Skip to main content

Stoichiometric Foundation of Large-Scale Biochemical System Analysis

  • Chapter
Modelling in Molecular Biology

Part of the book series: Natural Computing Series ((NCS))

Abstract

The traditional approach to unraveling functions of a biochemical system is to study isolated enzymes and/or complexes, and to determine their kinetic mechanisms for catalyzing given biochemical reactions along with estimates of the associated parameter values [41,47]. While this reductionist approach has been fruitful, the buzzwords of the present are integration and systems. One of the important tasks in current computational biology is to assimilate and integrate the behaviour of interacting systems of many enzymes and reactants. Understanding of such systems lays the foundation for modelling and simulation of whole-cell systems, a defining goal of the current era of biomedical science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberty, R.A. (1991) Equilibrium compositions of solutions of biochemical species and heats of biochemical reactions. Proc. Natl. Acad. Sci. USA, 88, 3268–3271.

    Article  Google Scholar 

  2. Bailey, J.E. (1991) Toward a science of metabolic engineering. Science, 252, 1668–1675.

    Article  Google Scholar 

  3. Bassingthwaighte, J.B. Goresky, C.A. (1984) Modeling in the analysis of solute and water exchange in the microvasculature, in Handbook of Physiology. Sect. 2, The Cardiovascular System Vol IV, The Microcirculation. E.M. Renkin C.C. Michel eds., Am. Physiol. Soc., Bethesda, MD. pp. 549–626.

    Google Scholar 

  4. Bassingthwaighte, J.B., Goresky, C.A. & Linehan, J.H., eds. (1998) Whole organ approaches to cellular metabolism: permeation, cellular uptake, and product formation. Springer, New York.

    Google Scholar 

  5. Bassingthwaighte, J.B. (2001) The modeling of a primitive’ sustainable’ conservative cell. Phil. Trans. R. Soc., Lond. A., 359, 1055–1072.

    Google Scholar 

  6. Beard, D.A., Liang, S.-D. & Qian, H. (2002) Energy balance for analysis of complex metabolic networks. Biophys. J., 83, 79–86.

    Article  Google Scholar 

  7. Beard, D.A. & Qian, H. (2003) Thermodynamic constraints for cellular metabolic analysis. Manuscript in preparation.

    Google Scholar 

  8. Bott, R. & Duffin, R.J. (1949) Impedance synthesis without use of transformers. J. Appl. Phys., 20, 816.

    MathSciNet  Google Scholar 

  9. Chong, L. & Ray, L.B. (2002) Whole-istic biology. Science, 295, 1661–1661.

    Google Scholar 

  10. Clarke, B.L. (1980) Stability of complex reaction networks. Adv. Chem. Phys., 43, 1–215.

    Google Scholar 

  11. Clarke, B.L. (1988) Stoichiometric network analysis. Cell Biophys., 12, 237–253.

    Google Scholar 

  12. Cornish-Bowden, A. (1976) Fundamentals of Enzyme Kinetics 3rd Ed., Butterworths, London. Chapter 4.

    Google Scholar 

  13. Dantzig, G.B. & Eaves, B.C. (1973) Fourier-Motzkin elimination and its dual. J. Combin. Theory A, 14, 288–297.

    Article  MathSciNet  MATH  Google Scholar 

  14. Delgado, J.P. & Liao, J.C. (1991) Identifying rate-controlling enzymes in metabolic pathways without kinetic parameters. Biotechnol. Prog., 7, 15–20.

    Article  Google Scholar 

  15. Dines, L.L. (1919) Systems of linear inequalities. Ann. Math., 20, 191–199.

    Article  MathSciNet  MATH  Google Scholar 

  16. Duffin, R.J. (1974) On Fourier’s analysis of linear inequality systems. Math. Progm. Study, 1, 71–95.

    Article  MathSciNet  Google Scholar 

  17. Fell, D.A. & Sauro, H.M. (1985) Metabolic control and its applications. Eur. J. Biochem., 148, 555–561.

    Article  Google Scholar 

  18. Giersch, G. (1988) Control analysis of metabolic networks. I. Homogeneous functions and the summation theorems for control coefficients. Eur. J. Biochem., 174, 509–513.

    Article  Google Scholar 

  19. Giersch, G. (1988) Control analysis of metabolic networks. II. Total differentials and general formulation of the connectivity relations. Eur. J. Biochem., 174, 515–519.

    Article  Google Scholar 

  20. Golynski, A. & Horton, J.D. (2001) A polynomial time algorithm to find the minimal cycle basis of a regular matroid. Preprint, http://www.stfx.ca/academic/mathcs/apics2001/discrete/Joseph.pdf.

  21. Horton, J.D. (1987) A polynomial-time algorithm to find the shortest cycle basis of a graph. SIAM J. Comput., 16, 358–366.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ibarra, R.U., Edwards, J.S. & Palsson, B.O. (2002) Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature, 420, 186–189.

    Article  Google Scholar 

  23. Kauffman, K.J., Pajerowski, J.D., Jamshidi, N., Palsson, B.O. &amp Edwards, J.S. (2002) Description and analysis of metabolic connectivity and dynamics in the human red blood cell. Biophys. J., 83, 646–662.

    Article  Google Scholar 

  24. King, E.L. & Altman, C. (1956) A schematic method of deriving the rate laws for enzyme-catalyzed reactions. J. Phys. Chem., 60, 1375–1381.

    Article  Google Scholar 

  25. Lamarck, J.B. (1830) Systeme Analytique des Connaissances Positives del’Homme, J.B. Baillire, Paris.

    Google Scholar 

  26. Lazman, M.Z. & Yablonskii, G.S. (1991) Kinetic polynomial: a new concept of chemical kinetics. In Patterns and Dynamics in Reactive Media. R. Aris, D.G. Aronson, and H.L. Swinney, Eds., Springer, New York, pp. 117–149.

    Chapter  Google Scholar 

  27. Mulquiney, P.J., Bubb, W.A. &amp Kuchel, P.W. (1999) Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: in vivo kinetic characterization of 2,3-bisphosphoglycerate synthase/phosphatase using 13C and 31P NMR. Biochem. J., 342, 576–580.

    Google Scholar 

  28. Mulquiney,, P.J. & Kuchel, P.W. (1999) Model of 2,3-bisphosphoglycerate metabolism in the human erythrocyte based on detailed enzyme kinetic equations: equations and parameter refinement. Biochem. J., 342, 581–596.

    Article  Google Scholar 

  29. Murray, J.D. (2002) Mathematical Biology I: An Introduction. 3rd Ed., Springer, New York.

    MATH  Google Scholar 

  30. Nasar, S. (1998) A Beautiful Mind: A Biography of John Forbes Nash, Jr, Simon & Schuster, New York.

    Google Scholar 

  31. Nozicka, F., Guddat, J., Hollatz, H. & Bank, B. (1974) Theorie der linearen parametrischen Optimierung, Akademie-Verlag, Berlin.

    MATH  Google Scholar 

  32. Qian, H., Beard, D.A. & Liang, S.-D. (2002) Stoichiometric network theory for nonequilibrium biochemical systems. Eur. J. Biochem., 270, 415–421.

    Article  Google Scholar 

  33. Reder, C. (1988) Metabolic control theory: a structural approach. J. Theor. Biol., 135, 175–201.

    Article  MathSciNet  Google Scholar 

  34. Savageau, M.A. (1969) Biochemical systems analysis. I. J. Theor. Biol., 25, 365–369.

    Google Scholar 

  35. Savageau, M.A. (1969) Biochemical systems analysis. II. J. Theor. Biol., 25, 370–379.

    Google Scholar 

  36. Savageau, M.A. (1970) Biochemical systems analysis. III. J. Theor. Biol., 26, 215–226.

    Google Scholar 

  37. Savageau, M.A. (1976) Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  38. Savageau, M.A. & Voit, E.O. (1987) Recasting nonlinear differential equations as S-systems: a canonical nonlinear form. Math. Biosci., 87, 83–115.

    Article  MathSciNet  MATH  Google Scholar 

  39. Schilling, C.H., Letscher, D. & Palsson, B.O. (2000) Theory for the systemic definition of metabolic pathways and their use in interpreting metabolic function from a pathway-oriented perspective. J. Theor. Biol., 203, 229–248.

    Article  Google Scholar 

  40. Schuster, S. & Hilgetag, C. (1994) On elementary flux modes in biochemical reaction systems at steady-state. J. Biol. Syst., 2, 165–182.

    Article  Google Scholar 

  41. Segel, I.H. (1975) Enzyme Kinetics. Wiley Interscience, New York.

    Google Scholar 

  42. Sheng, Q. (1994) Global error estimates for exponential splitting. IMA J. Numer. Anal., 14, 27–56.

    Article  MathSciNet  MATH  Google Scholar 

  43. Smale, S. (1972) On the mathematical foundations of electrical circuit theory. J. Diff. Geom., 7, 193–210.

    MathSciNet  MATH  Google Scholar 

  44. Strang, G. (1968) On the construction and comparison of differential schemes. SIAM J. Numer. Anal., 5, 506–517.

    Article  MathSciNet  MATH  Google Scholar 

  45. Stephanopoulos, G. (1994) Metabolic engineering. Curr. Opin. Biotechnol., 5, 196–200.

    Article  Google Scholar 

  46. Stelling, J., Klamt, S., Bettenbrock, K., Schuster, S. & Gilles, E.D. (2002) Metabolic network structure determines key aspects of functionality and regulation. Nature, 420, 190–193.

    Article  Google Scholar 

  47. Stryer, L. (1981) Biochemistry. 2nd Ed., W.H. Freeman, San Francisco.

    Google Scholar 

  48. Van Dien, S.J. & Lidstrom, M.E. (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol. Bioeng., 78, 296–312.

    Article  Google Scholar 

  49. Voit, E.O. & Savageau, M.A. (1987) Accuracy of alternative representations for integrated biochemical systems. Biochemistry, 26, 6869–6880.

    Article  Google Scholar 

  50. Voit, E.O. (2000) Computational Analysis of Biochemical Systems: A Practical Guide for Biochemists and Molecular Biologists. Cambridge Univ. Press, New York.

    Google Scholar 

  51. Wei, J. & Prater, C.D. (1962) The structure and analysis of complex reaction systems. Adv. Catal., 13, 203–392.

    Google Scholar 

  52. Westhoff, H.V. & Chen, Y.D. (1984) How does enzyme activity control metabolic concentrations? Eur. J. Biochem., 142, 425–430.

    Article  Google Scholar 

  53. Wiback, S.J. & Palsson, B.O. (2002) Extreme pathway analysis of human red blood cell metabolism. Biophys J., 83, 808–818.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Beard, D.A., Qian, H., Bassingthwaighte, J.B. (2004). Stoichiometric Foundation of Large-Scale Biochemical System Analysis. In: Ciobanu, G., Rozenberg, G. (eds) Modelling in Molecular Biology. Natural Computing Series. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18734-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18734-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62269-4

  • Online ISBN: 978-3-642-18734-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics