Skip to main content

Component by Component Construction of Rank-1 Lattice Rules HavingO(n -1(In(n))d) Star Discrepancy

  • Conference paper
Monte Carlo and Quasi-Monte Carlo Methods 2002

Summary

The star discrepancy is a quantity for measuring the uniformity of a set of quadrature points and appears in the Koksma-Hlawka inequality. For integrals over [0, 1]d it is known that there exist d-dimensional rank-1 lattice rules having 0(n -1(ln(n))d) star discrepancy, where n is the number of points. Here we show that for n prime such rules may be obtained by constructing their generating vectors component by component. The rules are constructed to satisfy certain bounds on a quantity known as R. Bounds on the star discrepancy in terms of R then yield the desired O(n -1(In(n))d) star discrepancy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hickernell, F.J, Niederreiter, H.: The existence of good extensible rank-1 lattices. J. Complexity, 19, 286–300 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Hlawka, E.: Funktionen von beschränkter Variation in der Theorie der Gleichverteilung. Ann. Mat. Pura ed AppL, 54, 325–334 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Joe, S., Sloan, I.H.: On computing the lattice rule criterion R. Math. Comp., 59, 557–568 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Krommer, A.R., Ueberhuber, C.W.: Computational Integration. SIAM, Philadelphia (1998)

    Book  MATH  Google Scholar 

  5. Niederreiter, H.: Existence of good lattice points in the sense of Hlawka. Monatsh. Math., 86, 203–219 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  7. Sloan, I.H., Joe, S.: Lattice Rules for Multiple Integration. Clarendon Press, Oxford (1994)

    Google Scholar 

  8. Sloan, I.H., Reztsov, A.V.: Component-by-component construction of good lattice rules. Math. Comp., 71, 263–273 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Zaremba, S.K.: Some applications of multidimensional integration by parts. Ann. Polon. Math., 21, 85–96 (1968)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Joe, S. (2004). Component by Component Construction of Rank-1 Lattice Rules HavingO(n -1(In(n))d) Star Discrepancy. In: Niederreiter, H. (eds) Monte Carlo and Quasi-Monte Carlo Methods 2002. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18743-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18743-8_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20466-4

  • Online ISBN: 978-3-642-18743-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics