Skip to main content

Electron-Multiplying Charge Coupled Devices – EMCCDs

  • Chapter
  • First Online:
Single-Photon Imaging

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 160))

  • 3131 Accesses

Abstract

Charge coupled devices utilising electron multiplication (EMCCDs) have been available commercially for almost a decade. Currently they are the image sensors of choice for a wide range of applications requiring ultra high sensitivity whilst maintaining high data rates. Even at low data rates, these can yield benefits for single photon imaging. This chapter reviews the technology behind the EMCCD that is particularly relevant for very low light applications. Characteristics of the EMCCD devices are discussed, including the detailed behaviour of the multiplication gain. The various noise sources are examined, including the noise introduced by the multiplication process and that originating from the generation of background signal. The conventional use of signal to noise as a figure of merit for an EMCCD device is reviewed and it is shown that this can mask the benefit of the EMCCD, especially when the background signals are low. Photon counting techniques have been found to improve performance under some circumstances and the different approaches employed to date are covered. Device structures for optimising the signal generation are discussed and show that devices capable of almost ideal sensitivity are a reality. Charge coupled devices utilising electron multiplication (EMCCDs) have been available commercially for almost a decade. Currently they are the image sensors of choice for a wide range of applications requiring ultra high sensitivity whilst maintaining high data rates. Even at low data rates, these can yield benefits for single photon imaging. This chapter reviews the technology behind the EMCCD that is particularly relevant for very low light applications. Characteristics of the EMCCD devices are discussed, including the detailed behaviour of the multiplication gain. The various noise sources are examined, including the noise introduced by the multiplication process and that originating from the generation of background signal. The conventional use of signal to noise as a figure of merit for an EMCCD device is reviewed and it is shown that this can mask the benefit of the EMCCD, especially when the background signals are low. Photon counting techniques have been found to improve performance under some circumstances and the different approaches employed to date are covered. Device structures for optimising the signal generation are discussed and show that devices capable of almost ideal sensitivity are a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.K. Madan, B. Bhaumik, J.M. Vasi, Experimental observation of avalanche multiplication in charge-coupled devices, IEEE Trans. Electron Devices 30, 694–699 (1983)

    Article  ADS  Google Scholar 

  2. S.A. Gajar, B.E. Burke, Charge amplification by impact ionization in charge-coupled devices, IEEE Trans. Electron Devices 35, 2435–2436 (1988)

    Article  ADS  Google Scholar 

  3. J. Hynecek, CCM – a new low-noise charge carrier multiplier suitable for detection of charge in small pixel CCD image sensors, IEEE Trans. Electron Devices 39, 1972–1975 (1992)

    Article  ADS  Google Scholar 

  4. P. Jerram et al., The LLLCCD: low light imaging without the need for an intensifier, Proc. SPIE 4306, 178–186 (2001)

    Article  ADS  Google Scholar 

  5. J. Hynecek, Impactron – a new solid state image intensifier, IEEE Trans. Electron Devices 48, 2238–2241 (2001)

    Article  ADS  Google Scholar 

  6. D.J. Denvir, E. Conroy, Electron multiplying CCDs, Proc. SPIE 4877, 55–68 (2003)

    Article  ADS  Google Scholar 

  7. I. Kobayashi, H. Shibuya, T. Tachibana, T. Nishiwaki, S. Kashima, J. Hynecek, Design and performance of charge multiplying color FIT CCD image sensor, Proc. SPIE 5577, 62761F-1–62761F-9 (2006)

    Google Scholar 

  8. G.B. Heim, J. Burkepile, W.W. Frame, Low-light-level EMCCD color camera, Proc. SPIE 6209, 62090F-1–62090F-11 (2006)

    Google Scholar 

  9. C.G. Coates, D.J. Denvir, E. Conroy, N.G. McHale, K. Thornbury, M. Hollywood, Back-illuminated electron multiplying technology: the world’s most sensitive CCD for ultralow-light microscopy, Proc. SPIE 4962, 319–328 (2003)

    Article  ADS  Google Scholar 

  10. P. Feautrier et al., The L3Vision CCD220 with its OCam test camera for AO applications in Europe, Proc. SPIE 7021, 70210C-1–70210C-12 (2008)

    Google Scholar 

  11. N.M. Law, C.D. Mackay, J.E. Baldwin, Lucky imaging: high angular resolution imaging in the visible from the ground, Astron. Astrophys. 446(2), 739–745 (2006)

    Article  ADS  Google Scholar 

  12. T.C. Soesbe, M.A. Lewis, N.V. Slavine, P.P. Antich, Development of an EMCCD based gamma camera for preclinical SPECT imaging, IEEE Trans. Nucl. Sci. 54(5), 1516–1524 (2007)

    Article  ADS  Google Scholar 

  13. J.W.T. Heemskerk, A.H. Westra, P.M. Linotte, K.M. Ligtvoet, W. Zbijewski, F.J. Beekman, Front-illuminated versus back-illuminated photon-counting CCD-based gamma camera: important consequences for spatial resolution and energy resolution, Phys. Med. Biol. 52, N149–N162 (2007)

    Article  ADS  Google Scholar 

  14. B.W. Miller, H. Bradford Barber, H.H. Barrett, I. Shestakova, B. Singh, V.V. Nagarkar, Single-photon spatial and energy resolution enhancement of a columnar CsI(Tl)/EMCCD gamma-camera using maximum-likelihood estimation, Proc. SPIE 6142, 6142T1–6142T9 (2006)

    Article  Google Scholar 

  15. D. Hall, A. Holland, High-resolution x-ray and γ-ray imaging using a scintillator-coupled electron-multiplying CCD, Proc. SPIE 7449 (2009)

    Google Scholar 

  16. G.R. Hopkinson, D.H. Lumb, Noise reduction techniques for CCD image sensors, J. Phys. E Sci. Instrum. 15, 1214–1222 (1982)

    Article  ADS  Google Scholar 

  17. D.J. Burt, Extending the performance limits of CCD image sensors, GEC J. Res. 12(3), 130–140 (1995)

    Google Scholar 

  18. S. Ohta, H. Shibuya, I. Kobayashi, T. Tachibana, T. Nishiwaki, J. Hynecek, Characterization results of 1 k ×1 k charge-multiplying CCD image sensor, Proc. SPIE 5301, 99–108 (2004)

    Article  ADS  Google Scholar 

  19. J. Hynecek, T. Nishiwaki, Excess noise and other important characteristics of low light level imaging using charge multiplying CCDs, IEEE Trans. Electron Devices 50, 239–245 (2003)

    Article  ADS  Google Scholar 

  20. M.S. Robbins, B.J. Hadwen, The noise performance of electron multiplying charge-coupled devices, IEEE Trans. Electron Devices 50, 1227–1232 (2003)

    Article  ADS  Google Scholar 

  21. M.J. DeWeert, J.B. Cole, A.W. Sparks, A. Acker, Photon transfer methods and results for electron multiplication CCDs, Proc. SPIE 5558, 248–259 (2004)

    Article  ADS  Google Scholar 

  22. A. O’Grady, A comparison of EMCCD, CCD and emerging technologies optimized for low light spectroscopy applications, Proc. SPIE 6093 (2006)

    Google Scholar 

  23. S. Tulloch, Modelling the suitability of EMCCDs for spectroscopic applications, Proc. SPIE 7021, 70212C-1–70212C-10 (2008)

    Google Scholar 

  24. A.G. Basden, C.A. Haniff, C.D. Mackay, Photon counting strategies with low-light-level CCDs. Mon. Notices R. Astron. Soc. 345, 985–991 (2003)

    Article  ADS  Google Scholar 

  25. Y. Wen, B.J. Rauscher, R.G. Baker, M.C. Clampin, P. Fochie, S.R. Heap, G. Hilton, P. Jorden, D. Linder, B. Mott, P. Pool, A. Waczynski, B. Woodgate, Individual photon counting using e2v L3 CCDs for low background astronomical spectroscopy, Proc. SPIE 6276, 62761H-1–62761H-8 (2006)

    Article  ADS  Google Scholar 

  26. E. Lantz, J.-L. Blanchet, L. Furfaro, F. Devaux, Multi-imaging and Bayesian estimation for photon counting with EMCCDs, Mon. Notices R. Astron. Soc. 386, 2262–2270 (2008)

    Article  ADS  Google Scholar 

  27. J.R. Janesick: Scientific Charge Coupled Devices, (SPIE Press monograph, 2001, ISBN 0819436984)

    Google Scholar 

  28. N.S. Saks, A technique for suppressing dark current generated by interface states in buried channel CCD imagers, Electron Device Lett. IEEE 1(7), 131–133 (1980)

    Article  ADS  Google Scholar 

  29. T. Plakhotnik, A. Chennu, A.V. Zvyagin, Statistics of single-electron signals in electron-multiplying charge-coupled devices, IEEE Trans. Electron Devices 53, 618–62 (2006)

    Article  ADS  Google Scholar 

  30. L. Zhang, L. Neves, J.S. Lundeen, I.A. Walmsley, A characterization of the single-photon sensitivity of an electron multiplying charge-coupled device J. Phys. B At. Mol. Opt. Phys. 42(11) 114011 (10 pp) (2009)

    Article  ADS  Google Scholar 

  31. e2v Technologies Low light technical note 4, dark signal and clock-induced charge in L3Vision CCD sensors

    Google Scholar 

  32. O. Daigle, S. Blais-Ouellette, Photon counting with an EMCCD, Proc. SPIE 7536, 753606-1–753606-10 (2010)

    Google Scholar 

  33. W. Zhang, Q. Chen, Signal-to-noise ratio performance comparison of electron multiplying CCD and intensified CCD detectors, IEEE Int. Conf. Image Anal. Signal Process. 2009, 337–341 (2009)

    Google Scholar 

Download references

Acknowledgements

The content of this chapter has benefited from the support of many people within the High Performance Imaging Solutions Group at e2v technologies. Special appreciation is due to David Burt for his valuable suggestions and enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Stanford Robbins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robbins, M.S. (2011). Electron-Multiplying Charge Coupled Devices – EMCCDs. In: Seitz, P., Theuwissen, A. (eds) Single-Photon Imaging. Springer Series in Optical Sciences, vol 160. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18443-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18443-7_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18442-0

  • Online ISBN: 978-3-642-18443-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics