Magnetotelluric imaging of the Society Island hotspot. J Geophys Res 103(B12):30287–30309

    Google Scholar 

  • Operto S, Charvis P (1996) Deep structure of the southern Kerguelen Plateau (southern Indian Ocean) from ocean bottom seismometer wide-angle data. J Geophys Res 101:25077–25103

    Google Scholar 

  • Oxburgh ER, Parmentier EM (1977) Compositional and density stratification in oceanic lithosphere — Causes and consequences. J Geol Soc London 133:343–355

    Google Scholar 

  • Parsons B, McKenzie D (1978) Mantle convection and thermal structure of the plates. J Geophys Res 83:4485–4496

    Google Scholar 

  • Parsons B, Sclater JG (1977) An analysis of the variation of ocean floor bathymetry and heat flow with age. J Geophys Res 82:803–827

    Google Scholar 

  • Pautot G (1975) Analyse structurale de l’archipel des Tuamotu: Origine volcano-tectonique, paper presented at 3éme Colloque des Science de la Terre, Univ. Montpellier, Montpellier, France

    Google Scholar 

  • Peirce C, Barton JP (1991) Crustal structure of the Madeira-Tore Rise, eastern North Atlantic — Results of a DOBS wide angle and normal incidence seismic experiment in the Josephine Seamount region. Geophys J Int 106:357–378

    Google Scholar 

  • Phipps Morgan J, Smith WHF (1992) Flattening of the sea floor depth-age curve as a response to asthenospheric flow. Nature 359:524–527

    Google Scholar 

  • Phipps Morgan J, Morgan WJ, Price E (1995) Hotspot melting generates both hotspot volcanism and a hotspot swell. J Geophys Res 100:8045–8062

    Google Scholar 

  • Pollack HN (1980) On the use of the volumetric thermal expansion coefficient in models of ocean floor topography. Tectonophysics 64:45–47

    Google Scholar 

  • Pudjom-Djomani YH, O’Reilly SY, Griffin WL, Morgan P (2001) The density structure of subcontinental lithosphere through time. Earth Plan Sci Lett 184:605–621

    Google Scholar 

  • Purdy GM (1983) The seismic structure of 140 myr old crust in the western Atlantic ocean. Geophys J R Astron Soc 72:115–137

    Google Scholar 

  • Putirka K (1999) Melting depth and mantle heterogeneity beneath Hawaii and the East Pacific Rise: Constrains from Na/Ti and rare earth element ratios. J Geophys Res 104(B2):2817–2829

    Google Scholar 

  • Recq J, Goslin J (1981) Etude de l’equilibre isostatique dans le sud-ouest de l’ocean Indien a l’aide des resultats de refraction sismique. Marine Geology 41:M1–M10

    Google Scholar 

  • Recq M (1983) Anomalies isostatiques sous le basin de Crozet et la dorsale est-indienne. Bull Soc Geol de France XXV. 6:963–972

    Google Scholar 

  • Recq M, Charvis P (1986) A seismic refraction survey in the Kerguelen Isles, southern Indian Ocean. Geophy J R Astr Soc 84:529–559

    Google Scholar 

  • Renkin ML, Sclater JG (1988) Depth and age in the North Pacific. J Geophys Res 93(B4):2919–2935

    Google Scholar 

  • Sandwell DT (1982) Thermal isostasy: Response of a moving lithosphere to a distributed heat source. J Geophys Res 87:1001–10014

    Google Scholar 

  • Sandwell DT, MacKenzie KR (1989) Geoid height versus topography for oceanic plateaus and swells. J Geophys Res 94:7403–7418

    Google Scholar 

  • Sapin M, Hirn A (1997) Seismic structure and evidence for eclogitization during the Himalayan convergence. Tectonophysics 273:1–16

    Google Scholar 

  • Schlich R (1982) The Indian Ocean: Aseismic ridges, spreading centres and oceanic basins. In: Nairns AEM, Stehli FG (eds) The oceans basins and margins, vol 6: The Indian Ocean. Plenum, New York, pp 51–147

    Google Scholar 

  • Schlich R, Dyment J, Munschy M (1990) Structure and age of the Mascarene and Madagascar basins. Paper presented at Colloque International Volcanisme intraplaque: Le point chaud de la Réunion. Inst. de Phys. du Globe de Paris

    Google Scholar 

  • Schubert G, Sandwell D (1989) Crustal volumes of the continents and of oceanic and continental submarine plateaus. Earth Planet Sci Lett 92:234–246

    Google Scholar 

  • Shimamura H, Asada T (1976) Apparent velocity measurements on an oceanic lithosphere. Phys Earth Plan Interior 13:15–22

    Google Scholar 

  • Shimamura H, Asada T, Suyehiro K, Yamada T, Inatani H (1983) Longshot experiments to study velocity anisotropy in the oceanic lithosphere of the Northwest Pacific. Phys of the Earth and Plan Interiors 31:348–362

    Google Scholar 

  • Sibuet JC, Veyrath-Peinet B (1980) Gravimetric model of the Equatorial fracture zone. J Geophys Res 85(B2):943–954

    Google Scholar 

  • Sibuet JC, Le Piehon X, Goslin J (1974) Thickness of the lithosphere deduced from gravity edge effects across the Mendocino fault. Nature 252:676–679

    Google Scholar 

  • Sinha MC, Constable SC, Peirce C, White A, Heinson G, MacGregor LM, Navin DA (1998) Magmatic processes at slow spreading ridges: Implications of the RAMESSES experiment of 57°45′ N on the Mid-Atlantic Ridge. Geoph J Int 135:731–745

    Google Scholar 

  • Sleep NH (1975) Formation of oceanic crust: Some thermal constrains. J Geophys Res 80(29):4037–4042

    Google Scholar 

  • Sleep NH (1990) Hotspots and mantle plumes: Some phenomenology. J Geophys Res 95:6715–6736

    Google Scholar 

  • Sleep N (1994) Lithosphere thinning by mid-plate plumes and thermal history of hot plume material ponded at sublithospheric depths. J Geophys Res 99:9327–9343

    Google Scholar 

  • Smallwood JR, White RS, Minshull TA (1995) Sea-floor spreading in the presence of the Iceland plume: The structure of the Reykjanes Ridge at 61°40’ N. J Geol Soc 152:1023–1029

    Google Scholar 

  • Smallwood JR, Staples RK, Richardson KR, White RS, FIRE Working Group (1999) Crust generated above the Iceland mantle plume: from continental rift to oceanic spreading centre. J Geophys Res 104:22885–22902

    Google Scholar 

  • Smith WHF, Sandwell DT (1997) Global seafloor topography from satellite altimetry and ship sounding. Science 277:1956–1962

    Google Scholar 

  • Staples RK, White RS, Brandsdottir B, Menke W, Maguire PKH, McBride JH (1997) Faroe-Iceland Ridge Experiment 1. Crustal structure of northeastern Iceland. J Geophys Res 102:7849–7866

    Google Scholar 

  • Stein CA and Stein S (1992) A model for the global variation in oceanic depth and heat flow with lithospheric age. Nature 359:123–128

    Google Scholar 

  • Su WJ, Woodward RL, Dziewonski AM (1992) Deep origin of mid-ocean ridge seismic velocity anomalies. Nature 360:149–152

    Google Scholar 

  • Toomey DR, Wilcock WSD, Couder JA, Forsyth DW, Blundy JD, Parmentier EM, Hammond WC (2003) Asymmetric mantle dynamics in the MELT region of the East Pacific Rise. J Geophys Res 108(B4):NIL-1-NIL16

    Google Scholar 

  • Tueholke BE, Houtz RE, Ludwig WJ (1982) Sediment thickness and depth to basement in western North Atlantic basin. AAPG Bull 66:1384–1395

    Google Scholar 

  • Verhoef I, Collette BJ (1987) Lithospheric thinning under the Atlantis-Meteor Seamount complex (North Atlantic) In: Keating BH, Fryer P, Batiza R, Boehlert GW (eds) Seamounts, islands, and atolls. Geophys Monograph 43, Ameriean Geophysical Union, Washington D.C., pp 391–404

    Google Scholar 

  • Vogt PR (1974) Volcano height and plate thickness. Earth Plan Sci Lett 23:337–348

    Google Scholar 

  • Von Herzen RP, Cordery MJ, Detrick RS, Fang C (1989) Heat flow and the thermal origin of the hotspot swells: The Hawaiian swell revisited. J Geophys Res 94:13783–13799

    Google Scholar 

  • Walcott RI (1970) Flexure of the Iithosphere at Hawaii. Tectonophysics 9:435–446

    Google Scholar 

  • Watts AB (1976) Gravity and bathymetry in the central Pacific Ocean. J Geophys Res 81:1533–1553

    Google Scholar 

  • Watts AB (1979) An analysis of isostasy in the world’s oceans, 1. Hawaiian-Emperor seamount chain. J Geophys Res 83:5985–6004

    Google Scholar 

  • Watts AB, Cochran JR, Selzer G (1975) Gravity anomalies and flexure of the lithosphere: a three-dimensional study of the Great Meteor Seamount, northeast Atlantic, J Geophys Res 80:1391–1398

    Google Scholar 

  • Watts AB, Bodine JH, Ribe NM (1980) Observations of flexure and the geological evolution of the Pacific Ocean basin. Nature 283:532–537

    Google Scholar 

  • Watts AB, ten Brink US, Buhl P, Brocher TM (1985) A multichannel seismic study of the Iithospheric flexure across the Hawaiian-Emperor seamount chain. Nature 315:105–111

    Google Scholar 

  • Wegener A (1915) Die Entstehung der Kontinente und Ozeane. Sammlung Vieweg: Tagesfragen aus den Gebieten der Naturwissenschaften und Technik, Braunschweig

    Google Scholar 

  • Weigel W, Grevemeyer I (1999) The Great Meteor Seamount: Seismic structure of a submerged intraplate volcano. In: Charvis P, Danobeitia JJ (eds) Hotspot and oceanic crust interaction. J Geodyn 28:27–40

    Google Scholar 

  • Weir NRW, White RS, Brandsdottir B, Einarsson P, Shimamura H, Shiobara H, RISE fieldwork team (2001) Crustal structure of the northern Reykjanes Ridge and Reykjanes Peninsula, southwest Iceland. J Geophys Res 106(B4):6347–6368

    Google Scholar 

  • Wendt I, Kreuzer H, Müller D, von Rad U, Raschka H (1976) K-Ar age of basalts from the Great Meteor and Josephine Seamounts (eastern North Atlantic). Deep Sea Res 23:849–862

    Google Scholar 

  • White RS (1993) Melt production rates in mantle plumes. Phil Trans Roy Soc London Ser A 342:137–153

    Google Scholar 

  • White RS, McKenzie DP, O’Nions RK (1992) Oceanic crustal thickness from seismic measurements and rare earth element inversions. J Geophys Res 97:19683–19715

    Google Scholar 

  • White RS, Brown JW, Smallwood JR (1995) The temperature of the Iceland plume and origin of outward propagating V-shaped ridges. J Geol Soc London 152:1039–1045

    Google Scholar 

  • Wolfe CJ, McNutt MK, Detrick RS (1994) The Marquesas archipelagic apron: Seismic stratigraphy and implications for volcano growth, mass wasting, and crustal underplating. J Geophys Res 99:13591–13608

    Google Scholar 

  • Woolard GP (1959) Crustal structure from gravity and seismic measurements. J Geophys Res 64(B10):1521–1544

    Google Scholar 

  • Worzel JL, Shubert GL (1982) Gravity interpretation from standard oceanic and continental crustal sections. Geol Soc Am Special Paper 62:87–100

    Google Scholar 

  • Yoshii T (1975) Regionality of group velocities of Rayleigh-waves in the Pacific and thickening of the plate. Earth Plan Sci Lett 25:305–312

    Google Scholar 

  • Zhao D (2001) Seismic structure and origin of hotspots and mantle plumes. Earth Plan Sci Lett 192:251–265

    Google Scholar 

  • Zverev SM, Kosminskaya IP, KrasiIstchikova GA, Mikhota GG (1976) The crustal structure of Iceland and the Iceland Färoe-Shetland region. Soc Sci Isl 5:73–93

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Avedik, F., Klingelhöfer, F., Jegen, M.D., Matias, L.M. (2004). A Global Isostatic Load Model and its Application to Determine the Lithospheric Density Structure of Hotspot Swells. In: Hekinian, R., Cheminée, JL., Stoffers, P. (eds) Oceanic Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18782-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18782-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62290-8

  • Online ISBN: 978-3-642-18782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics