Skip to main content

Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly

  • Conference paper
DNA Computing and Molecular Programming (DNA 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6518))

Included in the following conference series:

Abstract

The Pattern self-Assembly Tile set Synthesis (PATS) problem is to determine a set of coloured tiles that self-assemble to implement a given rectangular colour pattern. We give an exhaustive branch-and-bound algorithm to find tile sets of minimum cardinality for the PATS problem. Our algorithm makes use of a search tree in the lattice of partitions of the ambient rectangular grid, and an efficient bounding function to prune this search tree. Empirical data on the performance of the algorithm shows that it compares favourably to previously presented heuristic solutions to the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., de Espanés, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC 2002), pp. 23–32. ACM, New York (2002)

    Google Scholar 

  2. Göös, M., Orponen, P.: Synthesizing minimal tile sets for patterned DNA self-assembly. A detailed version, arXiv:0911.2924

    Google Scholar 

  3. Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theoretical Computer Science 410(4-5), 384–405 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Lin, C., Liu, Y., Rinker, S., Yan, H.: DNA tile based self-assembly: building complex nanoarchitectures. Chem. Phys. Chem. 7(8), 1641–1647 (2006)

    Google Scholar 

  5. Ma, X., Lombardi, F.: Synthesis of tile sets for DNA self-assembly. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 27(5), 963–967 (2008)

    Article  Google Scholar 

  6. Ma, X., Lombardi, F.: On the computational complexity of tile set synthesis for DNA self-assembly. IEEE Transactions on Circuits and Systems II: Express Briefs 56(1), 31–35 (2009)

    Article  Google Scholar 

  7. Park, S.H., Pistol, C., Ahn, S.J., Reif, J.H., Lebeck, A.R., Dwyer, C., LaBean, T.H.: Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures. Angewandte Chemie International Edition 45(5), 735–739 (2006)

    Article  Google Scholar 

  8. Park, S.H., Yan, H., Reif, J.H., LaBean, T.H., Finkelstein, G.: Electronic nanostructures templated on self-assembled DNA scaffolds. Nanotechnology 15, S525–S527 (2004)

    Article  Google Scholar 

  9. Rothemund, P.W.K.: Theory and Experiments in Algorithmic Self-assembly. PhD thesis, University of Southern California (2001)

    Google Scholar 

  10. Rothemund, P.W.K.: Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006)

    Article  Google Scholar 

  11. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (STOC 2000), pp. 459–468. ACM, New York (2000)

    Google Scholar 

  12. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology (1998)

    Google Scholar 

  13. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conducive nanowires. Science 301, 1882–1884 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Göös, M., Orponen, P. (2011). Synthesizing Minimal Tile Sets for Patterned DNA Self-assembly. In: Sakakibara, Y., Mi, Y. (eds) DNA Computing and Molecular Programming. DNA 2010. Lecture Notes in Computer Science, vol 6518. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18305-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18305-8_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-18304-1

  • Online ISBN: 978-3-642-18305-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics