Skip to main content

Ridge Suction Drives Plume-Ridge Interactions

  • Chapter
Oceanic Hotspots

Abstract

Geological processes are consequences of the Earth’s thermal evolution. Plate tectonics, which explain geological phenomena along plate boundaries, elegantly illustrate this concept. For example, the origin of oceanic plates at ocean ridges, the movement and growth of these plates, and their ultimate consumption back into the Earth’s interior through subduction zones provide an efficient mechanism to cool the Earth’s mantle, leading to large-scale mantle convection. Mantle plumes, which explain another set of global geological phenomena, cool the Earth’s deep interior (probably the Earth’s core) and represent another mode of Earth’s thermal convection (e.g., Davies and Richards 1992). Plate tectonics and plume tectonics are thus genetically independent from each other, However, when the rising plumes approach the lithospheric plates, interactions between the two inevitably result. Such interactions are most prominent near ocean ridges, where the litho-sphere is thin and the effect of mantle plumes is best revealed. “Plume-ridge inter-action” has been a hot topic in recent years, and much effort has been expended in this area aimed at understanding the geological, geochemical, and geodynamic consequences (Schilling et al. 1983, 1994, 1995, 1996, 1999; Schilling 1991; Feighner and Richards 1995; Ho and Lin 1995a,b; Ito et al. 1996; Kincaid et al. 1995, 1996; Ribe 1996; Sleep 1996; Haase and Devey 1996; Hekinian et al. 1996, 1997, 1999; Pan and Batiza 1998; Niu et al. 1999; Graham et al. 1999; Maia et al. 2000; Georgen et al. 2001; Haase 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Batiza R (1982) Abundances, distribution and sizes of volcanoes in the Pacific Ocean and implications for the origin of non-hotspot volcanoes. Earth Planet Sc Lett 60:195–206

    Article  Google Scholar 

  • Batiza R (1984) Inverse relationship between Sr isotope diversity and rate of oceanic volcanism has implications for mantle heterogeneity. Nature 309:440–441

    Article  Google Scholar 

  • Batiza R, Niu Y (1992) Petrology and magma chamber processes at the East Pacific Rise ∼9°30’ N. J Geophys Res 97:6779–6797

    Article  Google Scholar 

  • Batiza R, Vanko DA (1984) Petrology of young Pacific seamounts. J Geophys Res 89:11235–11260

    Article  Google Scholar 

  • Campbell IH, Griffiths RW (1990) Implications of mantle plume structure for the evolution of flood basalts. Earth Planet Sc Lett 99:79–93

    Article  Google Scholar 

  • Castillo PR, Natland JH, Niu Y, Lonsdale P (1998) Sr, Nd, and Pb isotopic variation along the Pacific ridges from 53 to 56° S: Implications for mantle and crustal dynamic processes. Earth Planet Sc Lett 154:109–125

    Article  Google Scholar 

  • Davies GF, Richards MA (1992) Mantle convection. J Geol 100:151–206

    Article  Google Scholar 

  • Deng J, Zhao H, Luo, Guo Z, Mo X (1998) Mantle plumes and lithosphere motion in east Asia. Geodynam Ser 27:59–66

    Article  Google Scholar 

  • Devey CW, Hekinian R, Stoffers P, Ackermand D, Binard N, Drusch M, Francke B, Hémond C, Kapsimalis V, Lorenc S, Maia M, Möller H, O’Connor J, Perrot K, Pracht J, Ramm D, Rogers T, Stattegger K, Steinke S, Victor P (1997) Afirst survey and sampling of the Foundation Seamount Chain. Mar GeoI 137:191–200

    Article  Google Scholar 

  • Duncan RA, Richards MA (1991) Hotspots, mantle plumes, flood basalts, and true polar wander. Rev Geophys 29:31–50

    Article  Google Scholar 

  • Feighner MA, Richards MA (1995) The dynamics of plume-ridge and plume plate interactions: An experimental investigation. Earth Planet Sc Lett 129:171–182

    Article  Google Scholar 

  • Forsyth DW (1998) Geophysical constraints on mantle flow and melt generation beneath mid-ocean ridges. AGU, Washington, D.C., Geophys Monogr Ser 71:1–66

    Google Scholar 

  • Forsyth DW, The MELT Seismic Team (1998) Imaging the deep seismic structure beneath a rnid-ocean ridge: The MELT experiment. Science 280:1215–1218

    Article  Google Scholar 

  • Fowler CMR (1990) The solid Earth: An introduction to global geophysics. Cambridge University Press Cambridge 472 pp

    Google Scholar 

  • Fretzdorff S, Haase KM, Garbe-Schonberg C-D (1996) Petrogenesis of lavas from the Umu volcanic field in the young hotspot region west of Easter Island, SE Pacific. Lithos 38:23–40

    Article  Google Scholar 

  • Georgen JE, Lin J, Dick HJB (2001) Evidence from gravity anomalies for interactions of the Marion and Bouvet hotspots with the Southwest Indian Ridge: Effects of transform offsets. Earth Planet Sc Lett 187:283–300

    Article  Google Scholar 

  • Graham DW, Johnson KTM, Priebe LD, Lupton JE (1999) Hotspot-ridge interaction along the South-east Indian Ridge near Amsterdam and St. Paul Islands: Helium isotope evidence. Earth Planet Sc Lett 167:297–310

    Article  Google Scholar 

  • Green DH, Falloon TJ (1998) Pyrolite: A Ringwood concept and its current expression. In: Jackson I (ed) The Earth’s mantle — Composition, structure, and evolution. Cambridge University Press, Melbourne, pp 311–380

    Google Scholar 

  • Hanan BB, Schilling J-G (1989) Easter micropiate evolution: Pb isotope evidence. J Geophys Res 94: 7432–7448

    Article  Google Scholar 

  • Hanan BR, Blichert-Toft J, Kingsley R, Schilling J-G (2000) Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? Geochem Geophy Geosy 1 (article) 1999GC000009

    Google Scholar 

  • Haase KM (2002) Geochemical constraints on magma sources and mixing processes in Easter Microplate MORB (SE Pacific): a case study of plume-ridge interaction: Chem GeoI 182:335–355

    Article  Google Scholar 

  • Haase KM, Devey CW (1996) Geochemistry of lavas from the Ahu and Tupa volcanic fields, Easter Hotspot, Southeast Pacific: Implications for intraplate magma genesis near a spreading axis. Earth Planet Sc Lett 137:129–143

    Article  Google Scholar 

  • Halliday AN, Diekin AP, Fallick AE, Fitton JG (1988) Mantle dynamics: A Nd, Sr, Pb and O isotope study of the Cameroon Line volcanic chain. J Petrol 29:181–211

    Google Scholar 

  • Halliday AN, Lee D-C, Tommasini S, Davies GR, Pasliek CR, Fitton JG, James DE (1995) Incompatible trace elements in OIB and MORB source enrichment in the sub-oceanic mantle. Earth Planet Sc Lett 133:379–395

    Article  Google Scholar 

  • Hanan BR, Blichert-Toft J, Kingsley R, Schilling J-G (2000) Depleted Iceland mantle plume geochemical signature: Artifact of multicomponent mixing? Geochem Geophy Geosy 1 (article) 1999GC000009

    Google Scholar 

  • Hekinian R, Thompson G, Bideau D (1989) Axial and off-axial heterogeneity of basaltic rocks from the East Pacific Rise at 12°35’ N–12°51’N and 11°26’ N–11°30’ N. J Geophys Res 94:17437–17463

    Article  Google Scholar 

  • Hekinian R, Bideau D, Herbért R, Niu Y (1995) Magmatic processes at upper mantle-crustal boundary zone: Garrett transform (EPR South). J Geophys Res 100:10163–10185

    Article  Google Scholar 

  • Hekinian R, Francheteau J, Armijo R, Cogne JP, Constantin M, Girardeau J, Hey RN, Naar DF, Searl R (1996) Petrology of the Easter microplate region in the south Pacific. J Volc Geotherm Res 72:259–289

    Article  Google Scholar 

  • Hekinian R., Stoffers P, Devey C, Ackermand D, Hémond C, O’Connor J, Binard N, Maia M (1997) Intraplate versus ridge volcanism on the Pacific Antarctic ridge near 37°S-111° W. J Geophys Res 94:12265–12286

    Article  Google Scholar 

  • Hekinian R, Stoffers P, Ackermand D, Revillon S, Maia M, Bohn M (1999) Ridge-hotspot interaction: the Pacific-Antarctic Ridge and the foundation seamounts. Mar GeoI 160:199–223

    Article  Google Scholar 

  • Hill RI, Campbell IH, Davies GF, Griffiths RW (1992) Mantle plumes and continental tectonics. Science 256:186–193

    Article  Google Scholar 

  • Hofmann AW, White WM (1982) Mantle plumes from ancient oceanic crust. Earth Planet Sc Lett 57: 421–436

    Article  Google Scholar 

  • Ito G, Lin I (1995a) Oceanic spreading center-hotspot interactions: Constraints from along-isochron bathymetric and gravity anomalies. Geology 23:657–660

    Article  Google Scholar 

  • Ito G, Lin J (1995b) Mantle temperature anomalies along the present and paleoaxes of the Galapagos spreading center as inferred from gravity analyses. J Geophys Res 100:3733–3745

    Article  Google Scholar 

  • Ito G, Lin J, Gable CW (1996) Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic Ridge. Earth Planet Sc Lett 144:53–74

    Article  Google Scholar 

  • Johnson RW (ed) (1989) Intraplate volcanism in eastern Australia and New Zealand. Cambridge University Press Melbourne, 408 pp

    Google Scholar 

  • Kincaid C, Ito G, Gable C (1995) Laboratory investigations of the interaction of off-axis mantle plumes and spreading centres. Nature 376, 758–761

    Article  Google Scholar 

  • Kincaid C, Schilling J-G, Gable C (1996) The dynamics of off-axis plume-ridge interaction in the upper mantle. Earth Planet Sc Lett 137:29–43

    Article  Google Scholar 

  • Kingsley R, Schiliing J-G (1998) Plume-ridge interaction in the Easter-Salas y Gómez seamount chain-Easter microplate system: Pb isotope evidence. J Geophys Res 103:24159–24177

    Article  Google Scholar 

  • Kingsley R, Schilling J-G, Dixon JE, Swart P, Poreda R, Simons K (2002) D/H ratios in basalt glasses from the Salas y Gómez mantle plume interacting with the East Pacific Rise: Water from old D-rich recycled crust or primordial water from the lower mantle? Geochem Geophy Geosy 1 (article) 2001GC000199

    Google Scholar 

  • Lambeck K, Johnston P (1998) The viscosity of the mantle: Evidence from analyses of glacial-rebound phenomena. In: Jackson I (ed) The Earth’s mantle — Composition, structure, and evolution. Cambridge University Press, Melbourne, pp 461–502

    Google Scholar 

  • Langmuir CH, Bender JF, Batiza R (1986) Petrological and tectonic segmentation of the East Pacific Rise, 5°30’–14▾30’ N. Nature 332:422–429

    Article  Google Scholar 

  • Lehnert K, Su Y, Langmuir CH, Sarbas B, Nohl U (2000) A global geochemical database structure for rocks. Geochem Geophy Geosy 1 (technical brief) 1999GC000026

    Google Scholar 

  • Lonsdale P (1988) Geography and history of the Louisville hotspot chain in the Southern Pacific. I Geophys Res 93:3078–3104

    Article  Google Scholar 

  • Mahoney JJ, Sinton IM, Kurz DM, Macdougall ID, Spencer KJ, Lugmair GW (1994) Isotope and trace element characteristics of a super-fast spreading ridge: East Pacific Rise, 13–23°S. Earth Planet Sc Lett 121:173–193

    Article  Google Scholar 

  • Maia M, Ackermand D, Dehghani GA, Gente P, Hekinian R, Naar D, O’Connor J, Perrot K, Phipps Morgan J, Ramillien G, Révillon S, Sabetian A, Sandwell D, Stoffers P (2000) The Pacific-Antarctic Ridge-Foundation hotspot interaction: A case study of a ridge approaching a hotspot. Mar Geol 167:61–84

    Article  Google Scholar 

  • Maia M, Hémond C, Gente P (2001) Contrasted interactions between plume and lithosphere: The Foundation chain case. Geochem Geophy Geosy 1 (article), 2000GC000117

    Google Scholar 

  • McKenzie D, Bickle MJ (1988) The volume and composition of melt generated by extension of the Iithosphere. J Petrol 29:625–679

    Google Scholar 

  • Mertz DF, Devey CW, Todt W, Stoffers P, Hofmann AW (1991) Sr-Nd-Pb isotope evidence against plume-asthenosphere mixing north of Iceland. Earth Planet Sc Lett 107:243–255

    Article  Google Scholar 

  • Morel JM, Hekinian R (1980) Compositional variation of volcanics along segments of recent spreading ridges. Contrib Mineral Petrol 72:425–436

    Article  Google Scholar 

  • Morgan JW (1971) Convection plumes in the lower mantle. Nature 230:42–43

    Article  Google Scholar 

  • Morgan JW (1981) Hotspot tracks and opening of the Atlantic and Indian Oceans. In: Emiliani C (ed) The sea, vol. 7. Wiley, New York, pp 443–487

    Google Scholar 

  • Naar DF, Hey RN (1991) Tectonic evolution of the Easter microplate. J Geophys Res 96:7961–7993

    Article  Google Scholar 

  • Natland JH (1980) Effect of axial magma chambers beneath spreading centers on the composition of basaltic rocks. Init Rep Deep Sea Drill Proj 54:833–850

    Google Scholar 

  • Niu Y (1997) Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J Petrol 38:1047–1074

    Article  Google Scholar 

  • Niu Y, Batiza R (1994) Magmatic processes at the Mid-Atlantic ridge ∼ 26° S. J Geophys Res 99:19719–19740

    Article  Google Scholar 

  • Niu Y, Batiza R (1997) Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Earth Planet Sc Lett 148:471–484

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997a) Basaltic liquids and harzburgitic residues in the Garrett transform: A case study at fast-spreading ridges. Earth Planet Sc Lett 146:243–258

    Article  Google Scholar 

  • Niu Y, Hekinian R (1997b) Spreading rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385:326–329

    Article  Google Scholar 

  • Niu Y, Waggoner DG, Sinton JM, Mahoney JJ (1996) Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise, 18°–19°S. J Geophys Res 101:27711–27733

    Article  Google Scholar 

  • Niu Y, Collerson KD, Batiza R, Wendt I, Regelous M (1999) The origin of E-type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20’ N. J Geophys Res 104:7067–7087

    Article  Google Scholar 

  • Niu Y, Bideau D, Hekinian R, Batiza R (2001) Mantle compositional control on the extent of melting, crust production, gravity anomaly and ridge morphology: A case study at the Mid-Atlantic Ridge 33–35° N. Earth Planet Sc Lett 186:383–399

    Article  Google Scholar 

  • Niu Y, Regelous M, Wendt JI, Batiza R, O’Hara MI (2002) Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet Sc Lett 199:329–348

    Article  Google Scholar 

  • O’Connor JM, Stoffers P, Wijbrans JR (1998) Migration rate of volcanism along the Foundation Chain, SE Pacific. Earth Planet Sc Lett 164:41–59

    Article  Google Scholar 

  • O’Connor JM, Stoffers P, Wijbrans JR (2001) En echelon volcanic elongate ridges connecting intraplate Foundation Chain volcanism to the Pacific-Antarctic spreading center. Earth Planet Sc Lett 189:93–102

    Article  Google Scholar 

  • Pan Y. Batiza R (1998) Major element chemistry of volcanic glasses from the Easter Seamount Chain: Constraints on melting conditions in the plume channel. J Geophys Res 103:5287–5304

    Article  Google Scholar 

  • Perfit MR, Fornari DJ, Smith MC, Bender JF, Langmuir CH, Haymon RM (1994) Small-scale spatial and temporal variations in mid-ocean ridge crest magmatic processes. Geology 22:375–379

    Article  Google Scholar 

  • Phipps Morgan J, Morgan IW (1998) Two-stage melting and the geochemical evolution of the mantle: A recipe for mantle plum-pudding, Earth Planet Sc Lett 170:215–239

    Article  Google Scholar 

  • Phipps Morgan J, Morgan IW, Zhang Y-S, Smith WHF (1995) Observational hints for a plume-fed, suboceanic asthenosphere and its role in mantle convection. J Geophys Res 100:12753–12767

    Article  Google Scholar 

  • Regelous M, Niu Y, Wendt JI, Batiza R, Greig A, Collerson KD (1999) An 800 ka record of the geochemistry of magmatism on the East Pacific Rise at 10°30’ N: Insights into magma chamber processes beneath a fast-spreading ocean ridge. Earth Planet Sc Lett 168:45–63

    Article  Google Scholar 

  • Regelous M, Niu Y, Castillo P, Batiza R, Greig A (2001) Contrasting geochemistry of on-and off-axis magmatism, 26° S Mid-Atlantic Ridge. EOS Trans Am Geophys Union 82(47):F1275–1276

    Google Scholar 

  • Reynolds JR, Langmuir CH, Bender JF, Kastens KA, Ryan WBF (1992) Spatial and temporal variability in the geochemistry of basalts from the East Pacific Rise. Nature 359:493–499

    Article  Google Scholar 

  • Ribe NM (1996) The dynamics of plume-ridge interaction, 2: Off-ridge plumes. J Geophys Res 101: 16195–16204

    Article  Google Scholar 

  • Scheirer DS, Macdonald KC, Forsyth DW, Shen Y (1996) Abundant seamounts of the Rano Rahi Seamount Field near the Southern East Pacific Rise, 15°S to 19°S. Mar Geophys Res 18:13–52

    Article  Google Scholar 

  • Schilling J-G (1991) Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges. Nature 352:397–403

    Article  Google Scholar 

  • Schilling J-G, Zajac M, Evans R, Johnston T, White W, Devine JD, Kingsley R (1983) Petrological and geochemical variations along the Mid-Atlantic Ridge from 29° N to 73° N. Am J Sci 283:510–586

    Article  Google Scholar 

  • Schilling J-G, Hanan BB, McCully B, Kingsley RH, Fontignie D (1994) Influence of the Siera Leone mantle plume on the equatorial Mid-Atlantic Ridge: A Nd-Sr-Pb isotopic study. Geophys Res 99:12005–12028

    Article  Google Scholar 

  • Schilling J-G, Ruppel C, Davis AN, McCully B, Tighe SA, Kingsley RH, Lin J (1995) Thermal structure of the mantle beneath Equatorial Mid-Atlantic Ridge: Inferences from spatial variations of dredged basalt glass composition. J Geophys Res 100:10057–10076

    Article  Google Scholar 

  • Schilling J-G, Kingsley R, Fontignie D, Poreda R, Xue S (1999) Dispersion of the Jan Mayen and Iceland mantle plumes in the Arctic: A He-Pb-Nd-Sr isotope tracer study of basalts from the Kolbeinsey, Mohns, and Knipovich ridges. J Geophys Res 104:10543–10569

    Article  Google Scholar 

  • Shen Y, Scheirer DS, Forsyth DW, Macdonald KC (1995) Trade-off in production between adjacent seamount chains near the East Pacific Rise. Nature 373:140–143

    Article  Google Scholar 

  • Sinton JM, Detrick RS (1992) Mid-ocean ridge magma chambers. J Geophys Res 97:197–216

    Article  Google Scholar 

  • Sinton JM, Smaglik SM, Mahoney II (1991) Magmatic processes at superfast spreading mid-ocean ridges: Glass compositional variations along the East Pacific Rise 13°–23° S. J Geophys Res 96:6133–6155

    Article  Google Scholar 

  • Silver PG, Holt WE (2002) The mantle flow field beneath western north America. Science 295:1054–1057

    Article  Google Scholar 

  • Sleep NH (1996) Lateral flow of hot plume material ponded at sublithospheric depths. J Geophys Res 101:28065–28083

    Article  Google Scholar 

  • Stein S, Stein CA, (1996) Thermo-mechanical evolution of oceanic lithosphere: Implications for the subduction processes and deep earthquake. AGU Geophys Monogr 96:1–17

    Article  Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of ocean basalt: Implications for mantle composition and processes. Geol Soc Spec Publ 42:323–345

    Article  Google Scholar 

  • Sun S-S, Tatsumoto M, Schilling J-G (1975) Mantle plume mixing along the Reykjanes ridge axis: Lead isotope evidence. Science 190:143–147

    Google Scholar 

  • Taylor RN, Thirwall MF, Morton JB, Hilton DR, Gee MAM (1997) Isotopic constraints on the influence of the Icelandic plume. Earth Planet Sc Lett 148:E1–E8

    Article  Google Scholar 

  • Turcotte DL, Morgan JP (1992) Magma migration and mantle flow beneath a mid-ocean ridge. AGU Geophys Monogr 71:155–182

    Article  Google Scholar 

  • Wendt JI, Regelous M, Niu Y, Hekinian R, Collerson KD (1999) Geochemistry of lavas from the Garrett transform fault: Insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet Sc Lett 173:271–284

    Article  Google Scholar 

  • Zhang M, Zhou X-H, Zhang J-B (1998) Nature of the lithospheric mantle beneath NE China: Evidence from potash volcanic rocks and mantle xenoliths. In: Flower MFJ, Chung Sol, Lo C-H, Lee T-Y (eds) Mantle dynamics and plate interactions in East Asia. AGU Washington, D.C., Geodynam Ser 27:197–219

    Google Scholar 

  • Zhang Y-S, Tanimoto T (1993) High-resolution global upper mantle structure and plate tectonics. J Geophys Res 98:9793–9823

    Article  Google Scholar 

  • Zindler A, Staudigel H, Batiza R (1984) Isotope and trace element geochemistry of young Pacific seamounts: Implications for the scale of upper mantle heterogeneity. Earth Planet Sc Lett 70:175–195

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Niu, Y., Hekinian, R. (2004). Ridge Suction Drives Plume-Ridge Interactions. In: Hekinian, R., Cheminée, JL., Stoffers, P. (eds) Oceanic Hotspots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18782-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18782-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62290-8

  • Online ISBN: 978-3-642-18782-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics