Skip to main content

Abstract

The present chapter is devoted to the central nervous system of holostean and teleostean fishes. Holostean species are restricted to only two genera, i.e. Lepisosteus (the gars), with seven species, and Amia, with a single species, i.e. Amia calva, the bowfin. These are extants of a once abundant group of bony fishes that was largely replaced in the late Mesozoic and Cenozoic era by the expanding and now dominating Teleostei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Airhart MJ, Kriebel RM (1984) Retinal terminals in the goldfish optic tectum: identification and characterization. J Comp Neurol 226:377–390

    CAS  PubMed  Google Scholar 

  • Airhart MJ, Kriebel RM (1985) Telencephalic terminals in the major retinal synaptic lamina of the goldfish optic tectum. Brain Res 336:363–367

    CAS  PubMed  Google Scholar 

  • Airhart MJ, Shirt JO, Kriebel RM (1988) Telencephalic projections to the goldfish hypothalamus: an anterograde degeneration study. Brain Res Bull 20:503–514

    CAS  PubMed  Google Scholar 

  • Al-Akel AS, Guthrie DM, Banks JR (1986) Motor responses to localized electrical stimulation of the tectum in the freshwater perch (Perca fluviatilis). Neuroscience 19:1381–1391

    CAS  PubMed  Google Scholar 

  • Allum JHJ, Greef NG, Tokonaga A (1981) Projections to the rostral and caudal abducens nuclei in the goldfish. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier, Amsterdam, pp 253–262

    Google Scholar 

  • Alonso JR, Lara J, Miguel JJ, Aijón J (1987) Ruffed cells in the olfactory bulb of freshwater teleosts. I. Golgi impregnation. J Anat 155:101–107

    CAS  PubMed  Google Scholar 

  • Alonso JR, Coveñas R, Lara J (1989a) Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the olfactory bulb of the rainbow trout (Salmo gairdneri). Brain Res 490:385–389

    CAS  PubMed  Google Scholar 

  • Alonso JR, Coveñas R, Lara J, Arèvalo R, de Léon M, Aijon J (1989b) Tyrosine hydroxylase immunoreactivity in a subpopulation of granule cells in the olfactory bulb of teleost fish. Brain Behav Evol 34:318–324

    CAS  PubMed  Google Scholar 

  • Alonso JR, Arèvalo R, Briñòn JG, Lara J, Wervaga E, Aijon J (1992) Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anat Embryol (Berl) 185:355–361

    CAS  Google Scholar 

  • Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y (1991) Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of masu salmon, Oncorhynchus masou. J Comp Neurol 314:587–597

    CAS  PubMed  Google Scholar 

  • Andres KH, von During M, Petrasch E (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec. Anat Embryol (Berl) 177:523–535

    CAS  Google Scholar 

  • Anglade I, Zandbergen T, Kah O (1993) Origin of the pituitary innervation in the goldfish. Cell Tissue Res 273:345–355

    CAS  PubMed  Google Scholar 

  • Anken RH, Rahmann H (1994) Brain atlas of the adult swordtail fish Xiphophorus helleri and of certain developmental stages. Fischer, Stuttgart

    Google Scholar 

  • Arévalo R, Alonso JR, Briñón JG, García-Ojeda E, Velasco A, Lara J, Aijón J (1992) An atlas of the brain of the tench (Tinca tinca L. 1758; Cyprinidae, teleostei). J Hirnforsch 33:487–497

    PubMed  Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, 2 vols. MacMillan, New York (reprinted in 3 vols., 1967. Hafner, New York

    Google Scholar 

  • Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294

    CAS  PubMed  Google Scholar 

  • Atema J, Fay RR, Popper AN, Tavolga WN (eds) (1988) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Audet C, Chevalier G (1981) Monoaminergic innervation of the caudal neurosecretory system of the brook trout Salvelinus fontinalis in relation to osmotic stimulation. Gen Comp Endocrinol 45:189–203

    CAS  PubMed  Google Scholar 

  • Auerbach AA, Bennett MVL (1969a) Chemically mediated transmission at a giant fiber synapse in the central nervous system of a vertebrate. J Gen Physiol 53:183–209

    CAS  PubMed Central  PubMed  Google Scholar 

  • Auerbach AA, Bennett MVL (1969b) A rectifying electrotonic synapse in the central nervous system of a vertebrate. J Gen Physiol 53:211–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baillet-Derbin C (1984) Identification of spinal motoneurones in the weakly electric fish, Eigenmannia virescens. Brain Res 295:65–76

    CAS  PubMed  Google Scholar 

  • Ballintijn CM, Alink GM (1977) Identification of respiratory motor neurons in the carp and determination of their firing characteristics and interconnections. Brain Res 136:261–276

    CAS  PubMed  Google Scholar 

  • Ballintijn CM, Roberts BL, Luiten PGM (1983) Respiratory responses to stimulation of branchial vagus nerve ganglia of a teleost fish. Respir Physiol 51:241–257

    CAS  PubMed  Google Scholar 

  • Bamford OS (1974) Respiratory neurones in rainbow trout (Salmo gairdneri). Comp Biochem Physiol 48A:77–83

    Google Scholar 

  • Barry MA, Bennett MVL (1990) Projections of giant fibers, a class of reticular interneurons, in the brain of the silver hatchetfish. Brain Behav Evol 36:391–400

    CAS  PubMed  Google Scholar 

  • Bartelmez GW (1915) Mauthner’s cell and the nucleus motorius tegmenti. J Comp Neurol 25:87–129

    Google Scholar 

  • Bass AH (1981a) Organization of the telencephalon in the channel catfish, Ictalurus punctatus. J Morphol 169:71–90

    Google Scholar 

  • Bass AH (1981b) Olfactory bulb efferents in the channel catfish, Ictalurus punctatus. J Morphol 169:91–111

    Google Scholar 

  • Bass AH (1981c) Telencephalic efferents in the channel catfish, Ictalurus punctatus: projections to the olfactory bulb and optic tectum. Brain Behav Evol 19:1–16

    CAS  PubMed  Google Scholar 

  • Bass AH (1982) Evolution of the vestibulolateral lobe of the cerebellum in electroreceptive and non electroreceptive teleosts. J Morphol 174:335–348

    Google Scholar 

  • Bass AH (1985) Sonic motor pathways in teleost fishes: a comparative HRP study. Brain Behav Evol 27:115–131

    CAS  PubMed  Google Scholar 

  • Bass AH (1986a) Steroid-sensitive neuroeffector pathways for sonic and electric communication. Brain Behav Evol 28:7–21

    CAS  PubMed  Google Scholar 

  • Bass AH (1986b) Electric organs revisited. Evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 13–70

    Google Scholar 

  • Bass AH (1989) Evolution of vertebrate motor systems for acoustic and electric communication: peripheral and central elements. Brain Behav Evol 33:237–247

    CAS  PubMed  Google Scholar 

  • Bass AH (1990) Sounds from the intertidal zone: vocalizing fish. Bioscience 40:249–258

    Google Scholar 

  • Bass AH (1992) Dimorphic male brains and alternative reproductive tactics in a vocalizing fish. Trends Neurosci 15:139–145

    CAS  PubMed  Google Scholar 

  • Bass AH, Andersen K (1991) Inter-and intrasexual dimorphisms in the vocal control system of a teleost fish: motor axon number and size. Brain Behav Evol 37:204–214

    CAS  PubMed  Google Scholar 

  • Bass AH, Baker R (1991) Evolution of homologous vocal control traits. Brain Behav Evol 38:240–254

    CAS  PubMed  Google Scholar 

  • Bass AH, Hopkins CD (1982) Comparative aspects of brain organization of an African ‘wave’ electric fish, Gymnarchus niloticus. J Morphol 174:313–334

    Google Scholar 

  • Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge wave form. Science 220:971–974

    CAS  PubMed  Google Scholar 

  • Bass AH, Hopkins CD (1985) Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J Comp Physiol 156:587–604

    CAS  Google Scholar 

  • Bass AH, Marchaterre MA (1989a) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. J Comp Neurol 286:141–153

    CAS  PubMed  Google Scholar 

  • Bass AH, Marchaterre MA (1989b) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism and general synaptology of sonic motor nucleus. J Comp Neurol 286:154–169

    CAS  PubMed  Google Scholar 

  • Bass AH, Segil N, Kelley DB (1986) Androgen binding in the brain and electric organ of a mormyrid fish. J Comp Physiol [A] 159:535–544

    CAS  Google Scholar 

  • Bastian J (1974) Electrosensory input to the corpus cerebelli of the high frequency electric fish Eigenmannia virescens. J Comp Physiol 90:1–24

    Google Scholar 

  • Bastian J (1975) Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J Neurophysiol 38:285–299

    CAS  PubMed  Google Scholar 

  • Bastian J (1976) The range of electrolocation: a comparison of electroreceptor responses and the responses of cerebellar neurons in a gymnotid fish. J Comp Physiol 108:193–210

    Google Scholar 

  • Bastian J (1981a) Electrolocation. I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. J Comp Physiol 144:465–179

    Google Scholar 

  • Bastian J (1981b) Electrolocation. II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol 144:481–494

    Google Scholar 

  • Bastian J (1982) Vision and electroreception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol 147:287–297

    Google Scholar 

  • Bastian J (1986a) Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J Neurosci 6:553–562

    CAS  PubMed  Google Scholar 

  • Bastian J (1986b) Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe. J Comp Physiol [A] 158:505–515

    CAS  Google Scholar 

  • Bastian, Bratton B (1990) Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. J Neurosci 10:1226–1240

    CAS  PubMed  Google Scholar 

  • Bastian J, Courtright J (1991) Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish. J Comp Physiol [A] 168:393–407

    CAS  Google Scholar 

  • Bastian J, Heiligenberg W (1980a) Neural correlates of the jamming avoidance response in Eigenmannia. J Comp Physiol 136:135–152

    Google Scholar 

  • Bastian J, Heiligenberg W (1980b) Phase sensitive midbrain neurons in Eigenmannia: neural correlates of the jamming avoidance response. Science 209:828–831

    CAS  PubMed  Google Scholar 

  • Bastian J, Yuthas J (1984) The jamming avoidance response of Eigenmannia properties of a diencephalic link between sensory processing and motor output. J Comp Physiol [A] 154:895–908

    Google Scholar 

  • Bastian J, Courtright J, Crawford J (1993) Commissural neurons of the electrosensory lateral line lobe of Apteronotus leptorhynchus: morphological and physiological characteristics. J Comp Physiol [A] 173:257–274

    CAS  Google Scholar 

  • Batten TFC, Cambre ML (1989) Calcitonin gene-related peptide-like immunoreactive fibres innervating the hypothalamic inferior lobes of teleost fishes. Neurosci Lett 98:1–7

    CAS  PubMed  Google Scholar 

  • Batten TFC, Ingleton PM, Ball JN (1979) Ultrastructural and formaldehyde-fluorescence studies on the hypothalamus of Poecilia latipinna (teleostei, cyprinodontiformes). Gen Comp Endocrinol 39:87–109

    CAS  PubMed  Google Scholar 

  • Batten TFC, Cambre ML, Moons L, Vandesande F (1990a) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 302:893–919

    CAS  PubMed  Google Scholar 

  • Batten TFC, Moons L, Cambre ML, Vandesande F (1990b) Anatomical distribution of galanin-like immunoreactivity in the brain and pituitary of teleost fishes. Neurosci Lett 111:12–17

    CAS  PubMed  Google Scholar 

  • Batten TFC, Berry PA, Maqbool A, Moons L, Vandesande F (1993) Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-Dopa in the brain of Dicentrar-chus labrax (Teleostei). Brain Res Bull 31:233–252

    CAS  PubMed  Google Scholar 

  • Bauchot R, Diagne M, Ridet J-M (1982) The brain of Photoblepharon palpebratus steinitzi (pisces, teleostei, anomalopidae). J Hirnforsch 21:399–404

    Google Scholar 

  • Bauchot R, Randall JE, Ridet J-M, Bauchot M-L (1989) Encephalization in tropical teleost fishes and comparison with their mode of life. J Hirnforsch 30:645–669

    CAS  PubMed  Google Scholar 

  • Bäuerle A, Rahmann H (1993) Morphogenetic differentiation of the brain of the Cichlid Fish, Oreochromis mossambicus. J Hirnforsch 3:375–386

    Google Scholar 

  • Bazer GI, Ebbesson SOE, Reynolds JB, Bailey RP (1987) A cobalt-lysine study of primary olfactory projections in king salmon fry (Oncorhynchus tchawytscka Walbaum). Cell Tissue Res 248:499–503

    Google Scholar 

  • Behrend K (1977) Processing information carried in a high frequency wave: properties of cerebellar units in a high frequency electric fish. J Comp Physiol 118:357–371

    Google Scholar 

  • Behrend K (1984) Cerebellar influence on the time structure of movement on the electric fish Eigenmannia. Neuroscience 13:171–178

    CAS  PubMed  Google Scholar 

  • Behrend K, Donicht M (1990) Descending connections from the brainstem to the spinal cord in the electric fish Eigenmannia. Quantitative description based on retrograde horseradish peroxidase and fluorescent-dye transport. Brain Behav Evol 35:227–239

    CAS  PubMed  Google Scholar 

  • Behrens UD, Douglas RH, Wagner HJ (1993) Gonadotropinreleasing hormone, a neuropeptide of efferent projections to the teleost retina induces light-adaptive spinule formation on horizontal cell dendrites in dark-adapted preparations kept in vitro. Neurosci Lett 164:59–62

    CAS  PubMed  Google Scholar 

  • Belenky MA, Polenov AL, Kornienko GG, Konstantinova MS (1985) The hypothalamo-hypophysial syste of the wild carp, Cyprinus carpio L. II. Structure and ultrastructure of the anterior neurohypophysis. Cell Tissue Res 239:211–218

    Google Scholar 

  • Bell CC (1981a) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414

    CAS  PubMed  Google Scholar 

  • Bell CC (1981b) Some central connections of medullary octavolateral centers in a mormyrid fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 383–392

    Google Scholar 

  • Bell CC (1986) Electroreception in mormyrid fish: central physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–452

    Google Scholar 

  • Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 6:229–253

    Google Scholar 

  • Bell CC (1990a) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63:303–318

    CAS  PubMed  Google Scholar 

  • Bell CC (1990b) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibres. J Neurophysiol 63:319–332

    CAS  PubMed  Google Scholar 

  • Bell CC (1993) The generation of expectations in the electrosensory lobe of mormyrid fish. J Comp Physiol [A] 173:677–680

    Google Scholar 

  • Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9:1029–1044

    CAS  PubMed  Google Scholar 

  • Bell CC, Grant K (1992) Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. J Neurophysiol 68:859–875

    CAS  PubMed  Google Scholar 

  • Bell CC, Russell CJ (1978) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol 182:367–382

    CAS  PubMed  Google Scholar 

  • Bell CC, Szabo T (1986) Central structures and pathways of the mormyrid electrosensory system. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 375–421

    Google Scholar 

  • Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22

    CAS  PubMed  Google Scholar 

  • Bell CC, Grant K, Serrier J (1992) Sensory processing and corollary discharge effects in the mormyromast response of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures. J Neurophysiol 68:843–858

    CAS  PubMed  Google Scholar 

  • Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338

    CAS  PubMed  Google Scholar 

  • Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. I. Morphology. J Comp Neurol 286:391–407

    CAS  PubMed  Google Scholar 

  • Bell CC, Hopkins CD, Grant K (eds) (1993a) Contributions of electrosensory systems to neurobiology and neuroethology. Proceedings of a conference in honor of the scientific career of Thomas Szabo. J Comp Physiol [A] 173:657–763

    Google Scholar 

  • Bell CC, Caputi A, Grant K, Serrier J (1993b) Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci USA 90:4650–4654

    CAS  PubMed  Google Scholar 

  • Beltramo M, Krieger M, Tillet Y, Thibault J, Calas A, Mazzi Y, Franzoni MF (1994) Immunolocalization of aromatic L-amino acid decarboxylase in goldfish (Carassius auratus) brain. J Comp Neurol 343:209–227

    CAS  PubMed  Google Scholar 

  • Benedetti I, Mola L (1988) Survey of neuropeptide-like immunoreactivity in supramedullary neurons of Coris julis (L). Brain Res 449:373–376

    CAS  PubMed  Google Scholar 

  • Benedetti I, Calzolari C, Marini M, Mola L (1988) The spinal cord of Trigla lucerna L. (teleost): preliminary observations on peculiar dorsal neurons. Abstracts from the 18th European Neurosciene Meeting, p 31

    Google Scholar 

  • Bennett MVL, Pappas GD (1983) The electromotor system of the stargazer: a model for integrative actions at electrotonic synapses. J Neurosci 3:748–761

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Sandri C (1989) The electromotor system of the electric eel investigated with horseradish peroxidase as a retrograde tracer. Brain Res 488:22–30

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Nakajima Y, Pappas GD (1967a) Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J Neurophysiol 30:161–179

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Pappas GD, Aljure E, Nakajima Y (1967b) Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol 30:180–208

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Nakajima Y, Pappas GD (1967c) Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J Neurophysiol 30:209–235

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Pappas GD, Giménez M, Nakajima Y (1967d) Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol 30:236–300

    CAS  PubMed  Google Scholar 

  • Bergqvist H (1932) Zur Morphologie des Zwischenhirns bei niedrigen Wirbeltieren. Acta Zool (Stockh) 13:57–303

    Google Scholar 

  • Berlind A (1973) Caudal neurosecretory system: a physiologist’s view. Am Zool 13:759–770

    CAS  Google Scholar 

  • Bern HA, Takasugi N (1962) The caudal neurosecretory system of fishes. Gen Comp Endocrinol 2:96–110

    CAS  PubMed  Google Scholar 

  • Bernhardt R (1989) Axonal pathfinding during the regeneration of the goldfish optic pathway. J Comp Neurol 284:119–134

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Easter SS Jr (1986) Maps of retinal position onto the cross section of the optic pathway of goldfish. J Comp Neurol 254:493–510

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Chitnis AB, Lindamer L, Kuwada JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302:603–616

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Nguyen N, Kuwada JY (1992a) Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron 8:869–882

    CAS  PubMed  Google Scholar 

  • Bernhardt R, Patel CK, Wilson SW, Kuwada JY (1992b) Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol 326:263–272

    CAS  PubMed  Google Scholar 

  • Bernocchi G, Biggiogena M, Barni S (1987) Comparative aspects of cerebellar architecture in the European eel life cycle. J Morphol 191:25–36

    Google Scholar 

  • Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol [A] 172:115–128

    Google Scholar 

  • Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish Ancistrus sp. J Comp Neurol 314:452–466

    CAS  PubMed  Google Scholar 

  • Bodega G, Suárez I, Rubio M, Villalba RM, Fernández B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol (Berl) 187:385–395

    CAS  Google Scholar 

  • Bodian D (1937) The structure of the vertebrate synapse. A study of the axon endings on Mauthner’s cell and neighboring centers in the goldfish. J Comp Neurol 48:117–159

    Google Scholar 

  • Bolliet V, Ali MA (1992) Immunohistochemical study of the development of serotoninergic neurons in the brain of the brook trout Salvelinus fontinalis. Brain Behav Evol 40:234–249

    CAS  PubMed  Google Scholar 

  • Bonn U (1990) NPY-like immunoreactivity in the brain of the teleost Tinca tinca (Cyprinidae). J Hirnforsch 3:323–330

    Google Scholar 

  • Bonn U, König B (1988) FMRF amide-like immunoreactivity in the brain and pituitary of Xenotica eisenii (Cyprinidontiformes, Teleostei). J Hirnforsch 29:121–131

    CAS  PubMed  Google Scholar 

  • Bonn U, König B (1989a) Distribution of somatostatin (SRIF) in the brain and pituitary of Eigenmannia lineata (Gymnotiformes, Teleostei). An immunohistochemical study. J Hirnforsch 30:203–212

    CAS  PubMed  Google Scholar 

  • Bonn U, König B (1989b) FMRF amide immunoreactivity in the brain and pituitary of Carassius auratus (Cyprinidae, Teleostei). J Hirnforsch 30:361–370

    CAS  PubMed  Google Scholar 

  • Bonn U, König B (1990) Serotonin-immunoreactive neurons in the brain of Eigenmannia lineata (Gymnotiformes, Teleostei). J Hirnforsch 31:297–306

    CAS  PubMed  Google Scholar 

  • Bonn U, Kramer B (1987) Distribution of monoaminecontaining neurons in the brain of the weakly electric teleost, Eigenmannia lineata (Gymnotiformes, Teleostei). Z Mikrosk Anat Forsch (Lpz) 101:339–362

    CAS  Google Scholar 

  • Borg B, Goos HJT, Terlou M (1982) LHRH-immunoreactive cells in the brain of the three-spined stickleback, Gasterosteus aculeatus L. (Gasterosteidae). Cell Tissue Res 226:695–699

    CAS  PubMed  Google Scholar 

  • Bosch TJ, Paul DH (1993) Differential responses of single reticulospinal cells to spatially localized stimulation of the optic tectum in a teleost fish, Salmo trutta. Eur J Neurosci 5:742–450

    CAS  PubMed  Google Scholar 

  • Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurophysiol 66:1504–1521

    CAS  PubMed  Google Scholar 

  • Braford MR Jr (1982) African, but not Asian, notopterid fishes are electroreceptive. Evidence from brain characters. Neurosci Lett 32:35–39

    PubMed  Google Scholar 

  • Braford MR Jr (1986a) De Gustibus non est disputandum: a spiral center for taste in the brain of the teleost fish, Heterotis niloticus. Science 232:489–491

    PubMed  Google Scholar 

  • Braford MR Jr (1986b) African knife fishes: the Xenomystines. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 453–464

    Google Scholar 

  • Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 117–163

    Google Scholar 

  • Brandstätter R, Kotrschal K (1990) Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): Roach (Rutilus rutilus), Bream (Abramis brama), Common carp (Cyprinus carpio) and Sabre Carp (Pelecus cultratus). Brain Behav Evol 35:195–211

    PubMed  Google Scholar 

  • Brantley RK, Bass AH (1988) Cholinergic neurons in the brain of a teleost fish (Porichthys notatus) located with a monoclonal antibody to choline acetyltransferase. J Comp Neurol 275:87–205

    CAS  PubMed  Google Scholar 

  • Bratton B, Bastian J (1990) Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J Neurosci 10:1241–1253

    CAS  PubMed  Google Scholar 

  • Braun N, Schikorski T, Zimmermann H (1993) Cytoplasmic segregation and cytoskeletal organization in the electric catfish giant electromotoneuron with special reference to the axon hillock region. Neuroscience 52:745–756

    CAS  PubMed  Google Scholar 

  • Brickner RM (1929) A description and interpretation of certain parts of the teleostean midbrain and thalamus. J Comp Neurol 47:225–282

    Google Scholar 

  • Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552

    CAS  PubMed  Google Scholar 

  • Bullock TH, Heiligenberg W (eds) (1986) Electroreception. Wiley, New York

    Google Scholar 

  • Bullock TH, Northcutt RG (1982) A new electroreceptive teleost: Xenomystus nigri (Osteoglossiformes, Notopteridae). J Comp Physiol 148:345–352

    Google Scholar 

  • Bullock TH, Northcutt RG, Bodznick DA (1982) Evolution of electroreception. Trends Neurosci 5:50–53

    Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:2–46

    Google Scholar 

  • Bullock TH, Hofmann MH, Nahm FK, New JG, Prechtl JC (1990) Event-related potentials in the retina and optic tecturn of fish. J Neurophysiol 64:903–914

    CAS  PubMed  Google Scholar 

  • Bunt SM (1982) Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish. J Comp Neurol 206:209–226

    CAS  PubMed  Google Scholar 

  • Burgess JW, Coss RG (1980) Crowded jewel fish show changes in dendritic spine density and spine morphology. Neurosci Lett 17:277–281

    CAS  PubMed  Google Scholar 

  • Burgess JW, Coss RG (1983) Rapid effect of biologically relevant stimulation on tectal neurons: changes in dendritic spine morphology after nine minutes are retained for twenty-four hours. Brain Res 266:217–223

    CAS  PubMed  Google Scholar 

  • Busse U, Stuermer CAO (1989) Evidence for the stability of positional markers in the goldfish tectum. J Comp Neurol 288:538–554

    CAS  PubMed  Google Scholar 

  • Butler AB (1992) Variation in tectal morphology in teleost fishes. Brain Behav Evol 40:256–272

    CAS  PubMed  Google Scholar 

  • Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    CAS  PubMed  Google Scholar 

  • Butler AB, Northcutt RG (1992) Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis. Brain Behav Evol 39:169–194

    CAS  PubMed  Google Scholar 

  • Butler AB, Northcutt RG (1993) The diencephalon of the pacific herring, Clupea harengus: cytoarchitectonic analysis. J Comp Neurol 328:527–546

    CAS  PubMed  Google Scholar 

  • Butler AB, Saidel WM (1991) Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analyses and primary visual pathways. Brain Behav Evol 38:127–153

    CAS  PubMed  Google Scholar 

  • Butler AB, Saidel WM (1992) Tectal projection to an unusual nucleus in the diencephalon of a teleost fish, Pantodon buchholzi. Neurosci Lett 145:193–196

    CAS  PubMed  Google Scholar 

  • Butler AB, Wullimann MF, Northcutt RG (1991) Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav Evol 38:92–114

    CAS  PubMed  Google Scholar 

  • Cabrera B, Torres B, Pásaro R, Pastor AM, Delgado-García JM (1991) A morphological study of abducens nucleus motoneurons and internuclear neurons in the goldfish (Carassius auratus). Brain Res Bull 28:137–144

    Google Scholar 

  • Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127:61–74

    Google Scholar 

  • Campbell CBG, Ebbesson SOE (1969) The optic system of a teleost: Holocentrus re-examined. Brain Behav Evol 2:415–430

    Google Scholar 

  • Canfield JG, Rose GJ (1993) Electrosensory modulation of escape responses. J Comp Physiol [A] 173:463–474

    Google Scholar 

  • Caprio J, Brand JG, Teeter JH, Valentincic T, Kalinoski DL, Kohbara J, Kumazawa T, Wegert S (1993) The taste system of the channel catfish: from biophysics to behavior. Trends Neurosci 16:192–197

    CAS  PubMed  Google Scholar 

  • Carr CE, Maler L (1985) A Golgi study of the cell types of the dorsal torus semicircularis of the electric fish Eigenmannia: functional and morphological diversity in the midbrain. J Comp Neurol 235:207–240

    CAS  PubMed  Google Scholar 

  • Carr CE, Maler L (1986) Electroreception in gymnotiform fish. Central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 319–374

    Google Scholar 

  • Carr CE, Maler L, Heiligenberg W, Sas E (1981) Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system. J Comp Neurol 203:649–670

    CAS  PubMed  Google Scholar 

  • Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211:139–153

    CAS  PubMed  Google Scholar 

  • Carr CE, Heiligenberg W, Rose GJ (1986a) A timecomparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci 6:107–119

    CAS  PubMed  Google Scholar 

  • Carr CE, Maler L, Taylor B (1986b) A time-comparison circuit in the electric fish midbrain. II. Functional morphology. J Neurosci 6:1372–1383

    CAS  PubMed  Google Scholar 

  • Caruncho HJ, Rodriguez-Moldes I, Anadón R (1990a) A freeze-fracture study of the soma membranes of monoaminergic neurons in the hypothal. N rec post of the rainbow trout (Salmo gairdneri Rich.). J Hirnforsch 31:575–584

    CAS  PubMed  Google Scholar 

  • Caruncho HJ, Rodriguez-Moldes I, Lanas J, Anadón R (1990b) Freeze-fracture study of synaptic contacts in the neuropil of the tuberal hypothalamus of the rainbow trout (Salmo gairdneri Rich.). J Hirnforsch 31:689–696

    CAS  PubMed  Google Scholar 

  • Celio MR, Gray EG, Yasargil GM (1979) Ultrastructure of the Mauthner axon collateral and its synapses in the goldfish spinal cord. J Neurocytol 8:19–29

    CAS  PubMed  Google Scholar 

  • Cepriano LM, Schreibman MP (1993) The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity. Cell Tissue Res 271:87–92

    CAS  PubMed  Google Scholar 

  • Chan DKO, Bern HA (1976) The caudal neurosecretory system. A critical evaluation of the two-hormone hypothesis. Cell Tissue Res 174:339–354

    CAS  PubMed  Google Scholar 

  • Chang YT, Liu JW, Faber DS (1987) Spinal inputs to the ventral dendrite of the teleost Mauthner cell. Brain Res 417:205–213

    CAS  PubMed  Google Scholar 

  • Choms A, Probst W, Rahmann H (1981) Ultrastrukturelle Unterschiede in der Morphologie des Tectum opticum von Karpfen (Cyprinus carpio) und Forelle (Salmo gairdneri) unter besondere Berücksichtigung der Synapsen. J Hirnforsch 22:299–306

    CAS  PubMed  Google Scholar 

  • Claas B, Münz H (1980) Bony fish lateral line efferent neurons identified by retrograde axonal transport of horseradish peroxidase (HRP). Brain Res 193:249–253

    CAS  PubMed  Google Scholar 

  • Claas B, Münz H (1981) Projections of lateral line afferents in a teleost’s brain. Neurosci Lett 23:287–290

    CAS  PubMed  Google Scholar 

  • Claas B, Fritzsch B, Münz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235

    CAS  PubMed  Google Scholar 

  • Cohen SL, Kriebel RM (1989a) Terminal processes of serotonin neurons in the caudal spinal cord of the molly, Poecilia latipinna, project to the leptomeninges and urophysis. Cell Tissue Res 255:619–625

    CAS  PubMed  Google Scholar 

  • Cohen SL, Kriebel RM (1989b) Brainstem location of serotonin neurons projecting to the caudal neurosecretory complex. Brain Res Bull 22:481–487

    CAS  PubMed  Google Scholar 

  • Cohen SL, Miller KE, Kriebel RM (1990) Distribution of serotonin in the caudal neurosecretory complex. A light and electron microscopic study. Anat Embryol (Berl) 181:491–498

    CAS  Google Scholar 

  • Collin SP (1989) Anterograde labelling from the optic nerve reveals multiple central targets in the teleost, Lethrius chrysostomus (Paxiformes). Cell Tissue Res 256:327–335

    CAS  PubMed  Google Scholar 

  • Collin SP, Collin HB (1988) Topographic analysis of the retinal ganglion cell layer and optic nerve in the sandlance Limnichthyes fasciatus (Creeiidae, Perciformes). J Comp Neurol 278:226–241

    CAS  PubMed  Google Scholar 

  • Contestabile A, Villani L, Ciani F (1977) Ultrastructural analysis on acetylcholinesterase localization in the cerebellar cortex. Anat Embryol (Berl) 152:15–27

    CAS  Google Scholar 

  • Contestabile A, Villani L, Bissoli R, Poli A, Migani P (1986) Cholinergic, GABAergic and excitatory amino acidic neurotransmission in the goldfish vagal lobe. Exp Brain Res 63:301–309

    CAS  PubMed  Google Scholar 

  • Cook JE, Rankin ECC, Stevens HP (1983) A pattern of optic axons in the normal goldfish tectum consistent with the caudal migration of optic terminals during development. Exp Brain Res 52:147–151

    CAS  PubMed  Google Scholar 

  • Coombs S, Görner P, Münz H (eds) (1989) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Corio M, Peute J, Steinbusch HWM (1991) Distribution of serotonin-and dopamine-immunoreactivity in the brain of the teleost Clarias gariepinus. J Chem Neuroanat 4:79–95

    CAS  PubMed  Google Scholar 

  • Cornbrooks EB, Parsons RL (1991a) Sexually dimorphic distribution of a galanin-like peptide in the central nervous system of the teleost fish Poecilia latipinna. J Comp Neurol 304:639–657

    CAS  PubMed  Google Scholar 

  • Cornbrooks EB, Parsons RL (1991b) Source of sexually dimorphic galanin-like immunoreactive projections in the teleost fish Poecilia latipinna. J Comp Neurol 304:658–665

    CAS  PubMed  Google Scholar 

  • Corujo A, Anadón R (1990) The development of the diencephalon of the Rainbow trout (Salmo gairdneri Richardson). Thalamus and hypothalamus. J Hirnforsch 31:669–680

    CAS  PubMed  Google Scholar 

  • Coss RG, Globus A (1978) Spine systems on tectal interneurons in jewel fish are shortened by social stimulation. Science 200:787–790

    CAS  PubMed  Google Scholar 

  • Coss RG, Globus A (1979) Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish. Dev Psychobiol 12:347–358

    CAS  PubMed  Google Scholar 

  • Crapon de Caprona MD, Fritzsch B (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Dev Brain Res 11:281–301

    Google Scholar 

  • Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol [A] 172:139–152

    CAS  Google Scholar 

  • Crispino L (1983) Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments on a teleost fish. J Neurophysiol 19:3–15

    Google Scholar 

  • Cuadrado MI (1987) The cytoarchitecture of the torus semicircularis in the teleost Barbus meridionalis. J Morphol 191:233–245

    Google Scholar 

  • Cuadrado MI (1989) A quantitative study of the torus semicircularis of Barbus meridionalis. J Hirnforsch 30:371–374

    CAS  PubMed  Google Scholar 

  • Cuadrado MI, Coveñas R, Tramu G (1992a) Neuropeptides in the torus semicircularis of the carp (Cyprinus carpio). Brain Res Bull 28:593–598

    CAS  PubMed  Google Scholar 

  • Cuadrado MI, Coveñas R, Tramu G (1992b) Neuropeptides and monoamines in the torus semicircularis of the carp (Cyprinus carpio). Brain Res Bull 29:529–539

    CAS  PubMed  Google Scholar 

  • Cumming R, Reaves TA, Hayward JN (1981) Ultrastructural immunocytochemical localization of enkephalin in the goldfish preoptic nucleus. Neurosci Lett 27:313–318

    CAS  PubMed  Google Scholar 

  • Danielson PD, Zottoli SJ, Corrodi JG, Rhodes KJ, Mufson EJ (1988) Localization of choline acetyltransferase to somata of posterior lateral line efferents in the goldfish. Brain Res 448:158–161

    CAS  PubMed  Google Scholar 

  • Davis MR, Fernald RD (1990) Social control of neuronal soma size. J Neurobiol 21:1180–1188

    CAS  PubMed  Google Scholar 

  • Davis RE, Kassel J (1983) Behavioral functions of the teleostean telencephalon. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 237–263

    Google Scholar 

  • Davis RE, Kyle A, Klinger PD (1988) Nervus terminals innervation of the goldfish retina and behavioral visual sensitivity. Neurosci Lett 91:126–130

    CAS  PubMed  Google Scholar 

  • Davis RE, Wilmot GR, Cha J-HJ (1992) Glutamic acidinsensitive [3H]kainic acid binding in goldfish brain. Brain Res 571:73–78

    CAS  PubMed  Google Scholar 

  • De Graaf F, van Raamsdonk W, van Asselt E, Diegenbach PC (1990) Identification of motoneurons in the spinal cord of the zebrafish (Brachydanio rerio), with special reference to motoneurons that innervate intermediate muscle fibers. Anat Embryol (Berl) 182:93–102

    Google Scholar 

  • De Graaf P (1989) Control of respiration in the carp (Cyprinus carpio L). Mechanoreceptor input and respiratory rhythm. Thesis, University of Groningen, Netherlands

    Google Scholar 

  • Demski LS (1992) Chromatophore systems in teleosts and cephalopods: a levels oriented analysis of convergent systems. Brain Behav Evol 40:141–156

    CAS  PubMed  Google Scholar 

  • Demski LS, Knigge KM (1971) The telencephalon and hypothalamus of the bluegill Lepomis macrochirus: evoked feeding aggressive and reproductive behavior with representative frontal sections. J Comp Neurol 143:1–16

    CAS  PubMed  Google Scholar 

  • Demski LS, Northcutt RG (1983) The terminal nerve: a new chemosensory system in vertebrates. Science 220:435–437

    CAS  PubMed  Google Scholar 

  • Demski LS, Sloan HE (1985) A direct magnocellular-preopticospinal pathway in goldfish: implications for control of sex behavior. Neurosci Lett 55:283–288

    CAS  PubMed  Google Scholar 

  • Demski LS, Evan AP, Saland LC (1975) The structure of the inferior lobe of the teleost hypothalamus. J Comp Neurol 161:483–498

    CAS  PubMed  Google Scholar 

  • Denizot JP, Libouban S, Szabo T (1983) Anatomical study and HRP identification of electromotoneurons and motoneurons in the spinal cord of Gymnarchus niloticus. Exp Brain Res 53:99–108

    CAS  PubMed  Google Scholar 

  • Denizot JP, Clausse S, Elekes K, Geffard M, Grant K, Libouban S, Ravaille-Veron M, Szabo T (1987) Convergence of electrotonic club endings, GABA-and serotoninergic terminals on second order neurons of the electrosensory pathway in mormyrid fish, Gnathonemus petersii and Brienomyrus niger (teleostei). Cell Tissue Res 249:301–309

    CAS  PubMed  Google Scholar 

  • De Rosa F, Fine ML (1988) Primary connections of the anterior and posterior lateral line nerves in the oyster toadfish. Brain Behav Evol 31:312–317

    PubMed  Google Scholar 

  • De Waegh S, Maslam S, Roberts BL (1985) Cells of origin of pathways descending to the spinal cord. J Physiol (Lond) 366:978

    Google Scholar 

  • De Wolf FA, Schellart NAM, Hoogland PV (1983) Octavolateral projections to the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 38:209–213

    PubMed  Google Scholar 

  • Díaz SM, Anadón R (1989) Central projections of the lateral line nerves of Chelon labrosus (Teleosts, order Perciformes). J Hirnforsch 30:339–347

    PubMed  Google Scholar 

  • Díaz-Regueira S, Anadón R (1990) Primary nerve projections and primary nuclei of the octaval nerve in the teleost Chelon labrosus. An HRP study. J Hirnforsch 31:705–714

    PubMed  Google Scholar 

  • Díaz-Regueira S, Anadón R (1992) Central projections of the vagus nerve in Chelon labrosus Risso (Teleostei, O. Perciformes). Brain Behav Evol 40:297–310

    PubMed  Google Scholar 

  • DiDomenico R, Nissanov J, Eaton RC (1988) Lateralization and adaption of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res 473:15–28

    CAS  PubMed  Google Scholar 

  • Diez C, Lara J, Alonso JR, Miguel JJ, Aijon J (1987) Microscopic structure of the brain of Barbus meridionalis Risso. I. Telencephalon. J Hirnforsch 28:255–269

    CAS  PubMed  Google Scholar 

  • Donald JA, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the heart and brain of the gulf toadfish Opsanus beta. Cell Tissue Res 269:151–158

    CAS  PubMed  Google Scholar 

  • Douglas RH, Djamgoz MBA (eds) (1990) The visual system of fish. Chapman and Hall, London

    Google Scholar 

  • Dulka JG (1993) Sex pheromone systems in goldfish: comparisons to vomeronasal systems in tetrapods. Brain Behav Evol 42:265–280

    CAS  PubMed  Google Scholar 

  • Dunn-Meynell AA, Sharma SC (1984) Changes in the topographically organized connections between the nucleus isthmi and the optic tectum after partial tectal ablation in adult goldfish. J Comp Neurol 227:497–510

    CAS  PubMed  Google Scholar 

  • Dunn-Meynell AA, Sharma SC (1986) The visual system of the channel catfish (Ictalurus punctatus). I. Retinal ganglion cell morphology. J Comp Neurol 247:32–55

    CAS  PubMed  Google Scholar 

  • Dunn-Meynell AA, Sharma SC (1988) Visual system of the channel catfish ictalurus-punctatus III. Fiber order in the optic nerve and optic tract. J Comp Neurol 268:299–312

    CAS  PubMed  Google Scholar 

  • Dunn-Meynell AA, Prasada Rao PD, Sharma SC (1983) The ipsilateral retinotectal projection in normal and albino channel catfish. Neurosci Lett 36:25–31

    CAS  PubMed  Google Scholar 

  • Dye J (1987) Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus. J Comp Physiol [A] 161:175–185

    CAS  Google Scholar 

  • Dye J (1988) An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish: Apteronotus. J Comp Physiol [A] 163:445–458

    CAS  Google Scholar 

  • Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol [A] 168:521–532

    CAS  Google Scholar 

  • Dye J, Heiligenberg W (1987) Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behavior. J Comp Physiol [A] 161:187–200

    CAS  Google Scholar 

  • Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 71–102

    Google Scholar 

  • Easter SS, Stuermer CAO (1984) An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. J Neurosci 4:1052–1063

    PubMed  Google Scholar 

  • Easter SS, Bratton B, Scherer SS (1984) Growth related order of the retinal fiber layer in goldfish. J Neurosci 8:2173–2190

    Google Scholar 

  • Eaton RC, Bombardieri RA, Meyer DL (1977) The Mauthnerinitiated startle response in teleost fish. J Exp Biol 66:65–81

    CAS  PubMed  Google Scholar 

  • Eaton RC, DiDomenico R, Nissanov J (1991) Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behav Evol 37:272–285

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1980) A visual thalamo-telencephalic pathway in a teleost fish (Holocentrus rufus). Cell Tissue Res 213:505–508

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Meyer DL (1981) Efferents to the retina have multiple sources in teleost fish. Science 214:924–926

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Meyer DL (1989) Retinopetal cells exist in the optic tectum of steelhead trout. Neurosci Lett 106:95–98

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Vanegas H (1976) Projections of the optic tectum in two teleost species. J Comp Neurol 165:161–180

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Meyer DL, Scheich H (1981) Connections of the olfactory bulb in the piranha (Serrasalmus nattereri). Cell Tissue Res 216:167–180

    CAS  PubMed  Google Scholar 

  • Echteier SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551

    Google Scholar 

  • Echteier SM (1985a) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol [A] 156:267–280

    Google Scholar 

  • Echteler SM (1985b) Tonotopic organization in the midbrain of a teleost fish. Brain Res 338:387–391

    CAS  PubMed  Google Scholar 

  • Echteler SM, Saidel WM (1981) Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science 212:683–685

    CAS  PubMed  Google Scholar 

  • Eisen JS (1991) Determination of primary motoneuron identity in deelping zebrafish embryos. Science 252:569–571

    CAS  PubMed  Google Scholar 

  • Eisen JS, Myers PZ, Westerfield M (1986) Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320:269–271

    CAS  PubMed  Google Scholar 

  • Eisen JS, Pike SH, Romancier B (1990) An identified motoneuron with variable fates in embryonic zebrafish. J Neurosci 10:34–43

    CAS  PubMed  Google Scholar 

  • Ekström P (1982) Retinofugal projections in the eel (Anguilla anguilla L., Teleostei), visualized by the cobalt-filling technique. Cell Tissue Res 225:507–524

    PubMed  Google Scholar 

  • Ekström P (1984) Central neural connections of the pineal organ and retina in the teleost Gasterosteus aculeatus L. J Comp Neurol 226:321–335

    PubMed  Google Scholar 

  • Ekström P (1987a) Distribution of choline acetyltransferase immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.). J Comp Neurol 256:494–516

    PubMed  Google Scholar 

  • Ekström P (1987b) Photoreceptors and CSF contacting neurons in the pineal organ of a teleost fish have direct axonal connections with the brain: an HRP study. J Neurosci 7:987–995

    PubMed  Google Scholar 

  • Ekström P, Ebbesson SOE (1988) The left habenular nucleus contains a discrete serotonin-immunoreactive subnucleus in the coho salmon (Oncorhynchus kisutch). Neurosci Lett 91:121–125

    PubMed  Google Scholar 

  • Ekström P, Ebbesson SOE (1989) Distribution of serotoninimmunoreactive neurons in the brain of sockey salmon fry. J Chem Neuroanat 2:201–213

    PubMed  Google Scholar 

  • Ekström P, Korf H-W (1985) Pineal neurons projecting to the brain of the rainbow trout, Salmo gairdneri Richardson (Teleostei). In vitro retrograde filling with horseradish peroxidase. Cell Tissue Res 240:693–700

    Google Scholar 

  • Ekström P, Korf H-W (1986a) Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Distribution of choline acetyltransferase immunoreactivity, acetylcholinesterasepositive elements, and pinealofugally projecting neurons. Cell Tissue Res 246:321–329

    PubMed  Google Scholar 

  • Ekström P, Korf H-W (1986b) Substance P-like immunoreactive neurons in the photosensory pineal organ of the rainbow trout, Salmo gairdneri Richardson (Teleostei). Cell Tissue Res 246:359–364

    PubMed  Google Scholar 

  • Ekström P, van Veen T (1983) Central connections of the pineal organ in the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Cell Tissue Res 232:141–155

    PubMed  Google Scholar 

  • Ekström P, van Veen T (1984) Distribution of 5-hydroxytryptamine (serotonin) in the brain of the teleost Gasterosteus aculeatus L. J Comp Neurol 226:307–320

    PubMed  Google Scholar 

  • Ekström P, Nyberg L, van Veen T (1985) Ontogenetic development of serotoninergic neurons in the brain of a teleost, the three-spined stickleback. An immunohistochemical analysis. Dev Brain Res 17:209–224

    Google Scholar 

  • Ekström P, Reschke M, Steinbusch HWM, Veen T (1986) Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: an immunohistochemical analysis. J Comp Neurol 254:297–313

    PubMed  Google Scholar 

  • Ekström P, Foster RG, Korf H-W, Schalken JJ (1987) Antibodies against photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. J Comp Neurol 265:25–33

    PubMed  Google Scholar 

  • Ekström P, Honkanen T, Ebbesson SOE (1988) FMRFamidelike immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ. Brain Res 460:68–75

    PubMed  Google Scholar 

  • Ekström P, Honkanen T, Steinbusch HWM (1990) Distribution of dopamine-immunoreactive neuronal perikarya and fibers in the brain of a teleost, G. aculeatus. Comparison with TH-and DBH-IR neurons. J Chem Neuroanat 3:233–260

    PubMed  Google Scholar 

  • Ekström P, Honkanen T, Borg B (1992) Development of tyrosine hydroxylase-, dopamine-and dopamine β-hydroxylase-immunoreactive neurons in a teleost, the three-spined stickleback. J Chem Neuroanat 5:481–501

    PubMed  Google Scholar 

  • Ekström P, Honkanen T, Borg B (1994) Development if central catecholaminerigic neurons in teleosts. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 325–342

    Google Scholar 

  • Elekes K, Szabo T (1981) Synaptology of the command (pacemaker) nucleus in the brain of the weakly electric fish, Sternarchus (Apteronotus) albifrons. Neuroscience 6:443–460

    CAS  PubMed  Google Scholar 

  • Elekes K, Szabo T (1982) Synaptic organization in the pacemaker nucleus of a medium frequency-weakly electric fish, Eigenmannia sp. Brain Res 237:267–281

    CAS  PubMed  Google Scholar 

  • Elekes K, Szabo T (1985a) Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 60:509–520

    CAS  PubMed  Google Scholar 

  • Elekes K, Szabo T (1985b) The mormyrid brainstem-III. Ultrastructure and synaptic organization of the medullary ‘pacemaker’ nucleus. Neuroscience 15:431–443

    CAS  PubMed  Google Scholar 

  • Elekes K, Ravaille M, Bell CC, Libouban S, Szabo T (1985) The mormyrid brainstem. II. The medullary electromotor relay nucleus: an ultrastructural horseradish peroxidase study. Neuroscience 15:417–429

    CAS  PubMed  Google Scholar 

  • Ellis DB, Szabo T (1980) Identification of different cell types in the command (pacemaker) nucleus of several gymnoti-form species by retrograde transport of horseradish peroxidase. Neuroscience 5:1917–1929

    CAS  PubMed  Google Scholar 

  • Enger PS, Libouban S, Szabo T (1976a) Fast conducting electrosensory pathway in the mormyrid fish, Gnathonemus petersii. Neurosci Lett 2:133–136

    CAS  PubMed  Google Scholar 

  • Enger PS, Libouban S, Szabo T (1976b) Rhombomesencephalic connections in the fast conducting electrosensory system of the mormyrid fish, Gnathonemus petersii. An HRP study. Neurosci Lett 3:239–243

    CAS  PubMed  Google Scholar 

  • Erdö SL, Meyer DL, Malz CR, Hormann MH, Ebbesson SOE (1992) Changes in ligand binding to GABA, receptor sites in pacific salmon (Oncorhynchus) brain during spawning migration and ‘aging’. J Hirnforsch 33:467–469

    PubMed  Google Scholar 

  • Evan AP, Demski LS, Saland LC (1976) The lateral recess of the third ventricle in teleosts: an electron microscopic and Golgi study. Cell Tissue Res 166:521–530

    CAS  PubMed  Google Scholar 

  • Faber DS, Korn H, Lin J-W (1991) Role of medullary networks and postsynaptic membrane properties in regulating Mauthner cell responsiveness to sensory excitation. Brain Behav Evol 37:286–297

    CAS  PubMed  Google Scholar 

  • Fasolo A, Mazzi V, Franzoni MF (1978) A Golgi study of the hypothalamus of Actinopterygii. II. The posterior hypothalamus. Cell Tissue Res 191:433–447

    CAS  PubMed  Google Scholar 

  • Fay RR, Hillery CM, Bolan K (1982) Representation of sound pressure and particle motion information in the midbrain of the goldfish. Comp Biochem Physiol 71A:181–191

    Google Scholar 

  • Fernald RD (1982) Retinal projections in the African cichlid fish, Haplochromis burtoni. J Comp Neurol 206:379–389

    CAS  PubMed  Google Scholar 

  • Fernald RD, Shelton LC (1985) The organization of the diencephalon and the pretectum in the fish Haplochromis burtoni. J Comp Neurol 238:202–217

    CAS  PubMed  Google Scholar 

  • Fetcho JR (1986) The organization of the motoneurons innervating the axial musculature of vertebrates. I. Goldfish (Carassius auratus) and mudpuppies (Necturus maculosus). J Comp Neurol 249:521–550

    CAS  PubMed  Google Scholar 

  • Fetcho JR (1991) Spinal network of the Mauthner cell. Brain Behav Evol 37:298–316

    CAS  PubMed  Google Scholar 

  • Fetcho JR (1992a) Excitation of motoneurons by the Mauthner axon in goldfish: complexities in a’ simple’ reticulospinal pathway. J Neurophysiol 67:1574–1586

    CAS  PubMed  Google Scholar 

  • Fetcho JR (1992b) The spinal motor system in early vertebrates and some of its evolutionary changes. Brain Behav Evol 40:82–97

    CAS  PubMed  Google Scholar 

  • Fetcho JR, Faber DS (1988) Identification of motoneurons and interneurons in the spinal network for escapes initiated by the Mauthner cell in goldfish. J Neurosci 8:4192–4213

    CAS  PubMed  Google Scholar 

  • Fetcho JR, Svoboda KR (1993) Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. J Neurophysiol 70:765–780

    CAS  PubMed  Google Scholar 

  • Fiebig E, Ebbesson SOE, Meyer DL (1983) Afferent connections of the optic tectum in the piranha (Serrasalmus nattereri). Cell Tissue Res 231:55–72

    CAS  PubMed  Google Scholar 

  • Figdor MC, Stern CD (1993) Segmental organization of embryonic diencephalon. Nature 363:630–633

    CAS  PubMed  Google Scholar 

  • Fine ML (1989) Embryonic, larval and adult development of the sonic neuromuscular system in the oyster toadfish. Brain Behav Evol 34:13–24

    CAS  PubMed  Google Scholar 

  • Fine ML, Mosca PJ (1989) Anatomical study of the innervation pattern of the sonic muscle of the oyster toadfish. Brain Behav Evol 34:265–272

    CAS  PubMed  Google Scholar 

  • Fine ML, Winn HE, Olla BL (1977) Sound production in fishes. In: Sebeok TA (ed) How animals communicate. University of Indiana Press, Bloomington, pp 472–518

    Google Scholar 

  • Fine ML, Keefer DA, Leichretz GR (1982) Testosterone uptake in the brainstem of a sound producing fish. Science 215:1265–1267

    CAS  PubMed  Google Scholar 

  • Fine ML, Economus D, Radtke R, McClung JR (1984) Ontogeny and sexual dimorphism of the sonic motor nucleus in the oyster toadfish. J Comp Neurol 225:105–110

    CAS  PubMed  Google Scholar 

  • Fine ML, Burns NM, Harris T (1990a) Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can J Zool 68:1374–1381

    Google Scholar 

  • Fine ML, Keefer DA, Russel-Mergenthal H (1990b) Autoradiographic localization of estrogen-concentrating cells in the brain and pituitary of the oyster toadfish. Brain Res 536:207–219

    CAS  PubMed  Google Scholar 

  • Finger TE (1975) The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 161:125–141

    CAS  PubMed  Google Scholar 

  • Finger TE (1976) Gustatory pathways in the bullhead catfish. I. Connections of the anterior ganglion. J Comp Neurol 165:513–526

    CAS  PubMed  Google Scholar 

  • Finger TE (1978a) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J Comp Neurol 180:691–705

    CAS  PubMed  Google Scholar 

  • Finger TE (1978b) Cerebellar afferents in teleost catfish (Ictaluridae). J Comp Neurol 181:173–182

    CAS  PubMed  Google Scholar 

  • Finger TE (1978c) Efferent neurons of the teleost cerebellum. Brain Res 153:608–614

    CAS  PubMed  Google Scholar 

  • Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210:671–673

    CAS  PubMed  Google Scholar 

  • Finger TE (1981) Enkephalinergic immunoreactivity in the gustatory lobes and visceral nuclei in the brains of goldfish and catfish. Neuroscience 6:2747–2758

    CAS  PubMed  Google Scholar 

  • Finger TE (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol Bull 163:154–161

    Google Scholar 

  • Finger TE (1983a) Organization of the teleost cerebellum. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 261–284

    Google Scholar 

  • Finger TE (1983b) The gustatory system in teleost fish. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brainstem and sense organs. University of Michigan Press, Ann Arbor, pp 285–309

    Google Scholar 

  • Finger TE (1984) Vagotomy induced changes in acetylcholinesterase and substance P-like immunoreactivity in the gustatory lobes of goldfish. Anat Embryol (Berl) 170:257–264

    CAS  Google Scholar 

  • Finger TE (1986) Electroreception in catfish: anatomy and electrophysiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 287–317

    Google Scholar 

  • Finger TE (1988) Sensorimotor mapping and oropharyngeal reflexes in goldfish, Carassius auratus. Brain Behav Evol 31:17–24

    CAS  PubMed  Google Scholar 

  • Finger TE, Böttger B (1990) Transcellular labeling of taste bud cells by carbocyanine dye (DiI) applied to peripheral nerves in the barbels of the catfish, Ictalurus punctatus. J Comp Neurol 302:884–892

    CAS  PubMed  Google Scholar 

  • Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. J Neurobiol 13:39–47

    CAS  PubMed  Google Scholar 

  • Finger TE, Kalil K (1985) Organization of motoneuronal pools in the rostral spinal cord of the sea robin, Prionotus carolinus. J Comp Neurol 239:384–390

    CAS  PubMed  Google Scholar 

  • Finger TE, Kanwal JS (1992) Ascending general visceral pathways within the brainstem of two teleost fishes: Ictalurus punctatus and Carassius auratus. J Comp Neurol 320:509–520

    CAS  PubMed  Google Scholar 

  • Finger TE, Karten HJ (1978) The accessory optic system in teleosts. Brain Res 153:144–149

    CAS  PubMed  Google Scholar 

  • Finger TE, Morita Y (1985) Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. Science 227:776–779

    CAS  PubMed  Google Scholar 

  • Finger TE, Tong SL (1984) Central organization of eight nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151

    CAS  PubMed  Google Scholar 

  • Finger TE, Bell CC, Russell CJ (1981) Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp Brain Res 42:23–33

    CAS  PubMed  Google Scholar 

  • Finger TE, Bell CC, Carr CE (1986) Comparison among electroreceptive teleosts: why are electrosensory systems so similar. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 465–481

    Google Scholar 

  • Fraley SM, Sharma SC (1986) Topography of retinodiencephalic projections in adult channel catfish Ictalurus punctatus. Brain Res 385:179–184

    CAS  PubMed  Google Scholar 

  • Frankenhuys-van den Heuvel THM, Nieuwenhuys R (1984) Distribution of serotonin-immunoreactivity in the diencephalon and mesencephalon of the trout, Salmo gairdneri. Cell bodies, fibers and terminals. Anat Embryol (Berl) 169:193–204

    Google Scholar 

  • Freedman EG, Olyerchuk J, Marchaterre MA, Bass AH (1989) A temporal analysis of testosterone-induced changes in electric organs and electric organ discharges of mormyrid fishes. J Neurobiol 20:619–634

    CAS  PubMed  Google Scholar 

  • Fridberg G, Bern HA (1968) The urophysis and the caudal neurosecretory system of fishes. Biol Rev 43:175–199

    CAS  PubMed  Google Scholar 

  • Friedlander MJ (1983) The visual prosencephalon of teleosts. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 91–115

    Google Scholar 

  • Fritzsch B, Wilm C (1992) The development of ipsilateral retinal projections into the tectum in the cichlid fish Haplochromis burtoni: a DiI study in fixed tissue. J Neurobiol 23:708–719

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Niemann U, Bleckmann H (1990) A discrete projection of the sacculus and layers to a distinct brainstem nucleus in a catfish. Neurosci Lett 111:7–11

    CAS  PubMed  Google Scholar 

  • Fryer JN, Boudreault-Chateauvert C, Kirby RP (1985) Pituitary afferents originating in the paraventricular organ (PVO) of the goldfish hypothalamus. J Comp Neurol 242:475–484

    CAS  PubMed  Google Scholar 

  • Fujii K, Kobayashi H (1992) FMRFamide-like immunoreactivity in the brain and pituitary of the goldfish, Carassius auratus. Ann Anat 174:217–222

    CAS  PubMed  Google Scholar 

  • Fujita I, Satou M, Ueda K (1984) A field-potential study of centripetal and centrifugal connections of the olfactory bulb in the carp, Cyprinus carpio (L). Brain Res 321:33–44

    CAS  PubMed  Google Scholar 

  • Fujita I, Satou M, Ueda K (1985) Ganglion cells of the terminal nerve: morphology and electrophysiology. Brain Res 335:148–152

    CAS  PubMed  Google Scholar 

  • Fujita I, Satou M, Ueda K (1988) Morphology of physiologically identified mitral cells in the carp olfactory bulb: a light microscopic study after intracellular staining with HRP. J Comp Neurol 267:253–268

    CAS  PubMed  Google Scholar 

  • Fujita I, Sorensen PW, Stacey NE, Hara TJ (1991) The olfactory system, not the terminal nerve, functions as the primary chemosensory pathway mediating responses to sex pheromones in male goldfish. Brain Behav Evol 38:313–321

    CAS  PubMed  Google Scholar 

  • Gage SP (1983) The brain of Diemyctilus viridescence from larval to adult life and comparison with the brain of Amia and Petromyzon. In: The Wilder quarter century book. Ithaca, pp 259-314

    Google Scholar 

  • Galeo AJ, Fine ML, Stevenson JA (1987) Embryonic and larval development of the sonic motor nucleus in the oyster toadfish. J Neurobiol 18:359–373

    CAS  PubMed  Google Scholar 

  • Garcia JM, Alvarez-Uria M (1982) Ultrastructure of the’ smooth endoplasmic reticulum cell’ in the nucleus recessus lateralis of Salmo gairdneri Richardson. Cell Tissue Res 227:221–224

    CAS  PubMed  Google Scholar 

  • Gestrin P, Sterling P (1977) Anatomy and physiology of goldfish oculomotor system. II. Firing patterns of neurons in abducens nucleus and surrounding medulla and their relation to eye movements. J Neurophysiol 40:573–588

    CAS  PubMed  Google Scholar 

  • Gilat E, Hall DH, Bennett MVL (1986) The giant fiber and pectoral fin adductor motoneuron system in the hatchetfish. Brain Res 365:96–104

    CAS  PubMed  Google Scholar 

  • Goehler LE, Finger TE (1992) Functional organization of vagal reflex systems in the brain stem of the goldfish, Carassius auratus. J Comp Neurol 319:463–478

    CAS  PubMed  Google Scholar 

  • Gómez-Segade P, Anadón R (1988) Specialization in the diencephalon of advanced teleosts. J Morphol 197:71–103

    Google Scholar 

  • Gómez-Segade P, Anadón R, Gómez-Segade L (1989) Monoaminergic systems in the hypothalamus of the acanthopterygian Chelon labrosus, with special reference to the organum vasculosum hypothalami. Acta Zool (Stockh) 70:1–11

    Google Scholar 

  • Gómez-Segade P, Segade LAG, Anadón R (1991) Ultrastructure of the organum vasculosum laminae terminalis in the advanced teleost Chelon labrosus (Risso, 1826). J Hirnforsch 32:69–77

    PubMed  Google Scholar 

  • Gorlick DL (1989) Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens. J Comp Neurol 290:412–422

    CAS  PubMed  Google Scholar 

  • Gorlick DL (1990) Neural pathway for aggressive display in Betta splendens. Midbrain and hindbrain control of Gillcover erection behavior. Brain Behav Evol 36:227–236

    CAS  PubMed  Google Scholar 

  • Gotow T, Triller A, Kom H (1990) Differential distribution of serotoninergic inputs on the goldfish Mauthner cell. J Comp Neurol 292:255–268

    CAS  PubMed  Google Scholar 

  • Graf W, Baker R (1983) Adaptive changes of the vestibuloocular reflex in flatfish are achieved by reorganization of central nervous pathways. Science 221:777–778

    CAS  PubMed  Google Scholar 

  • Graf W, Baker R (1985a) The vestibuloocular reflex of the adult flatfish. I. Oculomotor organization. J Neurophysiol 54:887–899

    CAS  PubMed  Google Scholar 

  • Graf W, Baker R (1985b) The vestibuloocular reflex of the adult flatfish. II. Vestibulooculomotor connectivity. J Neurophysiol 54:900–916

    CAS  PubMed  Google Scholar 

  • Graf W, Baker R (1990) Neuronal adaptation accompanying metamorphosis in the flatfish. J Neurobiol 21:1136–1152

    CAS  PubMed  Google Scholar 

  • Graf W, McGurk JF (1985) Peripheral and central oculomotor organization in the goldfish, Carassius auratus. J Comp Neurol 239:391–401

    CAS  PubMed  Google Scholar 

  • Grant K, Bell CC, Clausse S, Ravaille M (1986) Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp Neurol 245:514–530

    CAS  PubMed  Google Scholar 

  • Grant K, Clausse S, Libouban S, Szabo T (1989) Serotoninergic neurons in the mormyrid brain and their projection to the preelectromotor and primary electrosensory centers: immunohistochemical study. J Comp Neurol 281:114–128

    CAS  PubMed  Google Scholar 

  • Grau EG, Nishioka RS, Young G, Bern HA (1985) Somatostatin-like immunoreactivity in the pituitary and brain of three teleost fish species: Somatostatin as a potential regulator of prolactin cell function. Gen Comp Endocrinol 59:350–357

    CAS  PubMed  Google Scholar 

  • Grau HJ, Bastian J (1986) Neural correlates of novelty detection in pulse-type weakly electric fish. J Comp Physiol 159:191–200

    CAS  Google Scholar 

  • Gregory WA, Tweedle CD (1985) Horseradish peroxidase evidence for a spinal projection from the preoptic area of the goldfish, a light and electron microscopic study. Brain Res 341:82–91

    CAS  PubMed  Google Scholar 

  • Grober MS, Bass AH (1991) Neuronal correlates of sex/role change in labrid fishes: LHRH-like immunoreactivity. Brain Behav Evol 38:302–312

    CAS  PubMed  Google Scholar 

  • Grober MS, Bass AH, Burd G, Marchaterre MA, Segil N, Scholz K, Hodgson T (1987) The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis. Brain Res 436:148–152

    CAS  PubMed  Google Scholar 

  • Grober MS, Jackson IMD, Bass AH (1991) Gonadal steroids affect LHRH preoptic cell number in a sex/role changing fish. J Neurobiol 22:734–741

    CAS  PubMed  Google Scholar 

  • Grober MS, Fox SH, Laughlin C, Bass AH (1994) GnRH cell size and number in a teleost fish with two male reproductive morphs: sexual maturation, final sexual status and body size allometry. Brain Behav Evol 43:61–78

    CAS  PubMed  Google Scholar 

  • Grover BG, Sharma SC (1979) Tectal projections in the goldfish (Carassius auratus): a degeneration study. J Comp Neurol 184:435–454

    CAS  PubMed  Google Scholar 

  • Grover BG, Sharma SC (1981) Organization of extrinsic tectal connections in goldfish (Carassius auratus). J Comp Neurol 196:471–488

    CAS  PubMed  Google Scholar 

  • Grzimek B (ed) (1973) Animal life encyclopedia, vols 4 and 5. Von Nostrand Reinhold, New York

    Google Scholar 

  • Guthrie DM (1990) The physiology of the optic tectum. In: Douglas RH, Djamgoz MBA (eds) The visual system offish. Chapman and Hall, London, pp 279–343

    Google Scholar 

  • Guthrie DM, Banks JR (1990) A correlative study of the physiology and morphology of the retinotectal pathway of the perch. Vis Neurosci 4:367–377

    CAS  PubMed  Google Scholar 

  • Guthrie DM, Sharma SC (1991) Visual responses of morphologically identified tectal cells in the goldfish. Vis Res 31:507–524

    CAS  PubMed  Google Scholar 

  • Hackett JT, Faber DS (1983a) Mauthner axon networks mediating supraspinal components of the startle response in the goldfish. Neuroscience 8:317–331

    CAS  PubMed  Google Scholar 

  • Hackett JT, Faber DS (1983b) Relay neurons mediate collateral inhibition of the goldfish Mauthner cell. Brain Res 264:302–306

    CAS  PubMed  Google Scholar 

  • Hackett JT, Buchheim A (1984) Ultrastructural correlates of electrical-chemical synaptic transmission in goldfish cranial motor nuclei. J Comp Neurol 224:425–426

    CAS  PubMed  Google Scholar 

  • Hagedorn M, Womble M, Finger TE (1990) Synodontid catfish: a new group of weakly electric fish. Behavior and anatomy. Brain Behav Evol 35:268–277

    CAS  PubMed  Google Scholar 

  • Hall DH, Gilat E, Bennett MVL (1985) Ultrastructure of the rectifying electrotonic synapses between giant fibers and pectoral fin adductor motor neurons in the hatchet fish. J Neurophysiol 14:825–834

    CAS  Google Scholar 

  • Hanneman E, Westerfield M (1989) Early expression of ace-tylcholinesterase activity in functionally distinct neurons of the zebrafish. J Comp Neurol 284:350–361

    CAS  PubMed  Google Scholar 

  • Hansen A, Zeiske E (1993) Development of the olfactory organ in the zebrafish, Brachydanio rerio. J Comp Neurol 333:289–300

    CAS  PubMed  Google Scholar 

  • Hara TJ (ed) (1992) Chemoreception. Chapman and Hall, London

    Google Scholar 

  • Hartlieb E, Stuermer CAO (1989) Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. J Comp Neurol 284:148–168

    CAS  PubMed  Google Scholar 

  • Haugedé-Carré F (1979) The mesencephalic exterolateral posterior nucleus of the mormyrid fish Bryenomyrus niger: efferent connections studied by the HRP method. Brain Res 178:179–184

    PubMed  Google Scholar 

  • Haugedé-Carré F (1983) The mormyrid mesencephalon. II. The medio-dorsal nucleus of the torus semicircularis: afferent and efferent connections studied with the HRP method. Brain Res 268:1–14

    PubMed  Google Scholar 

  • Haugedé-Carré F, Kirschbaum F, Szabo T (1977) On the development of the gigantocerebellum in the mormyrid fish Pollimyrus (Marcusenius) isidori. Neurosci Lett 6:209–213

    PubMed  Google Scholar 

  • Haugedé-Carré F, Szabo T, Kirschbaum F (1979) Development of the gigantocerebellum of the weakly electric fish Pollimyrus. J Physiol (Paris) 75:381–395

    Google Scholar 

  • Hawkes R, Gravel C (1991) The modular cerebellum. Prog Neurobiol 36:309–327

    CAS  PubMed  Google Scholar 

  • Hayama T, Caprio J (1989) Lobule structure and somatotopic organization of the medullary facial lobe in the channel catfish Ictalurus punctatus. J Comp Neurol 285:9–17

    CAS  PubMed  Google Scholar 

  • Hayes WP, Meyer RL (1989a) Normal numbers of retinotectal synapses during the activity-sensitive period of optic regeneration in goldfish: HRP-EM evidence implicating synapse rearrangement and collateral elimination during map refinement. J Neurosci 9:1400–1413

    CAS  PubMed  Google Scholar 

  • Hayes WP, Meyer RL (1989b) Impulse blockade by intraocular tetrodotoxin during optic regeneration in goldfish: HRP-EM evidence that the formation of normal numbers of optic synapses and the elimination of exuberant optic fibers is activity independent. J Neurosci 9:1414–1423

    CAS  PubMed  Google Scholar 

  • Hayle TH (1973a) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilo-thermic vertebrates. J Comp Neurol 149:463–476

    CAS  PubMed  Google Scholar 

  • Hayle TH (1973b) A comparative study of spinocerebellar system in three classes of poikilothermic vertebrates. J Comp Neurol 149:477–496

    CAS  PubMed  Google Scholar 

  • Heijdra YF, Nieuwenhuys R (1994) Topological analysis of the brainstem of the bowfin, Amia calva. J Comp Neurol 339:12–26

    CAS  PubMed  Google Scholar 

  • Heiligenberg W (1986) Jamming avoidance responses. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 613–649

    Google Scholar 

  • Heiligenberg W (1987) Central processing of sensory information in electric fish. J Comp Physiol [A] 161:621–631

    CAS  Google Scholar 

  • Heiligenberg W (1988) Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. Brain Behav Evol 31:6–16

    CAS  PubMed  Google Scholar 

  • Heiligenberg W (1990) Electrosensory systems in fish. Synapse 6:196–206

    CAS  PubMed  Google Scholar 

  • Heiligenberg W, Dye J (1982) Labelling of electroreceptive afferents in a gymnotid fish by intracellular injection of HRP: the mystery of multiple maps. J Comp Physiol 148:287–296

    Google Scholar 

  • Heiligenberg W, Rose G (1985) Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J Neurosci 2:515–531

    Google Scholar 

  • Heiligenberg W, Rose G (1986) Gating of sensory information: joint computations of phase and amplitude data in the midbrain of the electric fish, Eigenmannia. J Comp Physiol [A] 159:311–324

    CAS  Google Scholar 

  • Heiligenberg W, Rose G (1987) The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells. Neuroscience 22:331–340

    CAS  PubMed  Google Scholar 

  • Heiligenberg W, Finger T, Matsubara J, Carr R (1981) Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (sternopygidae, gymnotiformes). Brain Res 211:418–423

    CAS  PubMed  Google Scholar 

  • Heiligenberg W, Keller CH, Metzner W, Kawasaki M (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: relation and processing of electric signals in social communication. J Comp Physiol [A] 169:151–164

    CAS  Google Scholar 

  • Hermann HT (1971) Eye movement correlated units in mesencephalic oculomotor complex of goldfish. Brain Res 35:240–244

    CAS  PubMed  Google Scholar 

  • Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12:13–30

    CAS  PubMed  Google Scholar 

  • Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384

    CAS  PubMed  Google Scholar 

  • Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325

    CAS  PubMed  Google Scholar 

  • Highstein SM, Kitch R, Carey J, Baker R (1992) Anatomical organization of the brainstem octavolateralis area of the oyster toadfish, Opsanus tau. J Comp Neurol 319:501–518

    CAS  PubMed  Google Scholar 

  • Hinojosa R (1973) Synaptic ultrastructure in the tangential nucleus of the goldfish (Carassius auratus). Am J Anat 137:159–186

    CAS  PubMed  Google Scholar 

  • Hlavacek M, Tahar M, Libouban S, Szabo T (1984) The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii, an HRP study. J Hirnforsch 6:603–615

    Google Scholar 

  • Hofer H, Meinel W, Erhardt H, Wolter A (1984) Preliminary electron-microscopical observations on the ampulla cauda-lis and the discharge of the material of Reissner’s fibre into the capillary system of the terminal part of the tail of ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb 130:77–110

    CAS  PubMed  Google Scholar 

  • Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. Cambridge University Press, Cambridge

    Google Scholar 

  • Holmqvist BI, Carlberg M (1992) Galanin receptors in the brain of a teleost: autoradiographic distribution of binding sites in the Atlantic salmon. J Comp Neurol 326:44–60

    CAS  PubMed  Google Scholar 

  • Holmqvist BI, Ekström P (1991) Galanin-like immunoreactivity in the brain of teleosts: distribution and relation to substance P, vasotocin, and isotocin in the Atlantic salmon (Salmo salar). J Comp Neurol 306:361–381

    CAS  PubMed  Google Scholar 

  • Honkanen T, Ekström P (1990) An immunocytochemical study of the olfactory projections in the three-spined stickleback, Gasterosteus aculeatus L. J Comp Neurol 292:65–72

    CAS  PubMed  Google Scholar 

  • Honkanen T, Ekström P (1991) An immunocytochemical study of the development of the olfactory system in the three-spined stickleback (Gasterosteus aculeatus L., Teleostei). Anat Embryol (Berl) 184:469–477

    CAS  Google Scholar 

  • Hopkins CD (1986) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 527–576

    Google Scholar 

  • Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11:497–535

    CAS  PubMed  Google Scholar 

  • Hornby PJ, Demski LS (1988) Functional-anatomical studies of neural control of heart rate in goldfish. Brain Behav Evol 31:181–192

    CAS  PubMed  Google Scholar 

  • Hornby PJ, Piekut DT (1988) Immunoreactive dopamine β-hydroxylase in neuronal groups in the goldfish brain. Brain Behav Evol 32:252–256

    CAS  PubMed  Google Scholar 

  • Hornby PJ, Piekut DT (1990) Distribution of catecholaminesynthesizing enzymes in goldfish brains: presumptive dopamine and norepinephrine neuronal organization. Brain Behav Evol 35:49–64

    CAS  PubMed  Google Scholar 

  • Hornby PJ, Piekut DT, Demski LS (1987) Localization of immunoreactive tyrosine hydroxylase in the goldfish brain. J Comp Neurol 261:1–14

    CAS  PubMed  Google Scholar 

  • Huber R, Rylander MK (1991) Quantitative histological studies of the optic tectum in six species of Notropis and Cyprinella (Cyprinidae, Teleostei). J Hirnforsch 32:309–316

    CAS  PubMed  Google Scholar 

  • Huber R, Rylander MK (1992) Brain morphology and turbidity preference in Notropis and related genera (cyprinidae, teleostei). Environ Biol Fishes 33:153–165

    Google Scholar 

  • Ichikawa M (1975) The central projections of the olfactory tract in the goldfish, Carassius auratus. J Fac Sci Univ Tokyo 13:257–263

    Google Scholar 

  • Ichikawa M (1976) Fine structure of the olfactory bulb in the goldfish, Carassius auratus. Brain Res 115:53–56

    Google Scholar 

  • Ichikawa M, Ueda K (1979) Electron microscopic study of the termination of the centrifugal fibers in the goldfish olfactory bulb. Cell Tissue Res 197:257–262

    CAS  PubMed  Google Scholar 

  • Inagaki N, Panula P, Yamadotani A, Wada H (1991) Organization of the histaminergic system in the brain of the teleost, Trachurus trachurus. J Comp Neurol 310:94–102

    CAS  PubMed  Google Scholar 

  • Ito H (1970) Fine structures or the teleostean vagal lobe. Z Mikr Anat Forsch 83:65–89

    Google Scholar 

  • Ito H (1971) Fine structure of the carp torus longitudinalis. J Morphol 135:153–164

    Google Scholar 

  • Ito H (1974) Fine structure of the torus semicircularis of some teleosts. J Morphol 142:137–152

    CAS  PubMed  Google Scholar 

  • Ito H, Kishida R (1975) Organization of the teleostean nucleus rotundus. J Morphol 147:89–108

    CAS  PubMed  Google Scholar 

  • Ito H, Kishida R (1977a) Synaptic organization of the nucleus rotundus in some teleosts. J Morphol 151:397–416

    CAS  PubMed  Google Scholar 

  • Ito H, Kishida R (1977b) Tectal afferent neurons identified by the retrograde HRP method in the carp telencephalon. Brain Res 130:142–145

    CAS  PubMed  Google Scholar 

  • Ito H, Kishida R (1978a) Telencephalic afferent neurons identified by the retrograde HRP method in the carp diencephalon. Brain Res 149:211–215

    CAS  PubMed  Google Scholar 

  • Ito H, Kishida R (1978b) Afferent and efferent fiber connections of the carp torus longitudinalis. J Comp Neurol 181:465–476

    CAS  PubMed  Google Scholar 

  • Ito H, Murakami T (1984) Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. J Comp Neurol 229:80–96

    CAS  PubMed  Google Scholar 

  • Ito H, Vanegas H (1983) Cytoarchitecture and ultrastructure of nucleus prethalamicus, with special reference to degenerating afferents from optic tectum and telencephalon, in a teleost (Holocentrus ascensonis). J Comp Neurol 221:401–415

    CAS  PubMed  Google Scholar 

  • Ito H, Vanegas H (1984) Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae). Brain Res 290:201–210

    CAS  PubMed  Google Scholar 

  • Ito H, Yoshimoto M (1990) Cytoarchitecture and fibre connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). J Comp Neurol 298:385–399

    CAS  PubMed  Google Scholar 

  • Ito H, Morita Y, Sakamoto N, Ueda S (1980a) Possibility of telencephalic visual projections in teleosts, Holocentrus. Brain Res 197:219–222

    CAS  PubMed  Google Scholar 

  • Ito H, Butler AB, Ebbesson SOE (1980b) An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from retina, telencephalon, and contralateral tectum in a teleost, Holocentrus rufus. J Comp Neurol 191:639–659

    CAS  PubMed  Google Scholar 

  • Ito H, Tanaka H, Sakamoto N, Morita Y (1981) Isthmic afferent neurons identified by the retrograde HRP method in a teleost, Navodon modestus. Brain Res 207:163–169

    CAS  PubMed  Google Scholar 

  • Ito H, Murakami T, Morita Y (1982a) An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts. Brain Res 249:1–13

    CAS  PubMed  Google Scholar 

  • Ito H, Sakamoto N, Takatsuji K (1982b) Cytoarchitecture, fiber connections, and ultrastructure of nucleus isthmi in a teleost (Navodon modestus) with a special reference to degenerating isthmic afferents from optic tectum and nucleus pretectalis. J Comp Neurol 205:299–311

    CAS  PubMed  Google Scholar 

  • Ito H, Vanegas H, Murakami T, Morita Y (1984) Diameters and terminal patterns of retinofugal axons in their target areas. An HRP study in two teleosts (Sebastiscus and Navodon). J Comp Neurol 230:179–197

    CAS  PubMed  Google Scholar 

  • Ito H, Murakami T, Fukuota T, Kishida R (1986) Thalamic fiber connections in a teleost (Sebastiscus marmoratus): visual, somatosensory, octavolateral and cerebellar relay region to the telencephalon. J Comp Neurol 250:215–227

    CAS  PubMed  Google Scholar 

  • Ito H, Yoshimoto M, Uchiyama H, Somiya H, Negsihi K (1992) Changes in retinal projections and ganglion cell morphology after unilateral enucleation in the common carp. Brain Behav Evol 40:197–208

    CAS  PubMed  Google Scholar 

  • Ito M (1984) The cerebellum and neurol control. Raven, New York

    Google Scholar 

  • Janetzko A, Zimmermann H, Volknandt W (1987) The electromotor system of the electric catfish (Malapterurus electricus): a fine-structural analysis. Cell Tissue Res 247:613–624

    CAS  PubMed  Google Scholar 

  • Jansen WF (1973) The saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. A cytochemical and enzymecytochemical study, particularly with respect to coronet cells and glial cells. Nether J Zool 25(3):309–331

    Google Scholar 

  • Jansen WF (1985) Structure and function of the paraphysis cerebri in the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 242:127–143

    CAS  Google Scholar 

  • Jansen WF (1973) De sacculus vasculosus en de regulatie van de samenstelling van de liquor cerebrospinalis. Thesis, University of Utrecht, Netherlands

    Google Scholar 

  • Jansen WF, van Dort JB (1978) Further investigations on the structure and function of the saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 187:61–68

    CAS  PubMed  Google Scholar 

  • Jeserich G (1982) Ingrowth of optic nerve fibers and onset of myelin ensheathment in the optic tectum of the trout (Salmo gairdneri). Cell Tissue Res 227:201–211

    CAS  PubMed  Google Scholar 

  • Johnston SA, Maler L (1992) Anatomical organization of the hypophysiotrophic systems in the electric fish, Apteronotus leptorhynchus. J Comp Neurol 317:421–437

    CAS  PubMed  Google Scholar 

  • Johnston SA, Maler L, Tinner B (1990) The distribution of serotonin in the brain of Apteronotus leptorhynchus: an immunohistochemical study. J Chem Neuroanat 3:429–465

    CAS  PubMed  Google Scholar 

  • Jorgensen JM, Bullock TH (1987) Organization of the ampullary organs of the African knife fish Xenomystus nigri (Teleostei: Notopteridae). J Neurocytol 16:311–315

    CAS  PubMed  Google Scholar 

  • Jüch PJW, Luiten PGM (1981) Anatomy of respiratory rhythmic systems in brain stem and cerebellum of the carp. Brain Res 230:51–64

    PubMed  Google Scholar 

  • Kageyama GH, Meyer RL (1988a) Laminar and sublaminar ultracytochemical localization of cytochrome oxydase in the optic tectum of normal goldfish. J Comp Neurol 278:498–520

    CAS  PubMed  Google Scholar 

  • Kageyama GH, Meyer RL (1988b) Laminar histochemical and cytochemical localization of cytochrome oxydase in the goldfish retina and optic tectum in response to deafferentation and during regeneration. J Comp Neurol 278:521–542

    CAS  PubMed  Google Scholar 

  • Kageyama GH, Meyer RL (1989) Glutamate-immunoreactivity in the retina and optic tectum of goldfish. Brain Res 503:118–127

    CAS  PubMed  Google Scholar 

  • Kah O, Chambolle P (1983) Serotonin in the brain of the goldfish, Carassius auratus. An immunocytochemical study. Cell Tissue Res 234:319–333

    CAS  PubMed  Google Scholar 

  • Kah O, Chambolle P, Thibault J, Geffard M (1984) Existence of dopaminergic neurons in the preoptic region of the goldfish. Neurosci Lett 48:293–298

    CAS  PubMed  Google Scholar 

  • Kah O, Breton B, Dulka JG, Nunez-Rodriguez J, Peter RE, Corrigan A, Riveri JE, Vale WW (1986) A reinvestigation of the Gn-RH (gonadotrophin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH. Cell Tissue Res 224:327–337

    Google Scholar 

  • Kah O, Zanuy S, Mañanos E, Anglade L, Carillo M (1991) Distribution of salmon gonadotropin releasing-hormone in the brain and pituitary of the sea bass (Dicentrarchus labrax). An immunocytochemical and immunoenzymoessay study. Cell Tissue Res 266:129–136

    CAS  Google Scholar 

  • Kaiserman-Abramof IR, Palay SL (1969) Fine structural studies of the cerebellar cortex in a mormyrid fish. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc Educ Res Found, Chicago, pp 171–205

    Google Scholar 

  • Källén B (1950) A contribution to the ontogenetic development of the nuclei in the forebrain in Lepisosteus. Acta Anat 4:297–308

    Google Scholar 

  • Kanwal JS, Caprio J (1983) An electrophysiological investigation of the oro-pharyngeal (IX–X) taste system of the channel catfish, Ictalurus punctatus. J Comp Physiol 150:345–357

    Google Scholar 

  • Kanwal JS, Caprio J (1987) Central projections of the glossopharyngeal and vagal nerves in the channel catfish, Ictalurus punctatus: clues to differential processing of visceral inputs. J Comp Neurol 264:216–230

    CAS  PubMed  Google Scholar 

  • Kanwal JS, Finger TF (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 79–103

    Google Scholar 

  • Kanwal JS, Finger TE, Caprio J (1988) Forebrain connections of the gustatory system in ictalurid fishes. J Comp Neurol 278:353–376

    CAS  PubMed  Google Scholar 

  • Karten HJ, Finger TE (1976) A direct thalamo-cerebellar pathway in pigeon and catfish. Brain Res 102:335–338

    CAS  PubMed  Google Scholar 

  • Kaul S, Vollrath L (1974a) The goldfish pituitary. I. Cytology. Cell Tissue Res 154:211–230

    CAS  PubMed  Google Scholar 

  • Kaul S, Vollrath L (1974b) The goldfish pituitary. II. Innervation. Cell Tissue Res 154:231–249

    CAS  PubMed  Google Scholar 

  • Kawasaki M, Heiligenberg W (1988) Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia. J Comp Physiol [A] 162:13–21

    CAS  Google Scholar 

  • Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neural oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol [A] 165:731–741

    CAS  Google Scholar 

  • Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. J Neurosci 10:3896–3904

    CAS  PubMed  Google Scholar 

  • Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988a) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131

    CAS  PubMed  Google Scholar 

  • Kawasaki M, Rose G, Heiligenberg W (1988b) Temporal hyperacuity in single neurons of electric fish. Nature 336:173–177

    CAS  PubMed  Google Scholar 

  • Keller CH (1988) Stimulus discrimination in the diencephalon of Eigenmannia. The emergence and sharpening of a sensory filter. J Comp Physiol [A] 162:747–757

    CAS  Google Scholar 

  • Keller CH, Heiligenberg W (1989) From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish Eigenmannia. J Comp Physiol [A] 164:565–576

    CAS  Google Scholar 

  • Keller CH, Maler L, Heiligenberg W (1990) Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia. J Comp Neurol 293:347–376

    CAS  PubMed  Google Scholar 

  • Keller CH, Kawasaki M, Heiligenberg W (1991) The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. J Comp Physiol [A] 169:441–450

    CAS  Google Scholar 

  • Kidokoro Y (1969) Cerebellar and vestibular control of fish oculomotor neurones. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 257–276

    Google Scholar 

  • Kim YS, Stumpf WE, Sar M (1978) Topography of estrogen target cells in the forebrain of goldfish, Carassius auratus. J Comp Neurol 182:611–620

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127

    CAS  PubMed  Google Scholar 

  • Kimmel CB, Metcalfe WK, Schabtach E (1985) T reticular interneurons: a class of serially repeating cells in the zebra-fish hindbrain. J Comp Neurol 233:365–376

    CAS  PubMed  Google Scholar 

  • King WM, Schmidt JT (1991) The long lasting component of retinotectal transmission: enhancement by stimulation of nucleus isthmi or tectobulbar tract and block by nicotinic cholinergic antagonists. Neuroscience 40:701–712

    CAS  PubMed  Google Scholar 

  • King WM, Schmidt JT (1993) Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections. Vis Neurosci 10:419–437

    CAS  PubMed  Google Scholar 

  • Kirschbaum F, Meunier F, Tsuji S (1978) ‘Naked’ spinal cord on a non-segmented baton-like bony structure in the tail of the electric fish Eigenmannia virescens (Gymnotoidei). Cell Tissue Res 187:263–269

    CAS  PubMed  Google Scholar 

  • Kirschbaum F, Denizot JP, Tsuji S (1979) On the electromotor neurons of both electric organs of Pollimyrus isidori (Mormyridae, Teleostei). J Physiol (Paris) 75:429–433

    CAS  Google Scholar 

  • Kishida K (1979) Comparative study on the teleostean optic tectum. Lamination and cytoarchitecture. J Hirnforsch 20:57–67

    CAS  PubMed  Google Scholar 

  • Kiyohara S, Shiratani T, Yamashita S (1985a) Peripheral and central distribution of major branches of the facial taste nerve in the carp. Brain Res 325:57–69

    CAS  PubMed  Google Scholar 

  • Kiyohara S, Hidaka I, Kitoh J, Yamashita S (1985b) Mechanical sensitivity of the facial nerve fibers innervating the anterior palate of the puffer, Fugu pardalis and their central projection on the primary taste center. Brain Res 157:705–716

    CAS  Google Scholar 

  • Kiyohara S, Houman H, Yamashita S, Caprio J, Marui T (1986) Morphological evidence for a direct projection of trigeminal nerve fibers to the primary gustatory center in the sea catfish Plotosus anguillaris. Brain Res 379:353–357

    CAS  PubMed  Google Scholar 

  • Knudsen El (1976a) Midbrain responses to electro receptive input in catfish: evidence of orientation preferences and somatotopic organization. J Comp Physiol 106:51–67

    Google Scholar 

  • Knudsen El (1976b) Midbrain units in catfish. Responses properties to electroreceptive input. J Comp Physiol 109:215–235

    Google Scholar 

  • Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432

    CAS  PubMed  Google Scholar 

  • Knudsen EI (1978) Functional organization in electroreceptive midbrain of the catfish. J Neurophysiol 41:350–364

    CAS  PubMed  Google Scholar 

  • Kock J-H, Reuter T (1978) Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different size. J Comp Neurol 179:535–548

    CAS  PubMed  Google Scholar 

  • Kohno K, Noguchi N (1986) Large myelinated club endings on the Mauthner cell in the goldfish. Anat Embryol (Berl) 173:361–370

    CAS  Google Scholar 

  • König B, Bonn U (1990) SRIF-like immunoreactivity in the brain and pituitary of Tinca tinca (Cyprinidae, Teleostei). J Hirnforsch 31:227–236

    PubMed  Google Scholar 

  • Korn H, Bennett MVL (1972) Electrotonic coupling between teleost oculomotor neurons; restriction to somatic regions and relation to function of somatic and dendritic sites of impulse initiation. Brain Res 38:433–439

    CAS  PubMed  Google Scholar 

  • Korn H, Sotelo C, Bennett MVL (1977) The lateral vestibular nucleus of the toadfish Opsanus tau: ultrastructural and electrophysiological observations with special reference to electrotonic transmission. Neuroscience 2:851–884

    Google Scholar 

  • Körtje KH, Weber H, Rahmann H (1991) Morphogenetic development of the area octavolateralis in the cichlid fish Oreochromis mossambicus. J Hirnforsch 32:491–495

    PubMed  Google Scholar 

  • Kosaka T (1980) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axons in the olfactory bulb of the goldfish. II. Fine structure of the ruffed cell. J Comp Neurol 193:119–145

    CAS  PubMed  Google Scholar 

  • Kosaka T, Hama K (1979) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axons in the olfactory bulb of the goldfish. I. Golgi impregnation and serial thin section studies. J Comp Neurol 186:301–320

    CAS  PubMed  Google Scholar 

  • Kosaka T, Hama K (1980) Presence of the ruffed cell in the olfactory bulb of the catfish, Parasilurus asotus, and the sea eel, Conger myriaster. J Comp Neurol 193:103–117

    CAS  PubMed  Google Scholar 

  • Kosaka T, Hama K (1981) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axon in the olfactory bulb of the goldfish (Carassius auratus). III. Three-dimensional structure of the ruffed cell dendrite. J Comp Neurol 201:571–587

    CAS  PubMed  Google Scholar 

  • Kosaka T, Hama K (1982) Structure of the mitral cell in the olfactory bulb of the goldfish (Carassius auratus). J Comp Neurol 212:365–384

    CAS  PubMed  Google Scholar 

  • Kosaka T, Hama K (1982/1983) Synaptic organization in the teleost olfactory bulb. J Physiol (Paris) 78:707–719

    Google Scholar 

  • Kotrschal K, Jürgen H (1988) Patterns of brain morphology in Mid-European cyprinidae (pisces, teleostei). A quantitative histological study. J Hirnforsch 29:341–352

    CAS  PubMed  Google Scholar 

  • Kotrschal K, Whitear M (1988) Chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, teleostei, gadi-dae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J Comp Neurol 268:109–120

    CAS  PubMed  Google Scholar 

  • Kotrschal K, Whitear M, Finger TE (1993) Spinal and facial innervation of the skin in the gadid fish Ciliata mustela (Teleostei). J Comp Neurol 331:407–417

    CAS  PubMed  Google Scholar 

  • Kriebel RM (1980) The caudal neurosecretory system of Poecilia sphenops (Poeciliidae). J Morphol 165:157–165

    CAS  PubMed  Google Scholar 

  • Kriebel RM, Burke JD, Meetz GD (1979) Morphologic features of the caudal neurosecretory system in the blueback herring, Pomolobus aestivalis. Anat Rec 195:553–572

    CAS  PubMed  Google Scholar 

  • Kudo H, Ueda H, Kawamura H, Aida K, Yamauchi K (1994) Ultrastructural demonstration of salmon-type gonadotropin-releasing hormone (sGnRH) in the olfactory system of masu salmon (Oncorhynchus masou). Neurosci Lett 166:187–190

    CAS  PubMed  Google Scholar 

  • Kusunoki T, Kishida R, Kiriyama H (1977) The cytoarchitec-tonics of the teleostean (gobiid) telencephalon. Characteristic structures in the lobar region. Yokohama Med Bull 28:83–111

    Google Scholar 

  • Kuwada JY (1986) Cell recognition by neuronal growth cones in a simple vertebrate embryo. Science 233:740–746

    CAS  PubMed  Google Scholar 

  • Kuwada JY, Bernhardt RR, Chitnis AB (1990a) Pathfinding by identified growth cones in the spinal cord of zebrafish embryos. J Neurosci 10:1299–1308

    CAS  PubMed  Google Scholar 

  • Kuwada JY, Bernhardt RR, Nguyen N (1990b) Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol 302:617–628

    CAS  PubMed  Google Scholar 

  • Ladlich F, Fine ML (1992) Localization of pectoral fin moto-neurons (sonic and hovering) in the croaking gourami Tri-chopsis vittatus. Brain Behav Evol 39:1–7

    Google Scholar 

  • Lamb CF, Caprio J (1992) Convergence of oral and extraoral information in the superior secondary gustatory nucleus of the channel catfish. Brain Res 588:201–211

    CAS  PubMed  Google Scholar 

  • Lamb CF, Caprio J (1993a) Diencephalic gustatory connections in the channel catfish. J Comp Neurol 337:400–418

    CAS  PubMed  Google Scholar 

  • Lamb CF, Caprio J (1993b) Taste and tactile responsiveness of neurons in the posterior diencephalon of the channel catfish. J Comp Neurol 337:419–430

    CAS  PubMed  Google Scholar 

  • Landsman RE (1993) The effects of captivity on the electric organ discharge and plasma hormone levels in Gnathonemus petersii (Mormyriformes). J Comp Physiol [A] 172:639–631

    Google Scholar 

  • Langdon RB, Freeman JA (1986) Antagonists of glutaminergic neurotransmission block retinotectal transmission in goldfish. Brain Res 398:169–174

    CAS  PubMed  Google Scholar 

  • Langdon RB, Freeman JA (1987) Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands, strychnine and kynurenic acid. J Neurosci 7:760–773

    CAS  PubMed  Google Scholar 

  • Langdon RB, Manis PB, Freeman JA (1988) Goldfish retinotectal transmission in vitro: component current sinksource pairs isolated by varying calcium and magnesium levels. Brain Res 441:299–308

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Maler L (1990) Interspecific variation in the projection of primary afferents onto the electrosensory lateral line lobe of weakly electric teleosts: different solutions to the same mapping problem. J Comp Neurol 294:153–160

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Maler L, Tinner B (1989a) Ganglion cell arrangement and axonal trajectories in the anterior lateral line nerve of the weakly electric fish Apteronotus leptorhynchus (Gymnotiformes). J Comp Neurol 280:331–342

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Maler L, Zakon H (1989b) Receptor position, not nerve branch, determines electroreceptor somatotopy in the gymnotiform fish (Apteronotus leptorhynchus). Neurosci Lett 97:11–17

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Vischer HA, Maler L (1990) Development of the electrosensory nervous system of Eigenmannia (Gymnotiformes). II. The electrosensory lateral line lobe, midbrain, and cerebellum. J Comp Neurol 294:37–58

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Brochu G, Maler L, Hawkes R (1991a) Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (Gymnotiformes) reveals three modes of Purkinje cell development. J Comp Neurol 310:215–233

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Ross L, Maler L, Hawkes R (1991b) Development of the cerebellum and its extracerebellar Purkinje cell projection in teleost fishes as determined by zebrin II immunocytochemistry. Prog Neurobiol 37:329–363

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Maler L, Hawkes R (1992) Zebrin II distinguishes the ampullary organ receptive map from the tuberous organ receptive maps during development in the teleost electrosensory lateral line lobe. Brain Res 586:176–180

    CAS  PubMed  Google Scholar 

  • Lannoo MJ, Maler L, Hawkes R (1993) Collateral sprouting in the electrosensory lateral line lobe of weakly electric teleosts (gymnotiformes) following ricin ablation. J Comp Neurol 333:246–256

    CAS  PubMed  Google Scholar 

  • Lara JM, Alonso JR, Vecino E, Coveñas R, Aijon J (1989) Neuroglia in the optic tectum of teleosts. J Hirnforsch 30:465–472

    CAS  PubMed  Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Lauder GV, Liem KF (1983a) Patterns of diversity and evolution in ray-finned fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brainstem and sense organs. University of Michigan Press, Ann Arbor, pp 1–24

    Google Scholar 

  • Lauder GV, Liem KF (1983b) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197

    Google Scholar 

  • Laudel TP, Lim T-M (1993) Development of the dorsal root ganglion in a teleost, Oreochromis mossambicus (Peters). J Comp Neurol 327:141–150

    CAS  PubMed  Google Scholar 

  • Laufer M, Vanegas H (1974) The optic tectum of a perciform teleost. II. Fine structure. J Comp Neurol 154:61–96

    CAS  PubMed  Google Scholar 

  • Lázár G, Libouban S, Szabo T (1984) The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii. J Comp Neurol 230:1–12

    PubMed  Google Scholar 

  • Lázár G, Toth P, Szabo T (1987) Retinal projections in gymnotid fishes. J Hirnforsch 28:13–26

    PubMed  Google Scholar 

  • Lázár G, Szabo T, Libouban S, Ravaille-Veron M, Toth P, Bräntle K (1992) Central projections and motor nuclei of the facial, glossopharyngeal and vagus nerves in the mormyrid fish Gnathonemus petersii. J Comp Neurol 325:343–358

    PubMed  Google Scholar 

  • Lee LT (1984) Response of cerebellum to stimulation of telencephalon in the catfish (Ictalurus nebulosus). J Neuro-physiol 51:1394–1408

    CAS  Google Scholar 

  • Lee LT, Bullock TH (1984) Sensory representation in the cerebellum of the catfish. Neuroscience 13:157–169

    CAS  PubMed  Google Scholar 

  • Lee LT, Bullock TH (1990a) Cerebellar units show several types of early responses to telencephalic stimulation in catfish. Brain Behav Evol 35:278–290

    CAS  PubMed  Google Scholar 

  • Lee LT, Bullock TH (1990b) Cerebellar units show several types of long-lasting posttetanic responses to telencephalic stimulation in catfish. Brain Behav Evol 35:291–301

    CAS  PubMed  Google Scholar 

  • Lee LT, Bullock TH (1990c) Responses of the optic tectum to telencephalic stimulation in catfish. Brain Behav Evol 35:313–324

    CAS  PubMed  Google Scholar 

  • Lee RKK, Eaton RC (1991) Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J Comp Neurol 304:34–52

    CAS  PubMed  Google Scholar 

  • Lee RKK, Eaton RC, Zottoli SJ (1993) Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. J Comp Neurol 329:539–556

    CAS  PubMed  Google Scholar 

  • Leghissa S (1955) La struttura microscópica e la citoarchitettonica del tetto ottico dei pesci teleostei. Z Anat Entw Gesch 118:427–463

    CAS  Google Scholar 

  • Leonard RB, Willis WD (1979) The organization of the electromotor nucleus and extraocular motor nuclei in the star-gazer (Astroscopus graecum). J Comp Neurol 183:397–414

    CAS  PubMed  Google Scholar 

  • Levine RI (1989) Organization of astrocytes in the visual pathways of the goldfish: an immunohistochemical study. J Comp Neurol 285:231–245

    CAS  PubMed  Google Scholar 

  • Levine RI, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237:427–444

    CAS  PubMed  Google Scholar 

  • Levine RI, Dethier S (1988) Anomalous retrograde labeling of brain cells from the eye in the goldfish: evidence for long distance growth of sprouted neurites. Exp Neurol 102:153–166

    CAS  PubMed  Google Scholar 

  • Lewis D, Teyler TJ (1986) Long-term potentation in the goldfish optic tectum. Brain Res 375:246–250

    CAS  PubMed  Google Scholar 

  • Leyhausen C, Kirschbaum F, Szabo T, Erdelen M (1987) Differential growth in the brain of the weakly electric fish, Apte-ronotus leptorhynchus (Gymnotiformes), during ontogenesis. Brain Behav Evol 30:230–248

    CAS  PubMed  Google Scholar 

  • Libouban S, Szabo T (1977) An integration centre of the mormyrid fish brain: the auricula cerebelli. An HRP study. Neurosci Lett 6:115–119

    CAS  PubMed  Google Scholar 

  • Lin JW, Faber DS (1988) An efferent inhibition of auditory afferents mediated by the goldfish Mauthner cell. Neuro-science 24:829–836

    CAS  Google Scholar 

  • Lin J-W, Faber DS, Wood MR (1983) Organized projection of the goldfish saccular nerve onto the Mauthner cell lateral dendrite. Brain Res 274:319–324

    CAS  PubMed  Google Scholar 

  • Liu DWC, Westerfield M (1990) The formation of terminal fields in the absence of competitive interactions among primary motoneurons in the zebrafish. J Neurosci 10:3947–3959

    CAS  PubMed  Google Scholar 

  • Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 1–43

    Google Scholar 

  • Losier BJ, Matsubara JA (1990a) Comparison of calbindin D 28K and cytochrome c oxidase in electrosensory nuclei of high-and low-frequency weakly electric fish (Gymnotiformes). Cell Tissue Res 260:29–39

    CAS  Google Scholar 

  • Losier BJ, Matsubara JA (1990b) Light and electron microscopical studies on the spherical neurons in the electrosensory lateral line lobe of the gymnotiform fish, Sternopygus. J Comp Neurol 298:237–249

    CAS  PubMed  Google Scholar 

  • Lu Z, Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol [A] 173:33–48

    CAS  Google Scholar 

  • Luiten PGM (1975) The central projections of the trigeminal, facial and anterior lateral line nerves in the carp (Cyprinus carpio L). J Comp Neurol 160:399–418

    CAS  PubMed  Google Scholar 

  • Luiten PGM (1976) A somatotopic and functional representation of the respiratory muscles in the trigeminal and facial motor nuclei of the carp (Cyprinus carpio L.). J Comp Neurol 166:191–200

    CAS  PubMed  Google Scholar 

  • Luiten PGM (1979) Proprioceptive reflex connections of head musculature and the mesencephalic trigeminal nucleus in the carp. J Comp Neurol 183:903–912

    CAS  PubMed  Google Scholar 

  • Luiten PGM (1981) Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.). Brain Res 220:51–65

    CAS  PubMed  Google Scholar 

  • Luiten PGM, Dijkstra-de Vlieger HP (1978) Extraocular muscle representation in the brainstem of the carp. J Comp Neurol 179:669–676

    CAS  PubMed  Google Scholar 

  • Luiten PGM, van der Pers JNC (1977) The connections of the trigeminal and facial motor nuclei in the brain of the carp (Cyprinus carpio L.) as revealed by anterograde and retrograde transport of HRP. J Comp Neurol 174:575–590

    CAS  PubMed  Google Scholar 

  • Ma PM (1994a) Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 344:242–255

    CAS  PubMed  Google Scholar 

  • Ma PM (1994b) Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J Comp Neurol 344:256–269

    CAS  PubMed  Google Scholar 

  • Maggs A, Scholes J (1986) Glial domains and nerve fiber patterns in the fish retinotectal pathway. J Neurosci 6:424–438

    CAS  PubMed  Google Scholar 

  • Maggs A, Scholes J (1990) Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of ranvier are apposed. J Neurosci 10:1600–1614

    CAS  PubMed  Google Scholar 

  • Malagon M, Vallarino M, Tonon MC, Vaudry H (1992) Localization and characterization of diazepam-binding inhibitor (DBI)-like peptides in the brain and pituitary of the trout (Salmo gairdneri). Brain Res 576:208–214

    CAS  PubMed  Google Scholar 

  • Maler L (1973) The posterior lateral line lobe of a mormyrid fish. A Golgi study. J Comp Neurol 152:281–298

    CAS  PubMed  Google Scholar 

  • Maler L (1974) The acousticolateral area of bony fishes and its cerebellar relations. Brain Behav Evol 10:130–145

    CAS  PubMed  Google Scholar 

  • Maler L (1979) The posterior lateral line lobe of certain gymnotid fish: quantitative light microscopy. J Comp Neurol 183:323–364

    CAS  PubMed  Google Scholar 

  • Maler L, Monaghan D (1991) The distribution of excitatory amino acid binding sites in the brain of an electric fish, Apteronotus leptorhynchus. J Chem Neuroanat 4:39–61

    CAS  PubMed  Google Scholar 

  • Maler L, Mugnaini E (1994) Correlating gammaaminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J Comp Neurol 345:224–252

    CAS  PubMed  Google Scholar 

  • Maler L, Karten HJ, Bennett MVL (1973a) The central connections of the posterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:57–66

    CAS  PubMed  Google Scholar 

  • Maler L, Karten HJ, Bennett MVL (1973b) The central connections of the anterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:67–84

    CAS  PubMed  Google Scholar 

  • Maler L, Finger T, Karten HJ (1974) Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish: Apteronotus (Sternarchus) albifrons. J Comp Neurol 158:363–382

    CAS  PubMed  Google Scholar 

  • Maler L, Sas E, Rogers J (1981a) The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): specificity in a simple cortex. J Comp Neurol 195:87–139

    CAS  PubMed  Google Scholar 

  • Maler L, Callins M, Mathieson WB (1981b) The distribution of acetylcholinesterase and choline acetyl transferase in the cerebellum and posterior lateral line lobe of weakly electric fish (Gymnotidae). Brain Res 226:320–325

    CAS  PubMed  Google Scholar 

  • Maler L, Sas E, Carr CE, Matsubara J (1982) Efferent projections of the posterior lateral line lobe in gymnotiform fish. J Comp Neurol 211:154–164

    CAS  PubMed  Google Scholar 

  • Maler L, Jande S, Lawson EM (1984a) Localization of vitamin D-dependent calcium binding protein in the electrosensory and electromotor system of high frequency gymnotid fish. Brain Res 301:166–170

    CAS  PubMed  Google Scholar 

  • Maler L, Boland M, Patrick J, Ellis W (1984b) Localization of zinc in the pacemaker nucleus of high frequency gymnotid fish. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Liss, New York, pp 199–212

    Google Scholar 

  • Maler L, Le Clerc N, Hawkes R (1986) A monoclonal antibody to mammalian neurofilament protein stains somata and dendrites in gymnotid fish. Brain Res 378:337–346

    CAS  PubMed  Google Scholar 

  • Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38

    CAS  PubMed  Google Scholar 

  • Manis PB, Freeman JA (1988) Fluorescence recordings of electrical activity in goldfish optic tectum in vitro. J Neurosci 8:383–394

    CAS  PubMed  Google Scholar 

  • Manso MJ, Becerra M, Molist P, Rodriguez-Moldes I, Anadón R (1993) Distribution and development of catecholaminergic neurons in the brain of the brown trout. A tyrosine hydroxylase immunohistochemical study. J Hirnforsch 34:239–260

    CAS  PubMed  Google Scholar 

  • Mansour-Robaey S, Pinganaud G (1990) Quantitative and morphological study of cell proliferation during morphogenesis in the trout visual system. J Hirnforsch 31:495–504

    CAS  PubMed  Google Scholar 

  • Margolis-Kazan H, Halpern-Sebold LR, Schreibman MP (1985) Immunocytochemical localization of serotonin in the brain and pituitary gland of the platyfish, Xiphophorus maculatus. Cell Tissue Res 240:311–314

    CAS  PubMed  Google Scholar 

  • Marotte LR (1980) Goldfish retinotectal system: continuing development and synaptogenesis. J Comp Neurol 193:319–334

    CAS  PubMed  Google Scholar 

  • Martinoli M-G, Dubourg P, Geffard M, Calas A, Kah O (1990) Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish Carassius auratus. Cell Tissue Res 260:77–84

    CAS  PubMed  Google Scholar 

  • Marui T (1977) Taste responses in the facial lobe of the carp, Cyprinus carpio L. Brain Res 130:287–298

    CAS  PubMed  Google Scholar 

  • Marui T, Caprio J (1982) Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res 231:185–190

    CAS  PubMed  Google Scholar 

  • Marui T, Caprio J (1992) Teleost gustation. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 171–198

    Google Scholar 

  • Marui T, Funakoshi M (1979) Tactile input to the facial lobe of the carp, Cyprinus carpio L. Brain Res 177:479–488

    CAS  PubMed  Google Scholar 

  • Marui T, Caprio J, Kiyohara S, Kasahara Y (1988) Topographical organization of taste and tactile neurons in the facial lobe of the sea catfish, Plotosus lineatus. Brain Res 446:178–182

    CAS  PubMed  Google Scholar 

  • Mathieson WB, Heiligenberg W, Maler L (1987) Ultrastructural studies of physiologically identified electrosensory afferent synapses in the gymnotiform fish: Eigenmannia. J Comp Neurol 255:526–537

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Kiyama H, Bando T (1983) An intracellular study of the optic tectum of the carp in vitro. Neurosci Lett 38:17–22

    CAS  PubMed  Google Scholar 

  • Matsumoto N, Kometani M, Nagano K (1987) Regenerating retinal fibers of the goldfish make temporary and unspecific but functional synapses before forming the final retinotopic map. Neuroscience 22:1102–1110

    Google Scholar 

  • Matsutani S, Uchiyama H, Ito H (1986) Cytoarchitecture, synaptic organization and fiber connections of the nucleus olfactoretinalis in a teleost Navodon modestus. Brain Res 373:126–138

    CAS  PubMed  Google Scholar 

  • Mazzi V, Franzoni MF, Fasolo A (1978) A golgi study of the hypothalamus of actinopterygii. I. The preoptic area. Cell Tissue Res 186:475–490

    CAS  PubMed  Google Scholar 

  • McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15

    CAS  PubMed  Google Scholar 

  • McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181

    Google Scholar 

  • McCormick CA (1983) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 263:177–185

    Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 341–364

    Google Scholar 

  • McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 323–350

    Google Scholar 

  • McCormick CA, Braford MR Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 733–756

    Google Scholar 

  • McCormick CA, Braford MR Jr (1993) The primary octaval nuclei and inner ear afferent projections in the otophysan Ictalurus punctatus. Brain Behav Evol 42:48–68

    CAS  PubMed  Google Scholar 

  • McCormick CA, Braford MR Jr (1994) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205

    CAS  PubMed  Google Scholar 

  • McCreery DB (1977a) Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; connections from the lateral line nerve and steady state frequency response characteristics. J Comp Physiol 113:317–339

    Google Scholar 

  • McCreery DB (1977b) Special organization of receptive fields of lateral lemniscus neurons of the lateral line lobe of the catfish Ictalurus nebulosus. J Comp Physiol 113:341–353

    Google Scholar 

  • Medina M, le Belle N, Repérant J, Rio J-P, Ward R (1990) An experimental study of the retinal projections of the European eel (Anguilla anguilla) carried out at the catadromic migratory silver stage. J Hirnforsch 31:467–480

    CAS  PubMed  Google Scholar 

  • Medina M, Repérant J, Ward R, Rio J-P, Lemire M (1993) The primary visual system of flatfish: an evolutionary perspective. Anat Embryol (Berl) 187:167–191

    CAS  Google Scholar 

  • Meek J (1978) Myelin-impregnation: an improved Golgi-Cox modification. Stain Technol 53:131–135

    CAS  PubMed  Google Scholar 

  • Meek J (1981a) A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types and synapses. J Comp Neurol 199:149–173

    CAS  PubMed  Google Scholar 

  • Meek J (1981b) A Golgi-electronmicroscopic study of goldfish optic tectum. II. Quantitative aspects of synaptic organization. J Comp Neurol 199:175–190

    CAS  PubMed  Google Scholar 

  • Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res Rev 6:247–297

    Google Scholar 

  • Meek J (1990) Tectal morphology: connections, neurons and synapses. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 239–277

    Google Scholar 

  • Meek J (1992a) Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors in a timing device subserving spatial coding of temporal differences. Neuroscience 48:249–283

    CAS  PubMed  Google Scholar 

  • Meek J (1992b) Comparative aspects of cerebellar organization. From mormyrids to mammals. Eur J Morphol 30:37–51

    CAS  PubMed  Google Scholar 

  • Meek J (1993) Structural organization of the mormyrid electrosensory lateral line lobe. J Comp Physiol [A] 173:675–677

    Google Scholar 

  • Meek J (1994a) Catecholamines in the brains of Osteichthyes (bony fishes). In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 49–76

    Google Scholar 

  • Meek J (1994b) Microcircuitry of the mormyrid electrosensory lateral line lobe. Eur J Morphol 32:279–282

    CAS  PubMed  Google Scholar 

  • Meek J, Grant K (1994) The role of motor command feedback in electrosensory processing. Eur J Morphol 32:225–234

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ (1989) The distribution of serotonin in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:206–224

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ (1993) Tyrosine hydroxylaseimmunoreactive cell groups in the brain of the teleost fish Gnathonemus petersii. J Chem Neuroanat 6:431–446

    CAS  PubMed  Google Scholar 

  • Meek J, Nieuwenhuys R (1991) Palisade pattern of mormyrid Purkinje cells. A correlated light and electron microscopic study. J Comp Neurol 306:156–192

    CAS  PubMed  Google Scholar 

  • Meek J, Schellart NAM (1978) A Golgi study of goldfish optic tectum. J Comp Neurol 182:89–122

    CAS  PubMed  Google Scholar 

  • Meek J, Nieuwenhuys R, Elsevier D (1986a) Afferent and efferent connections of the cerebellar lobe C1 of the mormyrid fish Gnathonemus petersii: an HRP study. J Comp Neurol 245:319–341

    CAS  PubMed  Google Scholar 

  • Meek J, Nieuwenhuys R, Elsevier D (1986b) Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersii: an HRP study. J Comp Neurol 245:342–358

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:362–383

    CAS  PubMed  Google Scholar 

  • Meek J, Hafmans TGM, Maler L, Hawkes R (1992) The distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared with other teleosts. J Comp Neurol 316:17–31

    CAS  PubMed  Google Scholar 

  • Meek J, Joosten HWJ, Hafmans TGM (1993) Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 328:145–160

    CAS  PubMed  Google Scholar 

  • Meijer NW (1975) Cranial motor nerves innervating superficial respiratory muscles in carp (Cyprinus carpio L). Nether J Zool 25:103–113

    Google Scholar 

  • Mendelson B (1986a) Development of reticulospinal neurons of the zebrafish. I. Time of origin. J Comp Neurol 251:160–171

    CAS  PubMed  Google Scholar 

  • Mendelson B (1986b) Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J Comp Neurol 251:172–184

    CAS  PubMed  Google Scholar 

  • Meredith GE (1984) Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): a nonelectroreceptive teleost. J Comp Neurol 288:342–358

    Google Scholar 

  • Meredith GE (1985) The distinctive central utricular projections in the herring. Neurosci Lett 55:191–196

    CAS  PubMed  Google Scholar 

  • Meredith GE (1988) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biol Hung 39:229–249

    CAS  PubMed  Google Scholar 

  • Meredith GE, Butler AB (1983) Organization of eight nerve afferent projections from individual end organs of the inner ear in the teleost, Astronotus ocellatus. J Comp Neurol 220:44–62

    CAS  PubMed  Google Scholar 

  • Meredith GE, Roberts BL (1986) The relationship of saccular efferent neurons to the superior olive in the eel, Anguilla anguilla. Neurosci Lett 68:69–72

    CAS  PubMed  Google Scholar 

  • Meredith GE, Roberts BL (1987) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel. J Comp Neurol 265:494–506

    CAS  PubMed  Google Scholar 

  • Meredith GE, Roberts BL, Maslam S (1987) Distribution of afferent fibers in the brainstem from end organs in the ear and lateral line in the European eel. J Comp Neurol 265:507–520

    CAS  PubMed  Google Scholar 

  • Meszler RM, Pappas GD, Bennett MVL (1974) Morphology of the electromotor system in the spinal cord of the electric eel, Electrophorus electricus. J Neurocytol 3:251–261

    CAS  PubMed  Google Scholar 

  • Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389

    CAS  PubMed  Google Scholar 

  • Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159

    CAS  PubMed  Google Scholar 

  • Metzner W (1993) The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways. J Neurosci 13:1862–1878

    CAS  PubMed  Google Scholar 

  • Metzner W, Heiligenberg W (1991) The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain. J Comp Physiol [A] 169:135–150

    CAS  Google Scholar 

  • Meyer DL (1980) Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods. J Comp Neurol 189:273–289

    CAS  PubMed  Google Scholar 

  • Meyer DL, Brink DL (1988) Locally correlated activity in the goldfish tectum in the absence of optic innervation. Dev Brain Res 41:25–36

    Google Scholar 

  • Meyer DL, Ebbesson SOE (1981) Retinofugal and retinopetal connections in the upside-down catfish (Synodontis nigriventris). Cell Tissue Res 218:389–401

    CAS  PubMed  Google Scholar 

  • Meyer DL, Fiebig E, Ebbesson SOE (1981) A note on the reciprocal connections between the retina and the brain in the puffer fish Tetraodon fluviatilis. Neurosci Lett 23:111–115

    CAS  PubMed  Google Scholar 

  • Meyer DL, Lara J, Malz CR, Graf W (1993) Diencephalic projections to the retinae in two species of flatfishes (Scophthalmus maximus and Pleuronectes platessa). Brain Res 601:308–312

    CAS  PubMed  Google Scholar 

  • Meyer JH (1984) Steroid influences upon the discharge frequencies of intact and isolated pacemakers of weakly electric fish. J Comp Physiol 154:659–668

    CAS  Google Scholar 

  • Meyer JH, Bell CC (1983) Sensory gating by a corollary discharge mechanism. J Comp Physiol 151:401–406

    Google Scholar 

  • Meyer W (1974) Untersuchungen zur Struktur und Histochemie der Rohon-Beard Zellen bei Fischen und Amphibien. Thesis, University of Hannover

    Google Scholar 

  • Meyer W (1977) Some observations on the Rohon-Beard cell perikaryon. Experientia 33:319–321

    CAS  PubMed  Google Scholar 

  • Miguel Hidalgo JJ, Lara J, Alonso JR, Argon J (1986a) Structural organization of the optic tectum of Barbus meridionalis Risso. I. Inner strata (SPV, SAC and SPV). J Hirnforsch 27:19–27

    Google Scholar 

  • Miguel Hidalgo JJ, Lara J, Alonso JR, Argon J (1986b) Structural organization of the optic tectum of Barbus meridionalis Risso. II. Outer strata (SFGS, SO and SM). J Hirnforsch 27:29–36

    CAS  PubMed  Google Scholar 

  • Miguel Hidalgo JJ, Ito H, Lara J (1991) Distribution of calbindin like immunoreactive structures in the optic tectum of normal and eye-enucleated cyprinid fish. Cell Tissue Res 265:511–516

    Google Scholar 

  • Miller KE, Kriebel RM (1985) Electron microscopic identification of mesencephalic neurosecretory cells in teleosts. Cell Tissue Res 242:445–448

    Google Scholar 

  • Miller KE, Kriebel RM (1986a) Cytology of brain stem neurons projecting to the caudal neurosecretory complex: an HRP Electron microscopic study. Brain Res Bull 16:183–188

    CAS  PubMed  Google Scholar 

  • Miller KE, Kriebel RM (1986b) Peptidergic innervation of caudal neurosecretory neurons. Gen Comp Endocrinol 64:396–400

    CAS  PubMed  Google Scholar 

  • Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol [A] 161:417–430

    Google Scholar 

  • Molist P, Maslam S, Velzing E, Roberts BL (1993) The organization of cholinergic neurons in the mesencephalon of the eel, Anguilla anguilla, as determined by choline acetyltransferase immunohistochemistry and acetylcholinesterase enzyme histochemistry. Cell Tissue Res 271:555–566

    Google Scholar 

  • Moller P, Szabo T (1981) Lesions in the nucleus mesencephali exterolateralis: effects in electrocommunication in the mormyrid fish Gnathonemus petersii (Mormyriformes). J Comp Physiol 144:327–333

    Google Scholar 

  • Moons L, Cambré M, Batten TFC, Vandesande F (1989) Autoradiographic localization of binding sites for vasotocin in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 100:11–16

    CAS  PubMed  Google Scholar 

  • Moons L, Batten TFC, Vandesande F (1991) Autoradiographic distribution of galanin binding sites in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 123:49–52

    CAS  PubMed  Google Scholar 

  • Moons L, Batten TFC, Vandesande F (1992) Comparative distribution of substance P (SP) and cholecystokinin (CCK) binding sites and immunoreactivity in the brain of the sea bass (Dicentrarchus labrax). Peptides 13:37–46

    CAS  PubMed  Google Scholar 

  • Morgan GC Jr (1975) The telencephalon of the sea catfish Galeichthys felis. J Hirnforsch 16:131–150

    CAS  PubMed  Google Scholar 

  • Morita Y, Finger TE (1985a) Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 231:547–558

    CAS  PubMed  Google Scholar 

  • Morita Y, Finger TE (1985b) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J Comp Neurol 238:187–201

    CAS  PubMed  Google Scholar 

  • Morita Y, Finger TE (1987a) Area postrema of the goldfish, Carassius auratus: ultrastructure, fiber connections, and immunocytochemistry. J Comp Neurol 256:104–116

    CAS  PubMed  Google Scholar 

  • Morita Y, Finger TE (1987b) Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, Carassius auratus. J Comp Neurol 264:231–249

    CAS  PubMed  Google Scholar 

  • Morita Y, Ito H, Masai H (1980) Central gustatory paths in the crucian carp, Carassius carassius. J Comp Neurol 191:119–132

    CAS  PubMed  Google Scholar 

  • Morita Y, Murakami T, Ito H (1983) Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. J Comp Neurol 218:378–394

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Maler L (1987a) Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1:32–56

    CAS  PubMed  Google Scholar 

  • Mugnaini E, Maler L (1987b) Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol (Berl) 176:313–336

    CAS  Google Scholar 

  • Münz H, Claas B (1981) Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study. Neurosci Lett 22:223–226

    Google Scholar 

  • Münz H, Stumpf WE, Jennes L (1981) LHRH systems in the brain of platyfish. Brain Res 221:1–13

    PubMed  Google Scholar 

  • Münz H, Claas B, Stumpf WE, Jennes L (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Res 222:313–323

    PubMed  Google Scholar 

  • Murakami T, Ito H (1985) Long ascending projections of the spinal dorsal horn in a teleost, Sebastiscus marmoratus. Brain Res 346:168–170

    CAS  PubMed  Google Scholar 

  • Murakami T, Morita Y (1987) Morphology and distribution of the projection neurons in the cerebellum in a teleost: Sebastiscus marmoratus. J Comp Neurol 256:607–623

    CAS  PubMed  Google Scholar 

  • Murakami T, Morita Y, Ito H (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. J Comp Neurol 216:115–131

    CAS  PubMed  Google Scholar 

  • Murakami T, Fukuoka T, Ito H (1986a) Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus. J Comp Neurol 247:383–397

    CAS  PubMed  Google Scholar 

  • Murakami T, Morita Y, Ito H (1986b) Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Res 373:213–221

    CAS  PubMed  Google Scholar 

  • Murakami T, Ito H, Morita Y (1986c) Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis. Brain Res 382:97–103

    CAS  PubMed  Google Scholar 

  • Murray M, Edwards MA (1982) A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush. J Comp Neurol 209:363–373

    CAS  PubMed  Google Scholar 

  • Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230

    CAS  PubMed  Google Scholar 

  • Myers PZ (1985) Spinal motoneurons of the larval zebrafish. J Comp Neurol 236:555–561

    CAS  PubMed  Google Scholar 

  • Myers PZ, Eisen JS, Westerfield M (1986) Development and axonal outgrowth of identified motoneurons in the zebra-fish. J Neurosci 6:2278–2289

    CAS  PubMed  Google Scholar 

  • Nadi S, Maler L (1987) The laminar distribution of amino acids in the caudal cerebellum and electrosensory lateral line lobe of weakly electric fish (Gymnotidae). Brain Res 425:218–224

    CAS  PubMed  Google Scholar 

  • Nagatsu I, Karasawa N, Kawakami Y, Yoohida M (1984) Studies on monoamine-containing neurons by immunoenzyme-histocytochemistry and immunohistocytochemistry with special reference to goldfish brain. Acta Histochem Cytochem 17:151–160

    CAS  Google Scholar 

  • Nakajima Y (1974) Fine structure of the synaptic endings in the Mauthner cell of the goldfish. J Comp Neurol 156:375–402

    Google Scholar 

  • Nakajima Y, Kohno K (1978) Fine structure of the Mauthner cell synaptic topography and comparative study. In: Faber DS, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 133–166

    Google Scholar 

  • Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflugers Arch 406:151–157

    CAS  PubMed  Google Scholar 

  • Nelson GJ (1969) Origin and diversification of teleostean fishes. Ann NY Acad Sci 167:18–30

    Google Scholar 

  • Nelson JS (1984) Fishes of the world. Wiley, New York

    Google Scholar 

  • New JG, Singh S (1994) Central topography of anterior lateral line nerve projections in the Channel catfish, Ictalurus punctatus. Brain Behav Evol 43:34–50

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1962) Trends in the evolution of actinopterygian fishes. J Morphol 111:69–88

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1963) The comparative anatomy of the actinopterygian forebrain. J Hirnforsch 6:171–200

    Google Scholar 

  • Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. Prog Brain Res 11:1–57

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967a) Comparative anatomy of olfactory centers and tracts. Prog Brain Res 23:1–64

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1974) Topological analysis of the brain stem: a general introduction. J Comp Neurol 156:255–276

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1982) An overview of the organization of the brain of actinopterygian fishes. Am Zool 22:287–310

    Google Scholar 

  • Nieuwenhuys R, Bodenheimer TS (1966) The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J Morphol 118:415–450

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Meek J (1985) Constructional principles of the brain stem in amniotes, with emphasis on actinopterygian fishes. Fortschr Zool 30:515–528

    Google Scholar 

  • Nieuwenhuys R, Meek J (1990) The telencephalon of actinopterygian fishes. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 31–73 (Cerebral cortex, vol 8A)

    Google Scholar 

  • Nieuwenhuys R, Nicholson C (1967) The cerebellum of mormyrids. Nature 215:764–765

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R, Nicholson C (1969a) A survey of the general morphology, the fiber connections, and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 107–134

    Google Scholar 

  • Nieuwenhuys R, Nicholson C (1969b) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 135–169

    Google Scholar 

  • Nieuwenhuys R, Pouwels E (1983) The brain stem of actinopterygian fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 25–87

    Google Scholar 

  • Nieuwenhuys R, Verrijdt PWY (1983) Structure and connections of the telencephalon of the teleost fish Xenomystis nigri. II. The area dorsalis. Acta Morphol Neerl Scand 21:330

    Google Scholar 

  • Nieuwenhuys R, Pouwels E, Smulders-Kersten E (1974) The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus petersii (Teleostei). Z Anat Entwickl Gesch 144:315–336

    CAS  Google Scholar 

  • Niida A, Ohno T (1984) An extensive projection of fish dorsolateral tegmental cells to the optic tectum revealed by intra-axonal dye marking. Neurosci Lett 48:261–266

    CAS  PubMed  Google Scholar 

  • Niida A, Oka H, Iwata KS (1980) Visual responses of morphologically identified tectal neurons in the crucian carp. Brain Res 201:361–371

    CAS  PubMed  Google Scholar 

  • Niida A, Ohno T, Iwata KS (1989) Efferent tectal cells of crucian carp: physiology and morphology. Brain Res Bull 22:389–398

    CAS  PubMed  Google Scholar 

  • Nilsson S (1980) Sympathetic nervous control of the iris sphincter of the atlantic cod, Gadus morhua. J Comp Physiol 138:149–155

    Google Scholar 

  • Nissanov J, Eaton RC, DiDomenico R (1990) The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res 517:88–98

    CAS  PubMed  Google Scholar 

  • Noe BD, Milgram SL, Balasubramaniam A, Andrews PC, Calka J, McDonald JK (1989) Localization and characterization of neuropeptide Y-like peptides in the brain and islet organ of the anglerfish (Lophius americanus). Cell Tissue Res 257:303–311

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1982) Localization of neurons afferent to the optic tectum in longnose gars. J Comp Neurol 204:325–335

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1983a) Evolution of the optic tectum in rayfinned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. Univ of Michigan Press, Ann Arbor, pp 1–42

    Google Scholar 

  • Northcutt RG (1983b) Brain stem neurons that project to the spinal cord in garpike (Holostei). Anat Rec 205:144A

    Google Scholar 

  • Northcutt RG, Braford MR Jr (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 41–98

    Google Scholar 

  • Northcutt RG, Braford MR Jr (1984) Some efferent connections of the superficial pretectum in the goldfish. Brain Res 296:181–184

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Butler AB (1976) Retinofugal pathways in the longnose gar Lepisosteus osseus (Linnaeus). J Comp Neurol 166:1–16

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Butler AB (1980) Projections of the optic tectum in the longnose gar, Lepisosteus osseus. Brain Res 190:333–346

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Butler AB (1991) Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Brain Behav Evol 37:333–354

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Butler AB (1993a) The diencephalon and optic tectum of the longnose gar, Lepisosteus osseus (L.): cytoarchitectonics and distribution of acetylcholinesterase. Brain Behav Evol 41:57–81

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Butler AB (1993b) The diencephalon of the pacific herring, Clupea harengus: retinofugal projections to the diencephalon and optic tectum. J Comp Neurol 328:547–561

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Davis RE (1983) Telencephalic organization in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 203–236

    Google Scholar 

  • Northcutt RG, Wullimann MF (1988) The visual system in teleost fishes: morphological patterns and trends. In: Atema J, Fay RR, Poppema AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 515–552

    Google Scholar 

  • Northmore DPM (1984) Visual and saccadic activity in the goldfish torus longitudinalis. J Comp Physiol [A] 155:333–340

    Google Scholar 

  • Northmore DPM (1989a) Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish. I. Early recovery of dimming sensitivity in tectum and torus semicircularis. Neuroscience 32:739–747

    CAS  PubMed  Google Scholar 

  • Northmore DPM (1989b) Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish. II. Delayed recovery of sensitivity to small light flashes. Neuroscience 32:749–757

    CAS  PubMed  Google Scholar 

  • Northmore DPM (1991) Visual responses of nucleus isthmi in a teleost fish (Lepomis macrochirus). Vis Res 31:525–535

    CAS  PubMed  Google Scholar 

  • Northmore DPM, Williams B, Vanegas H (1983) The teleostean torus longitudinalis: responses related to eye movements; visuotopic mapping, and functional relations with the optic tectum. J Comp Physiol [A] 150:39–50

    Google Scholar 

  • O’Brien JP, Kriebel RM (1982) Brain stem innervation of the caudal neurosecretory system. Cell Tissue Res 227:153–160

    PubMed  Google Scholar 

  • Oka S, Chiba A, Honma Y, Iwanaga T, Fujita T (1993) Development of the caudal neurosecretory system of the chum salmon, Oncorhynchus keta, as revealed by immunohistochemistry for urotensins I and II. Cell Tissue Res 272:221–226

    CAS  Google Scholar 

  • Oka Y (1980) The origin of the centrifugal fibers to the olfactory bulb in the goldfish, Carassius auratus: an experimental study using the fluorescent dye primuline as a retrograde tracer. Brain Res 185:215–225

    CAS  PubMed  Google Scholar 

  • Oka Y (1983) Golgi, electron microscopic and combined Golgi-electron microscopic studies of the mitral cells in the goldfish olfactory bulb. Neuroscience 8:723–742

    CAS  PubMed  Google Scholar 

  • Oka Y (1992) Gonadotropin-releasing hormone (GnRH) cells of the terminal nerve as a model neuromodulator system. Neurosci Lett 142:119–122

    CAS  PubMed  Google Scholar 

  • Oka Y, Ichikawa M (1990) Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. J Comp Neurol 300:511–522

    CAS  PubMed  Google Scholar 

  • Oka Y, Ichikawa M (1991) Ultrastructure of the ganglion cells of the terminal nerve in the dwarf gourami (Colisa lalia). J Comp Neurol 304:161–171

    CAS  PubMed  Google Scholar 

  • Oka Y, Ichikawa M (1992) Ultrastructural characterization of gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells in the dwarf gourami. Neurosci Lett 140:200–202

    CAS  PubMed  Google Scholar 

  • Oka Y, Matsushima T (1993) Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. J Neurosci 13:2161–2176

    CAS  PubMed  Google Scholar 

  • Oka Y, Ueda K (1981) Telencephalic afferents in the goldfish: an anterograde degeneration study. Brain Res Bull 7:391–394

    CAS  PubMed  Google Scholar 

  • Oka Y, Ichikawa M, Ueda K (1982) Synaptic organization of the olfactory bulb and central projection of the olfactory tract. In: Hara TJ (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 61–75

    Google Scholar 

  • Oka Y, Satou M, Ueda K (1986a) Descending pathways to the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:91–103

    CAS  PubMed  Google Scholar 

  • Oka Y, Satou M, Ueda K (1986b) Ascending pathways from the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:104–112

    CAS  PubMed  Google Scholar 

  • Oka Y, Munro AD, Lam TJ (1986c) Retinopetal projections from a subpopulation of ganglion cells of the nervus terminalis in the dwarf gourami (Colisa lalia). Brain Res 367:341–345

    CAS  PubMed  Google Scholar 

  • Okawara Y, Ko D, Morley SD, Richter D, Lederis KP (1992) In situ hybridization of corticotropin-releasing factorencoding messenger RNA in the hypothalamus of the white sucker, Catostomus commersoni. Cell Tissue Res 267:545–549

    CAS  PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neurol Visc Relat [Suppl] 9:111–139

    Google Scholar 

  • Olivereau M, Olivereau J (1988) Localization of CRF-like immunoreactivity in the brain and pituitary of teleost fish. Peptides 9:13–21

    CAS  PubMed  Google Scholar 

  • Olivereau M, Olivereau J (1989) Quantitative changes of CRF-like immunoreactivity in eels treated with reserpine and cortisol. Peptides 9:1261–1267

    Google Scholar 

  • Olivereau M, Olivereau J (1990) Corticotropin-like immunoreactivity in the brain and pituitary of three teleost species (goldfish, trout and eel). Cell Tissue Res 262:115–123

    CAS  PubMed  Google Scholar 

  • Olivereau M, Olivereau J (1991) Immunocytochemical localization of a galanin-like peptidergic system in the brain and pituitary of some teleost fish. Histochemistry 96:343–354

    CAS  PubMed  Google Scholar 

  • Olivereau M, Ollevier F, Vandesande F, Verdonck W (1984a) Immunocytochemical identification of CRF-like and SRIF-like peptides in the brain and pituitary of cyprinid fish. Cell Tissue Res 237:379–382

    CAS  PubMed  Google Scholar 

  • Olivereau M, Ollevier F, Vandesande F, Olivereau J (1984b) Somatostatin in the brain and the pituitary of some teleosts. Immunocytochemical identification and the effect of starvation. Cell Tissue Res 238:289–296

    CAS  PubMed  Google Scholar 

  • Olivereau M, Moons L, Olivereau J, Vandesande F (1988) Coexistence of corticotropin-releasing factor-like immunoreactivity and vasotocin in perikarya of the preoptic nucleus in the eel. Gen Comp Endocrinol 70:41–48

    CAS  PubMed  Google Scholar 

  • Olivereau M, Olivereau J, Vandesande F (1990) Localization of growth-hormone-releasing factor-like immunoreactivity in the hypothalamo-hypophysial system of some teleost species. Cell Tissue Res 259:73–80

    CAS  PubMed  Google Scholar 

  • Onishi K (1987) Proposed tertiary olfactory pathways in teleost, Carassius auratus. Zool Sci (Japan) 4:427–431

    Google Scholar 

  • Onstott D, Eide R (1986a) Coexistence of urotensin I, corticotropin releasing factor and urotensin II immunoreactive cells in the caudal neurosecretory system of a teleost and an elasmobranch fish. Gen Comp Endocrinol 63:295–300

    CAS  PubMed  Google Scholar 

  • Onstott D, Elde R (1986b) Immunohistochemical localization of urotensin corticotropin releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of non-teleost fish. J Comp Neurol 249:205–225

    CAS  PubMed  Google Scholar 

  • Östholm T, Ekström P, Ebbesson SOE (1992) Postsmolt change in numbers of acetylcholinesterase-positive cells in the pineal organ of the Pacific coho salmon. Cell Tissue Res 270:281–286

    PubMed  Google Scholar 

  • Overmier JB, Hollis KL (1983) The teleostean telencephalon in learning. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher areas and functions. University of Michigan Press, Ann Arbor, pp 265–284

    Google Scholar 

  • Page CH (1970) Electrophysiological study of auditory responses in the goldfish brain. J Neurophysiol 33:116–28

    CAS  PubMed  Google Scholar 

  • Page CH, Sutterlin AM (1970) Visual-auditory responses in the goldfish tegmentum. J Neurophysiol 33:129–36

    CAS  PubMed  Google Scholar 

  • Parent A (1983) The monoamine-containing neuronal system in the teleostean brain. In: Parent A, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 285–315

    Google Scholar 

  • Parent A, Northcutt RG (1982) The monoamine-containing neurons in the brain of the garfish, Lepisosteus osseus. Brain Res Bull 9:189–204

    CAS  PubMed  Google Scholar 

  • Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 409–439 (Handbook of chemical neuroanatomy, vol 2)

    Google Scholar 

  • Parent A, Dube L, Braford MR Jr, Northcutt RG (1978) The Organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. J Comp Neurol 182:495–516

    CAS  PubMed  Google Scholar 

  • Parkyn DC, Hawryshyn CW (1993) Polarized-light sensitivity in rainbow trout (Oncorhynchus mykiss): characterization from multi-unit responses in the optic nerve. J Comp Physiol [A] 172:493–500

    Google Scholar 

  • Partridge BL, Heiligenberg W, Matusbara J (1981) The neural basis of a sensory filter in the jamming avoidance response: no grandmother cells in sight. J Comp Physiol 145:153–168

    Google Scholar 

  • Pastor AM, Torres B, Delgado-García JM, Baker R (1991) Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. J Neurophysiol 66:2125–2140

    CAS  PubMed  Google Scholar 

  • Paul DH (1982) The cerebellum of fishes: a comparative neurophysiological and neuroanatomical review. Adv Comp Physiol Biochem 8:111–177

    CAS  PubMed  Google Scholar 

  • Paxton JR, Eschmeyer WN (eds) (1995) Encyclopedia of fishes. Academic, San Diego

    Google Scholar 

  • Peruzzo B, Rodríguez S, Dellannoy L, Hein S, Rodríguez EM, Oksche A (1987) Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner’s fiber complex in lamprey larvae (Geotria australis): evidence for a terminal vascular route of the secretory material. Cell Tissue Res 247:367–376

    Google Scholar 

  • Peter RE, Freyer JN (1983) Endocrine functions of the hypothalamus of actinopterygians. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 165–201

    Google Scholar 

  • Peter RE, Gill VE (1975) A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102

    CAS  PubMed  Google Scholar 

  • Peters RC, van Steenderen GW, Kotrschal K (1987) A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus and Ciliata: Teleostei: Gadidae): Electrophysiological evidence. J Mar Biol Ass UK 67:819–823

    Google Scholar 

  • Peyrichoux J, Pierre J, Repérant J, Rio JP (1986) Fine structure of the optic fiber termination layer in the tectum of the teleost Rutilus: a stereological and morphometric study. J Comp Neurol 246:364–381

    CAS  PubMed  Google Scholar 

  • Peyrichoux J, Pierre J, Repérant J, Rio JP, Ward P (1988) A longitudinal study of the effects of retinal ablation on the organization of the retinal target lamina of the optic tectum in the teleost, Rutilus rutilus. Brain Res 447:299–313

    CAS  PubMed  Google Scholar 

  • Phan M, Maler L (1983) Distribution of muscarinic receptors in the caudal cerebellum and electrosensory lateral line lobe of gymnotiform fish. Neurosci Lett 42:137–143

    CAS  PubMed  Google Scholar 

  • Pickavana LC, Staines WA, Fryer JN (1992) Distribution and colocalization of neuropeptide Y and somatostatin in the goldfish brain. J Chem Neuroanat 5:221–233

    Google Scholar 

  • Pinganaud G, Clairambault P (1979) The visual system of the trout Salmo irideus Gibb. A degeneration and radioautographic study. J Hirnforsch 20:413–431

    CAS  PubMed  Google Scholar 

  • Piñuela C, Baatrup E, Geneser TA (1992a) Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhynchus mykiss. I. The telencephalon. Anat Embryol (Berl) 185:379–388

    Google Scholar 

  • Piñuela C, Baatrup E, Geneser TA (1992b) Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhynchus mykiss. II. The diencephalon. Anat Embryol (Berl) 186:275–284

    Google Scholar 

  • Platel R, Ridet J-M, Bauchot R, Diagne M (1977) L’organisation encéphalique chez Amia, Lepisosteus et Polypterus. Morphologie et analyse quantitative comparées. J Hirnforsch 18:69–73

    CAS  PubMed  Google Scholar 

  • Platt C (1983) The peripheral vestibular system in fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 89–124

    Google Scholar 

  • Platt C, Popper AN, Fay RR (1989) The ear as part of the octavolateralis system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 633–651

    Google Scholar 

  • Polenov AL, Belenky MA, Kornienko GG, Konstantinova MS (1984) The hypothalamo-hypophysial system of the wild carp, Cyprinus carpio. I. Structure and ultrastructure of the posterior neurohypophysis. Cell Tissue Res 237:139–147

    CAS  PubMed  Google Scholar 

  • Poli A, Villani L, Migani P, Monarini A, Contestabile A (1984) Evidence for a neurotransmitter role of aspartate and/or glutamate in the projection from the torus longitudinalis to the optic tectum of the goldfish. Neuroscience 12:1157–1165

    CAS  PubMed  Google Scholar 

  • Pontet A, Danger JM, Dubourg P, Pelletier G, Vaudry H, Calas A, Kah O (1989) Distribution and characterization of neuropeptide Y-like immunoreactivity in the brain and pituitary of the goldfish. Cell Tissue Res 255:529–538

    CAS  PubMed  Google Scholar 

  • Popper AN (1983) Organization of the inner ear and auditory processing. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 125–178

    Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41:14–38

    CAS  PubMed  Google Scholar 

  • Pouwels E (1978a) On the development of the cerebellum of the trout Salmo gairdneri. I. Patterns of cell migration. Anat Embryol (Berl) 152:291–308

    CAS  Google Scholar 

  • Pouwels E (1978b) On the development of the cerebellum of the trout Salmo gairdneri. II. Early development. Anat Embryol (Berl) 152:309–324

    CAS  Google Scholar 

  • Pouwels E (1978c) On the development of the cerebellum of the trout, Salmo gairdneri. III. Development of neuronal elements. Anat Embryol (Berl) 153:37–54

    CAS  Google Scholar 

  • Pouwels E (1978d) On the development of the cerebellum of the trout, Salmo gairdneri. IV. Development of the pattern of connectivity. Anat Embryol (Berl) 153:55–65

    CAS  Google Scholar 

  • Pouwels E (1978e) On the development of the cerebellum of the trout, Salmo gairdneri. V. Neuroglial cells and their development. Anat Embryol (Berl) 153:67–83

    CAS  Google Scholar 

  • Prasada Rao PD, Finger TE (1984) Asymmetry of the olfactory system in the brain of the winter flounder, Pseudo-pleuronectes americanus. J Comp Neurol 225:492–510

    CAS  PubMed  Google Scholar 

  • Prasada Rao PD, Kulkarni AP (1991) Retinopetal neuronal systems in the brain of an air-breathing teleost fish: Channa punctata. Cell Tissue Res 263:385–394

    Google Scholar 

  • Prasada Rao PD, Sharma SC (1982) Retinofugal pathways in juvenile and adult channel catfish, Ictalurus (ameiurus) punctatus: an HRP and autoradiographic study. J Comp Neurol 210:37–48

    CAS  PubMed  Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish. J Comp Neurol 265:96–108

    CAS  PubMed  Google Scholar 

  • Prasada Rao PD, Jadhao AG, Sharma SC (1993a) Topographic organization of descending projection neurons to the spinal cord of the goldfish, Carassius auratus. Brain Res 620:211–220

    Google Scholar 

  • Prasada Rao PD, Job TC, Schreibman MP (1993b) Hypophysiotropic Neurons in the hypothalamus of the catfish Clarias batrachus: a cobaltous lysine and HRP study. Brain Behav Evol 42:24–38

    Google Scholar 

  • Presson JC, Fernald RD (1986) Development of the optic tract in the cichlid fish Haplochromis burtoni. Dev Brain Res 26:179–186

    Google Scholar 

  • Pritz-Hohmeier S, Hanisch S, Malz CR, Michel H, Meyer DL, Reichenbach A (1993) Optic tectum in congenitally monophthalmic fishes and chicks. J Hirnforsch 34:407–415

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL (1987) The peripheral distribution and central projections of the sensory rami of the facial nerve in goldfish, Carassius auratus. J Comp Neurol 259:382–293

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in goldfish, Carassius auratus. J Morphol 198:1–10

    Google Scholar 

  • Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131

    CAS  PubMed  Google Scholar 

  • Rama Krishna NS, Subhedar N (1989) Hypothalamic innervation of the pituitary in the catfish, Clarias batrachus (L.): a retrograde horseradish peroxidase study. Neurosci Lett 107:39–44

    CAS  PubMed  Google Scholar 

  • Rama Krishna NS, Subhedar NK (1991) Cytoarchitectonic pattern of the hypothalamus in the catfish, Clarias batrachus (Linn.). J Hirnforsch 3:289–308

    Google Scholar 

  • Rama Krishna NS, Subhedar NK (1992) Distribution of FMRF amide-like immunoreactivity in the forebrain of the catfish, Clarias batrachus (Linn.). Peptides 13:183–191

    Google Scholar 

  • Rama Krishna NS, Subhedar NK, Schreibman MP (1992) FMRF-amide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunohistochemical techniques. Gen Comp Endocrinol 85:111–117

    Google Scholar 

  • Ramón Y Cajal S (1911) Histologie du Systeme nerveux de rhomme et des vertébrés II. Maloine, Paris (reprint CSIC, Madrid, 1955), pp 217–226

    Google Scholar 

  • Raymond PA (1986) Movement of retinal terminals in goldfish optic tectum predicted by analysis of neuronal proliferation. J Neurosci 6:2479–2488

    CAS  PubMed  Google Scholar 

  • Raymond PA, Easter SS Jr (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 5:1077–1091

    Google Scholar 

  • Raymond PA, Easter SS Jr, Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 5:1092–1099

    Google Scholar 

  • Reaves TA, Hayward JN (1979) Isotocinergic neurons in the goldfish hypothalamus: physiological and morphological studies on chemically identified cells. Cell Tissue Res 202:17–23

    PubMed  Google Scholar 

  • Reaves TA Jr, Hayward JN (1980) Functional and morphological studies of peptide-containing neuroendocrine cells in goldfish hypothalamus. J Comp Neurol 193:777–788

    PubMed  Google Scholar 

  • Reichenbach A, Schaaf P, Schneider H (1990) Primary neurulation in teleosts. Evidence for epithelial genesis of central nervous tissue as in other vertebrates. J Hirnforsch 31:152–158

    Google Scholar 

  • Resink JW, Voorthuis PK, van de Hurk R, Vullings HGB, van Oordt PGWJ (1989) Pheromone detection and olfactory pathways in the brain of the female African catfish, Clarias gariepinus. Cell Tissue Res 256:337–345

    Google Scholar 

  • Réthelyi M, Szabo T (1973a) A particular nucleus in the mesencephalon of a weakly electric fish, Gymnotus carapo, Gymnotidae. I. Light microscopic observations. Exp Brain Res 17:229–241

    PubMed  Google Scholar 

  • Réthelyi M, Szabo T (1973b) Neurohistological analysis of the lateral line lobe in a weakly electric fish, Gymnotus carapo (Gymnotidae, Pisces). Exp Brain Res 18:323–339

    PubMed  Google Scholar 

  • Rhodes KJ, Zottoli SJ, Mufson EJ (1986) Choline acetyltransferase immunohistochemical staining in the goldfish (Carassius auratus) brain: evidence that the Mauthner cell does not contain choline acetyltransferase. Brain Res 381:215–224

    CAS  PubMed  Google Scholar 

  • Riddle DR, Oakley B (1991) Evaluation of the organization of the primary olfactory projection in rainbow trout. J Neurosci 11:3752–3762

    CAS  PubMed  Google Scholar 

  • Riddle DR, Oakley B (1992) Immunocytochemical identification of primary olfactory afferents in rainbow trout. J Comp Neurol 324:575–589

    CAS  PubMed  Google Scholar 

  • Ridet J-M, Bauchot R (1990a) Analyse quantitative de l’encéphale des téléostéens: caracteres évolutifs et adaptatifs de Pencéphalisation. I. Généralités et analyse globale. J Hirnforsch 31:51–63

    CAS  PubMed  Google Scholar 

  • Ridet J-M, Bauchot R (1990b) Analyse quantitative del’ encéphale des téléostéens: caracteres évolutifs et adaptatifs de l’encéphalisation. II. Les grandes subdivisions encéphali-ques. J Hirnforsch 31:433–458

    CAS  PubMed  Google Scholar 

  • Ridet J-M, Bauchot R (1991) Analyse quantitative de l’encéphale des téléostéens: caracteres évolutifs et adaptatifs del’encéphalisation. III. Analyse multivariée des indices encé-phaliques. J Hirnforsch 32:439–449

    CAS  PubMed  Google Scholar 

  • Roberts BL (1992) Neural mechanisms underlying escape behaviour in fishes. Rev Fish Biol Fish 2:243–266

    Google Scholar 

  • Roberts BA, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 445–459

    Google Scholar 

  • Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol (Berl) 180:401–412

    CAS  Google Scholar 

  • Roberts BL, van Rossum A, de Jager S (1992) The influence of cerebellar lesions on the swimming performance of the trout. J Exp Biol 167:171–178

    CAS  PubMed  Google Scholar 

  • Robertson JD, Bodenheimer TS, Stage DE (1963) The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J Cell Biol 19:159–199

    CAS  PubMed  Google Scholar 

  • Rodriguez S, Rodriguez PA, Banse C, Rodriguez EM, Oksche A (1987) Reissner’s fiber, massa caudalis, and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis) light microscopic immunocytochemical and lectinhistochemical studies. Cell Tissue Res 247:359–366

    Google Scholar 

  • Rome LC, Swank D, Corda D (1993) How fish power swimming. Science 261:340–343

    CAS  PubMed  Google Scholar 

  • Romeskie M, Sharma SC (1979) The goldfish optic tectum: a Golgi study. Neuroscience 4:625–642

    CAS  PubMed  Google Scholar 

  • Rooney D, Szabo T (1991) Reciprocal connections between the ‘nucleus rotundus’ and the dorsal lateral telencephalon in the weakly electric fish Gnathonemus petersii. Brain Res 543:153–156

    CAS  PubMed  Google Scholar 

  • Rooney D, New JG, Szabo T, Ravaille-Veron M (1989) Central connections of the olfactory bulb in the weakly electric fish Gnathonemus petersii. Cell Tissue Res 257:423–436

    Google Scholar 

  • Rooney D, Døving KB, Ravaille-Veron M, Szabo T (1992) The central connections of the olfactory bulbs in cod, Gadus morhua L. J Hirnforsch 33:63–75

    CAS  PubMed  Google Scholar 

  • Rose GJ, Call SJ (1992) Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia. J Comp Physiol [A] 170:253–261

    CAS  Google Scholar 

  • Rose GJ, Call SJ (1993) Temporal filtering properties of midbrain neurons in an electric fish: implications for the function of dendritic spines. J Neurosci 13:1178–1189

    CAS  PubMed  Google Scholar 

  • Rose GJ, Carfield JG (1991) Discrimination of the sign of frequency differences by Sternopygus, an electric fish without a jamming avoidance response. J Comp Physiol [A] 168:461–467

    Google Scholar 

  • Rose GJ, Heiligenberg W (1985) Structure and function of electrosensory neurons in the torus semicircularis of Eigenmannia: morphological correlates phase and amplitude sensitivity. J Neurosci 8:2269–2280

    Google Scholar 

  • Rose GJ, Heiligenberg W (1986a) Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane. J Comp Physiol [A] 158:613–620

    CAS  Google Scholar 

  • Rose GJ, Heiligenberg W (1986b) Limits of phase and amplitude sensitivity in the torus semicircularis of Eigenmannia. J Comp Physiol [A] 159:813–822

    CAS  Google Scholar 

  • Rose GJ, Keller C, Heiligenberg W (1987) ‘Ancestral’ neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response. J Comp Physiol [A] 160:491–500

    CAS  Google Scholar 

  • Rose GJ, Kawasaki M, Heiligenberg W (1988) ‘Recognition units’ at the top of a neuronal hierarchy? Prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously. J Comp Physiol [A] 162:759–772

    CAS  Google Scholar 

  • Ross LS, Parrett T, Easter SS Jr (1992) Axonogenesis and morphogenesis in the embryonic zebrafish brain. J Neurosci 12:467–482

    CAS  PubMed  Google Scholar 

  • Rowe JS, Beauchamp RD (1982) Visual responses of nucleus corticalis neurons in the perciform teleost, northern rock bass (Ambloplites rupestris rupestris). Brain Res 236:205–209

    CAS  PubMed  Google Scholar 

  • Rusoff AC (1984) Paths of axons on the visual system of perciform fish and implications of these paths for rules governing axonal growth. J Neurosci 4:1414–1428

    CAS  PubMed  Google Scholar 

  • Rusoff AC, Easter SS Jr (1980) Order in the optic nerve of goldfish. Science 208:311–312

    CAS  PubMed  Google Scholar 

  • Rusoff AC, Hapner SJ (1990a) Organization of retinopetal axons in the optic nerve of the cichlid fish, Herotilapia multispinosa. J Comp Neurol 294:418–430

    CAS  PubMed  Google Scholar 

  • Rusoff AC, Hapner SJ (1990b) Development of retinopetal projections in the cichlid fish, Herotilapia multispinosa. J Comp Neurol 294:431–442

    CAS  PubMed  Google Scholar 

  • Russell CJ, Bell CC (1978) Neuronal responses to electrosensory input in mormyrid valvula cerebelli. J Neurophysiol 41:1495–1510

    CAS  PubMed  Google Scholar 

  • Saidel WM (1988) How to be unseen: an essay in obscurity. In: Atema J, Fay RR, Popper AH, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 487–513

    Google Scholar 

  • Saidel WM, Buttler AB (1991) Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). II. Differential projections of the dorsal and ventral hemiretinas. Brain Behav Evol 38:154–168

    CAS  PubMed  Google Scholar 

  • Sajovic P, Levinthal C (1982a) Visual cells of zebrafish optic tectum: mapping with small spots. Neuroscience 7:2407–2426

    CAS  PubMed  Google Scholar 

  • Sajovic P, Levinthal C (1982b) Visual response properties of zebrafish tectal cells. Neuroscience 7:2427–2440

    CAS  PubMed  Google Scholar 

  • Sajovic P, Levinthal C (1983) Inhibitory mechanism in zebrafish optic tectum: visual response properties of tectal cells altered by picrotoxin and bicuculline. Brain Res 271:227–240

    CAS  PubMed  Google Scholar 

  • Sakamoto N, Ito H (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. J Comp Neurol 205:291–298

    CAS  PubMed  Google Scholar 

  • Sakamoto N, Ito H, Ueda S (1981) Topographic projections between the nucleus isthmi and the optic tectum in a teleost, Navodon modestus. Brain Res 224:225–234

    CAS  PubMed  Google Scholar 

  • Sandri C, Akert K, Kristol C, van Buren JM, Bennett MVL (1976) AChE-positive and-negative motoneurones in the spinal cord of Sternarchus albifrons. Brain Res 111:157–161

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L (1983) The nucleus praeeminentialis: a Golgi study of a feedback center in the electrosensory system of gymnotid fish. J Comp Neurol 221:127–144

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L (1986a) The optic tectum of gymnotiform teleosts Eigenmannia virescens and Apteronotus leptorhynchus: a Golgi study. Neuroscience 18:215–246

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L (1986b) Retinofugal projections in a weakly electric gymnotid fish (Apteronotus leptorhynchus). Neuroscience 18:247–259

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L (1986c) Identification of a nucleus isthmi in the weakly electric fish Apteronotus leptorhynchus (Gymnotidae). Brain Behav Evol 28:170–185

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L (1987) The organization of afferent input to the caudal lobe of the cerebellum of gymnotid fish Apteronotus leptorhynchus. Anat Embryol (Berl) 177:35–79

    Google Scholar 

  • Sas E, Maler L (1991) Somatostatin-like immunoreactivity in the brain of an electric fish (Apteronotus leptorhynchus) identified with monoclonal antibodies. J Chem Neuroanat 4:155–186

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L, Tinner B (1990) Catecholaminergic systems in the brain of a gymnotiform teleost fish: an immunohistochemical study. J Comp Neurol 292:127–162

    CAS  PubMed  Google Scholar 

  • Sas E, Maler L, Weld M (1993) Connections of the olfactory bulb in the gymnotiform fish Apteronotus leptorhynchus. J Comp Neurol 335:486–507

    CAS  PubMed  Google Scholar 

  • Satou M (1990) Synaptic organization, local neuronal circuitry, and functional segregation of the teleost olfactory bulb. Prog Neurobiol 34:115–142

    CAS  PubMed  Google Scholar 

  • Satou M (1992) Synaptic organization of the olfactory bulb and its central projection. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 40–59

    Google Scholar 

  • Satou M, Fujita I, Ichikawa M, Yamaguchi K, Ueda K (1983) Field potential and intracellular potential studies of the olfactory bulb in the carp: evidence for a functional separation of the olfactory bulb into lateral and medial subdivisions. J Comp Physiol 152A:319–333

    Google Scholar 

  • Saunders J, Bastian J (1984) The physiology and morphology of two types of electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol 154:199–209

    Google Scholar 

  • Schäfer H, Schulz R, Blüm V (1989) Immunoreactivity to gonadotropin-releasing hormone and gonadotrophic hormone in the brain and pituitary of the rainbow trout Salmo gairdneri. Cell Tissue Res 257:227–235

    PubMed  Google Scholar 

  • Scheich H, Ebbesson SOE (1981) Inputs to the torus semicircularis in the electric fish Eigenmannia virescens. A horseradish peroxidase study. Cell Tissue Res 215:531–536

    CAS  PubMed  Google Scholar 

  • Schellart NAM (1983) Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 42:39–44

    CAS  PubMed  Google Scholar 

  • Schellart NAM, Kamermans M, Nederstigt LJA (1987) An electrophysiological study of the topographical organization of the multisensory torus semicircularis of the rainbow trout. Comp Biochem Physiol 88A:461–469

    Google Scholar 

  • Schellart NAM, Prins M, Kroese ABA (1992) The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain Behav Evol 39:371–380

    CAS  PubMed  Google Scholar 

  • Schikorski T, Braun N, Zimmermann H (1992) Cytoarchitectural organization of the electromotor system in the electric catfish (Malapterurus electricus). Cell Tissue Res 269:481–493

    Google Scholar 

  • Schikorski T, Braun N, Zimmermann H (1994a) Immunocytochemical characterization of the synaptic innervation of a single spinal neuron, the electric catfish electromotoneuron. J Comp Neurol 343:647–657

    CAS  PubMed  Google Scholar 

  • Schikorski T, Braun N, Zimmermann H (1994b) Projection of brain stem neurons to the giant electromotoneurons in the cervical spinal cord of the electric catfish Malapterurus electricus. Brain Behav Evol 43:306–318

    CAS  PubMed  Google Scholar 

  • Schlussman SD, Kobylack MA, Dunn-Meynell AA, Sharma SC (1990) Afferent connections of the optic tectum in channel catfish Ictalurus punctatus. Cell Tissue Res 262:531–541

    CAS  PubMed  Google Scholar 

  • Schmidt JT (1979) The laminar organization of optic nerve fibres in the tectum of goldfish. Proc R Soc Lond B 205:287–306

    CAS  PubMed  Google Scholar 

  • Schnitzlein HN (1968) Introductory remarks on the telencephalon of fish. In: Ingle D (ed) The central nervous system and fish behavior. University of Chicago Press, Chicago, pp 97–100

    Google Scholar 

  • Schnitzlein HN, Brown HK (1975) Spinal motoneurons of the goldfish (Carassius auratus). Brain Behav Evol 12:207–228

    CAS  PubMed  Google Scholar 

  • Schober A, Malz CR, Meyer DL (1993) Enzymehistochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mykiss). Neurosci Lett 151:67–70

    CAS  PubMed  Google Scholar 

  • Scholes JH (1979) Nerve fibre topography in the retinal projection to the tectum. Nature 278:620–624

    CAS  PubMed  Google Scholar 

  • Scholes JH (1991) The design of the optic nerve in fish. Vis Neurosci 7:129–139

    CAS  PubMed  Google Scholar 

  • Schroeder DM, Vanegas H (1977) Cy to architecture of the tectum mesencephali in two types of siluroid teleosts. J Comp Neurol 175:287–300

    CAS  PubMed  Google Scholar 

  • Schroeder DM, Vanegas H, Ebbesson SOE (1980) Cytoarchitecture of the optic tectum of the squirrelfish, Holocentrus. J Comp Neurol 191:337–351

    CAS  PubMed  Google Scholar 

  • Schuster T (1973) Elektronenmikroskopische Untersuchungen am Nc. n. oculomotorii von Salmo irideus (Gibbons 1855). Z Mikrosk Anat Forsch 87:730–764

    CAS  PubMed  Google Scholar 

  • Schuster T (1974) Elektronenmikroskopische Untersuchung von Synapsen-Typen im Nc. n. oculomotorii von Salmo irideus. Z Mikrosk Anat Forsch 88:497–510

    CAS  PubMed  Google Scholar 

  • Schuster T, Schwartz A (1984) Teleost Mauthner cap cells: intimate contact by gap junctions. J Hirnforsch 25:331–341

    CAS  PubMed  Google Scholar 

  • Sester U, Probst W, Rahmann H (1984) Einfluss unterschiedlicher Akklimationtemperaturen auf die Ultrastruktur neuronaler Synapsen von Buntbarschen (Tilapia mariae; Cichlidae, Teleostei). J Hirnforsch 6:701–711

    Google Scholar 

  • Sharma SC, Romeskie M (1984) Plasticity of retino-tectal connections in teleosts. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 163–184

    Google Scholar 

  • Sharma SC, Dunn-Meynell AA, Kobylack MA (1985) A note on a tectal neuron projecting via the tectobulbar tract in teleosts. Neurosci Lett 59:265–270

    CAS  PubMed  Google Scholar 

  • Sharma SC, Berthoud VM, Breckwoldt R (1989) Distribution of substance P-like immunoreactivity in the goldfish brain. J Comp Neurol 279:104–116

    CAS  PubMed  Google Scholar 

  • Sharma SC, Jadhao AG, Prasada Rao PD (1993) Regeneration of supraspinal projection neurons in the adult goldfish. Brain Res 620:221–228

    CAS  PubMed  Google Scholar 

  • Sheldon RE, Brookover C (1909) The nervus terminalis in teleosts. Anat REc 3:257–259

    Google Scholar 

  • Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1985a) Efferents from the supracommissural ventral telencephalon in the hime salmon (landlocked red salmon, Oncorhynchus nerka): an anterograde degeneration study. Brain Res Bull 14:55–61

    CAS  PubMed  Google Scholar 

  • Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1985b) A HRP study of afferent connections of the supracommissural ventral telencephalon and the medial preoptic area in Himé salmon (landlocked red salmon, Oncorhynchus nerka). Brain Res 364:162–177

    Google Scholar 

  • Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1989) Neuronal organization of the supracommissural ventral telencephalon and the nucleus preopticus periventricularis in the Himé salmon (landlocked red salmon, Oncorhynchus nerka): a Golgi study. J Hirnforsch 30:153–161

    CAS  PubMed  Google Scholar 

  • Shumway CA (1989a) Multiple electrosensory maps in the medulla of weakly electric fish. I. Physiological differences. J Neurosci 9:4388–4399

    CAS  PubMed  Google Scholar 

  • Shumway CA (1989b) Multiple electrosensory maps in the medulla of weakly electric fish. II. Anatomical differences. J Neurosci 9:4400–4415

    CAS  PubMed  Google Scholar 

  • Shumway CA, Maler L (1989) GABAergic inhibition shapes temporal and spatial response properties of pyramidal cells in the electrosensory lateral line lobe of gymnotiform fish. J Comp Physiol [A] 164:391–407

    CAS  Google Scholar 

  • Sibbing FA (1984) Food handling and mastication in the carp (Gyprinus carpis). PhD thesis, Wageningen, Netherlands

    Google Scholar 

  • Silver WL, Finger TE (1984) Electrophysiological examination of the chemoreceptors on the free rays of the sea robin, Prionotus carolinus. J Comp Physiol 154:167–174

    Google Scholar 

  • Skeen IC, Northmore DPM (1984) Patterns of deoxyglucose and glucose labeling in the optic tectum of monocularly stimulated bass. Neurosci Lett 52:191–197

    CAS  PubMed  Google Scholar 

  • Sligar CM, Voneida TJ (1976) Tectal efferents in the blind cave fish, Astyanax hubbsi. J Comp Neurol 165:107–124

    CAS  PubMed  Google Scholar 

  • Snow JL, Rylander MK (1982) A quantitative study of the optic system of butterfly fishes (Fam. Chaetodontodae). J Hirnforsch 23:121–125

    CAS  PubMed  Google Scholar 

  • Somogyi P, Eshhar N, Teichberg VI, Roberts JDB (1990) Subcellular localization of a putative kainate receptor in Bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex. Neuroscience 35:9–30

    CAS  PubMed  Google Scholar 

  • Song J, Northcutt RG (1991a) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37

    CAS  PubMed  Google Scholar 

  • Song J, Northcutt RG (1991b) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63

    CAS  PubMed  Google Scholar 

  • Sorensen PW, Hara TJ, Stacey NE (1991) Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res 558:343–347

    CAS  PubMed  Google Scholar 

  • Sotelo C, Rethelyi M, Szabo T (1975) Morphological correlates of electrotonic coupling in the magnocellular mesencephalic nucleus of the weakly electric fish Gymnotus carapo. J Neurocytol 4:587–607

    CAS  PubMed  Google Scholar 

  • Springer AD (1983) Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. J Comp Neurol 214:404–415

    Google Scholar 

  • Springer AD, Gaffney JS (1981) Retinal projections in the goldfish: a study using cobaltous-lysine. J Comp Neurol 203:401–424

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1983) Dorsotemporal retinal ganglion cell axons of goldfish are located in the dorsal rather than ventral optic tract. Brain Res 273:152–155

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1984) Selective innervation of the goldfish suprachiasmatic nucleus by ventral retinal ganglion cell axons. Brain Res 323:293–296

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1985a) Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus. J Comp Neurol 236:179–196

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1985b) Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: a colbaltous-lysine study. J Comp Neurol 237:239–250

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1986a) Retinotopic and chronotopic organization of goldfish retinal ganglion cell axons throughout the optic nerve. J Comp Neurol 247:221–232

    CAS  PubMed  Google Scholar 

  • Springer AD, Mednick AS (1986b) Simple and complex retinal ganglion cell axonal rearrangements at the optic chi-asm. J Comp Neurol 247:233–245

    CAS  PubMed  Google Scholar 

  • Stefanelli A, Camposano A (1946/1947) I centri tegmentali dell’Anguilla e le relazioni degli elementi giganti del tegmento dei Ciclostomi, dei Pesci e degli Anfibi; ricerche sul sistema mauthneriano. Pubbl Staz Zool Napoli 20:1–27

    Google Scholar 

  • Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardio-cxcitatory peptide immunoreactive olfactoretinal pathway. Proc Natl Acad Sci USA 81:940–944

    CAS  PubMed  Google Scholar 

  • Stell WK, Walker SE, Ball AK (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Ann NY Acad Sci 519:80–96

    CAS  PubMed  Google Scholar 

  • Stendell W (1914) Die Faseranatomie des Mormyridengehirns. Abh Senckenb Naturforsch Ges 36:3–40

    Google Scholar 

  • Sterling P (1977) Anatomy and physiology of goldfish oculomotor system. I. Structure of abducens nucleus. J Neurophysiol 40:557–572

    CAS  PubMed  Google Scholar 

  • Stevenson JA, Yoon MG (1981) Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1:862–875

    CAS  PubMed  Google Scholar 

  • Stevenson JA, Yoon MG (1982) Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J Comp Neurol 205:128–138

    CAS  PubMed  Google Scholar 

  • Streit P, van Buren JM, Sandri C, Akert K, Bennett MVL (1978) Differential HRP labeling of motoneurons and electromotor neurons in the spinal cord of the gymnotid Ster-narchus albifrons. Brain Res 142:559–565

    CAS  PubMed  Google Scholar 

  • Striedter GF (1990a) The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. Brain Behav Evol 36:329–354

    CAS  PubMed  Google Scholar 

  • Striedter GF (1990b) The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar and telencephalic connections. Brain Behav Evol 36:355–377

    CAS  PubMed  Google Scholar 

  • Striedter GF (1991) Auditory, electrosensory and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312:311–331

    CAS  PubMed  Google Scholar 

  • Striedter GF (1992) Phylogenetic changes in the connections of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain Behav Evol 39:329–357

    CAS  PubMed  Google Scholar 

  • Striedter GF, Northcutt RG (1989) Two distinct visual pathways through the superficial pretectum in a percomorph teleost. J Comp Neurol 283:342–354

    CAS  PubMed  Google Scholar 

  • Stroh T, Zupanc GKH (1993) Identification and localization of somatostatin-like immunoreactivity in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 160:145–148

    CAS  PubMed  Google Scholar 

  • Studnicka FK (1896) Beiträge zur Anatomie und Entwicklungsgeschichte des Vorderhirns der Cranioten. SB Akad Böhm Wiss Math. nat. Kl, pt 2

    Google Scholar 

  • Stuermer CAO (1984) Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole mount study. J Comp Neurol 229:214–232

    CAS  PubMed  Google Scholar 

  • Stuermer CAO (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J Neurosci 8:4513–4530

    CAS  PubMed  Google Scholar 

  • Stuermer CAO, Easter SS Jr (1984) A comparison of the normal and regenerated retinotectal pathways of goldfish. J Comp Neurol 223:57–76

    CAS  PubMed  Google Scholar 

  • Stuermer CAO, Raymond PA (1989) Developing retinotectal projection in larval goldfish. J Comp Neurol 281:630–640

    CAS  PubMed  Google Scholar 

  • Subhedar N, Rama Krishna NS, Prasada Rao PD (1990) The intrinsic organization of the nucleus preopticus in the catfish, Clarias batrachus. J Hirnforsch 31:25–40

    CAS  PubMed  Google Scholar 

  • Szabo T (1983) Cerebellar pathways in the brain of the mormyrid teleost fish. Acta Morphol Hung 31:219–234

    CAS  PubMed  Google Scholar 

  • Szabo T, Enger PS (1964) Pacemaker activity of the medullary nucleus controlling electric organs in high frequency gymnotid fish. Z Vgl Physiol 49:285–300

    Google Scholar 

  • Szabo T, Libouban S (1979) On the course and origin of cranial nerves in the teleost fish Gnathonemus determined by ortho-and retrograde horseradish peroxidase axonal transport. Neurosci Lett 11:265–270

    CAS  PubMed  Google Scholar 

  • Szabo T, Sakata H, Ravaille M (1975) An electronically coupled pathway in the central nervous system of some teleost fish Gymnotidae and Mormyridae. Brain Res 95:459–474

    CAS  PubMed  Google Scholar 

  • Szabo T, Libouban S, Haugedé-Carré F (1979) Convergence of common and specific sensory afferents to the cerebellar auricle (auricula cerebelli) in the teleost fish Gnathonemus demonstrated by HRP method. Brain Res 168:619–622

    CAS  PubMed  Google Scholar 

  • Szabo T, Ravaille M, Libouban S, Enger PS (1983) The mormyrid rhombencephalon. I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labeling. Brain Res 266:1–19

    CAS  PubMed  Google Scholar 

  • Szabo T, Lazar G, Libouban S, Toth P, Ravaille M (1987) Oculomotor system of the weakly electric fish Gnathonemus petersii. J Comp Neurol 264:480–493

    CAS  PubMed  Google Scholar 

  • Szabo T, Heiligenberg W, Ravaille-Veron M (1989) HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus. J Comp Neurol 284:169–173

    CAS  PubMed  Google Scholar 

  • Szabo T, Libouban S, Denizot J-P (1990) A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immunohistochemical study. Arch Ital Biol 128:229–247

    CAS  PubMed  Google Scholar 

  • Szabo T, Libouban S, Ravaille-Veron M (1991) Fibres longues ascendantes dans les colonnes dorsals d’n poisson téléostéen: une voie disynaptique reliant des organes sensoriels au cervelet. C R Acad Sci [Paris] 313 (III):413–420

    CAS  Google Scholar 

  • Tapp RL (1974) Axon numbers and distribution, myelin thickness, and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugerres plumieri. J Comp Neurol 153:267–274

    CAS  PubMed  Google Scholar 

  • Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, New York, pp 135–205

    Google Scholar 

  • Thommesen G (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta Physiol Scand 117:241–250

    CAS  PubMed  Google Scholar 

  • Tohyama M, Shiosaka S, Takagi H, Inagaki S, Takatsuki K, Sakanaka M, Senba E, Kawai Y, Minagawa H (1981) Somatostatin-like immunoreactivity in the facial, glossopharyngeal and vagal lobes of the carp. Neurosci Lett 24:233–236

    CAS  PubMed  Google Scholar 

  • Tokunaga A, Akert K, Sandri C, Bennett MVL (1980) Cell types and synaptic organization of the medullary electromotor nucleus in a constant frequency weakly electric fish, Sternarchus albifrons. J Comp Neurol 192:407–426

    CAS  PubMed  Google Scholar 

  • Tong C-K, Pan M-P, Chang Y-C (1992) Characterization of L-glutamate and kainate binding sites in the brain of a freshwater fish, Telapilia monsanbica. Neuroscience 49:237–246

    CAS  PubMed  Google Scholar 

  • Tong S-L (1982) The nucleus praeeminentialis: an electro-and mechanoreceptive center in the brain stem of the catfish. J Comp Physiol 145:299–309

    Google Scholar 

  • Tong S-L, Bullock TH (1982) Electroreceptive representation and its dynamics in the cerebellum of the catfish, Ictalurus nebulosus (Ictaluridae, Siluriformes). J Comp Physiol 145:289–298

    Google Scholar 

  • Tong S-L, Finger TE (1983) Central organization of the electrosensory lateral line system in bullhead catfish Ictalurus nebulosus. J Comp Neurol 217:1–16

    CAS  PubMed  Google Scholar 

  • Torres B, Pastor AM, Cabrera B, Salas C, Delgado-García JM (1992) Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase. J Comp Neurol 324:449–461

    CAS  PubMed  Google Scholar 

  • Tricas TC, Highstein SM (1990) Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Exp Brain Res 83:233–236

    CAS  PubMed  Google Scholar 

  • Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol [A] 169:25–37

    CAS  Google Scholar 

  • Triller A, Korn H (1981) Morphologically distinct classes of inhibitory synapses arise from the same neurons: ultra-structural identification from crossed vestibular interneurons intracellularly stained with HRP. J Comp Neurol 203:131–155

    CAS  PubMed  Google Scholar 

  • Trujillo-Cenóz O, Bertolotto C (1990) Mauthner cells in the medulla of the weakly electric fish Gymnotus carapo. Experientia 46:441–443

    Google Scholar 

  • Tsuji S (1975) Histochemical demonstration of ace-tylcholinesterase-rich cells in spinal electromotor nucleus of Electrophorus electricus. Brain Res 88:499–501

    CAS  PubMed  Google Scholar 

  • Tumosa D, Stell WK, Johnson CD, Epstein ML (1986) Putative cholinergic interneurons in the optic tectum of goldfish. Brain Res 370:365–369

    CAS  PubMed  Google Scholar 

  • Tuttle R, Masuko S, Nakajima Y (1987) Small vesicle bouton synapses on the distal half of the lateral dendrite of the goldfish Mauthner cell: Freeze-fracture and thin section study. J Comp Neurol 265:254–274

    CAS  PubMed  Google Scholar 

  • Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Vis Neurosci 3:183–206

    CAS  PubMed  Google Scholar 

  • Uchiyama H (1990) Immunohistochemical subpopulations of retinopetal neurons in the nucleus olfactoretinalis in a teleost, the whitespotted greenling (Hexagrammos stellen). J Comp Neurol 293:34–62

    Google Scholar 

  • Uchiyama H, Ito H (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei). Brain Res 298:11–24

    CAS  PubMed  Google Scholar 

  • Uchiyama H, Sakamoto N, Ito H (1981) A retinopetal nucleus in the preoptic area in a teleost, Navodon modestus. Brain Res 222:119–124

    CAS  PubMed  Google Scholar 

  • Uchiyama H, Ito H, Nakamura S (1985) Electrophysiological evidence for tectal efferents to the neurons projecting to the retina in a teleost fish. Exp Brain Res 57:408–410

    CAS  PubMed  Google Scholar 

  • Uchiyama H, Matsutani S, Ito H (1986) Tectal projection neurons to the retinopetal nucleus in the filefish. Brain Res 369:260–266

    CAS  PubMed  Google Scholar 

  • Uchiyama H, Matsutani S, Ito H (1988) Pretectum and accessory optic systems in the filefish Navodon modestus (Ballistidae, Teleostei) with special reference to visual projections to the cerebellum and oculomotor nuclei. Brain BehavEvol 31:170–180

    CAS  Google Scholar 

  • Uehara M, Ueshima T (1986) Morphological studies of the spinal cord in tetraodontiformes fishes. J Morphol 190:325–333

    CAS  PubMed  Google Scholar 

  • Uematsu K, Shirasaki M, Storm-Mathisen J (1993) GABA-and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio. J Comp Neurol 332:59–68

    CAS  PubMed  Google Scholar 

  • Vallarino M (1985) Occurrence of β-endorphin-like immuno-reactivity in the brain of the teleost, Boops boops. Gen Comp Endocrinol 60:63–69

    CAS  PubMed  Google Scholar 

  • Van Asselt E, de Graaf F, Smit-Onel MJ, van Raamsdonk W (1991) Spinal neurons in the zebrafish labeled with fluorogold and wheat-germ agglutinin. Neuroscience 43:611–622

    PubMed  Google Scholar 

  • Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982) The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol 212:146–157

    PubMed  Google Scholar 

  • Van Raamsdonk W, Mos W, Smit-Onel MJ, van der Laarse WJ, Fehres R (1983) The development of the spinal motor column in relation to the myotomal muscle fibers in the zebrafish (Brachydanio rerio). Anat Embryol (Berl) 169:125–139

    Google Scholar 

  • Vanegas H, Ebbesson SOE (1976) Telencephalic projections in two teleost species. J Comp Neurol 165:181–196

    CAS  PubMed  Google Scholar 

  • Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137

    Google Scholar 

  • Vanegas H, Laufer M, Amat J (1974) The optic tectum of a perciform teleost. I. General configuration and cytoarchitecture. J Comp Neurol 154:43–60

    CAS  PubMed  Google Scholar 

  • Vanegas H, Williams B, Freeman JA (1979) Responses to stimulation of marginal fibers in the teleostean optic tectum. Exp Brain Res 34:335–349

    CAS  PubMed  Google Scholar 

  • Vanegas H, Ebbesson SOE, Laufer M (1984a) Morphological aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 93–120

    Google Scholar 

  • Vanegas H, Williams B, Essayag E (1984b) Electrophysiological aspects of the teleostean optic tecum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 121–161

    Google Scholar 

  • Vecino E, Ekström P (1990) Distribution of metenkephalin, leuenkephalin, substance P, neuropeptide Y, FMRF-amide, and serotonin immunoreactivity in the optic tectum of the atlantic salmon (Salmo salar L). J Comp Neurol 299:299–241

    Google Scholar 

  • Vecino E, Ekström P (1992) Colocalization of neuropeptide Y (NPY)-like and FMRFamide-like immunoreactivities in the brain of the Atlantic salmon (Salmo salar). Cell Tissue Res 270:435–442

    CAS  PubMed  Google Scholar 

  • Vecino E, Sharma SC (1992) The development of substance P-like immunoreactivity in the goldfish brain. Anat Embryol (Berl) 186:41–47

    CAS  Google Scholar 

  • Vecino E, Covenas R, Alsonso JR, Lara J, Aijon J (1989) Immunocytochemical study of substance P-like cell bodies and fibers in the brain of the rainbow trout Salmo gaird-neri. J Anat 165:191–200

    CAS  PubMed  Google Scholar 

  • Vecino E, Ekström P, Sharma SC (1991) Enkephalin-immunoreactive cells in the mesencephalic tegmentum project to the optic tectum of the teleosts Salmo gairdneri and Salma salar. Cell Tissue Res 264:133–137

    CAS  PubMed  Google Scholar 

  • Vecino E, Piñuela C, Arèvalo R, Lara J, Alonso R, Aijón J (1992) Distribution of enkephalin like immunoreactivity in the central nervous system of the rainbow trout: an immunocytochemical study. J Anat 180:435–453

    CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I (1971) Structure of the medullospinal liquor-contacting neuronal system. Acta Biol Acad Sci Hung 22:227–243

    CAS  PubMed  Google Scholar 

  • Vigh B, Vigh-Teichmann I, Aros B, Varjassy P (1972) Lichtund elektronenmikroskopische Untersuchungen des Saccus vasculosus und des Nervus und Tractus sacci vasculosi. Z Zeilforsch 129:508–522

    CAS  Google Scholar 

  • Vigh-Teichmann I, Vigh B, Aros B (1976) Cerebrospinal fluidcontacting neurons, ciliated perikarya and ‘peptidergic’ synapses in the magnocellular preoptic nucleus of teleostean fishes. Cell Tissue Res 165:397–413

    CAS  PubMed  Google Scholar 

  • Villani L, Migani P, Poli A, Niso R, Contestabile A (1982) Neurotoxic effect of kainic acid on ultrastructure and GABAergic parameters in the goldfish cerebellum. Neuroscience 7:2515–2524

    CAS  PubMed  Google Scholar 

  • Villani L, Battistini S, Bissoli R, Contestabile A (1987) Cholinergic projections in the telencephalo-habenular interpeduncular system of the goldfish. Neurosci Lett 76:263–268

    CAS  PubMed  Google Scholar 

  • Villani L, Bissoli R, Garolini S, Guarnieri T, Battistini S, Saverino O, Contestabile A (1988) Effect of AF64A on the cholinergic system of the retina and optic tectum of goldfish. Exp Brain Res 70:455–462

    CAS  PubMed  Google Scholar 

  • Villani L, Guarnieri T, Salsi U, Bollini D (1991) Substance P in the habenulo-interpeduncular system of the goldfish. Brain Res Bull 26:225–228

    CAS  PubMed  Google Scholar 

  • Villani L, Guarnieri T, Zironi I (1994a) Choline acetyltransferase and NADPH-diaphorase localization in the goldfish habenulo-interpeduncular system. Neurosci Lett 173:67–70

    CAS  PubMed  Google Scholar 

  • Villani L, Dipietrangelo L, Pallotti C, Pettazzoni P, Zironi I, Guarnieri T (1994b) Ultrastructural and immunohistochemical study of the telencephalo-habenulo-interpeduncular connections in the goldfish. Brain Res Bull 34:1–5

    CAS  PubMed  Google Scholar 

  • Von Bartheld CS, Meyer DL (1985) Trigeminal and facial innervation of cirri in three teleost species. Cell Tissue Res 241:615–622

    Google Scholar 

  • Von Bartheld CS, Meyer DL (1986) Tracing of single fibers of the nervus terminalis in the goldfish brain. Cell Tissue Res 245:143–158

    Google Scholar 

  • Von Bartheld CS, Meyer DL (1987) Comparative neurology of the optic tectum in ray-finned fishes: patterns of lamination formed by retinotectal projections. Brain Res 420:277–288

    Google Scholar 

  • Von Bartheld CS, Meyer DL (1988) Retinofugal and retinopetal projections in the teleost Channa micropeltes (Channiformes). Cell Tissue Res 251:651–663

    Google Scholar 

  • Von Bartheld CS, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238:475–487

    Google Scholar 

  • Von Bartheld CS, Rickman MJ, Meyer DL (1986) A light-and electron microscopic study of mesencephalic neurons projecting to the ganglion of the nervus terminalis in the goldfish. Cell Tissue Res 246:63–70

    Google Scholar 

  • Von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol [A] 171:683–694

    Google Scholar 

  • Von Deusen EB, Meyer RL (1990) Pharmacological evidence for NMDA, APB and kainate/quisqualate retinotectal transmission in the isolated whole tectum of goldfish. Brain Res 536:86–96

    PubMed  Google Scholar 

  • Von Kupfer K (1906) Die Morphogenie des Zentralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol 2, part 2 Gustav Fischer, Jena, pp 1–272

    Google Scholar 

  • Von Rekowski C, Zippel HP (1993) In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection. Brain Res 618:338–340

    Google Scholar 

  • Voneida TJ, Fish SE (1984) Central nervous system changes related to the reduction of visual input in a naturally blind fish (Astyanax hubbsi). Am Zool 24:775–782

    Google Scholar 

  • Voneida TJ, Sligar CM (1976) A comparative neuroanatomic study of retinal projections in two fishes: Astyanax hubbsi (the blind cave fish), and Astyanax mexicanus. J Comp Neurol 165:89–106

    CAS  PubMed  Google Scholar 

  • Wang D, Maler L (1994) The immunocytochemical localization of glutamate in the electrosensory system of the gymnotiform fish, Apteronotus leptorhynchus. Brain Res 653:215–222

    CAS  PubMed  Google Scholar 

  • Wathey JC (1988) Identification of the teleost Edinger-Westphal nucleus by retrograde horseradish peroxidase labelling and by electrophysiological criteria. J Comp Physiol [A] 162:511–524

    CAS  Google Scholar 

  • Wathey JC, Wullimann MF (1988) A double-label study of efferent projections from the Edinger-Westphal nucleus in goldfish and kelp bass. Neurosci Lett 93:121–126

    CAS  PubMed  Google Scholar 

  • Waxman SG (1971) An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord. Brain Res 27:189–201

    CAS  PubMed  Google Scholar 

  • Waxman SG, Pappas GD (1971) An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species. J Comp Neurol 143:41–72

    CAS  PubMed  Google Scholar 

  • Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 79–97

    Google Scholar 

  • Weiss O, Meyer DL (1988) Odor stimuli modulate retinal excitability in fish. Neurosci Lett 93:209–213

    CAS  PubMed  Google Scholar 

  • Weld MM, Maler L (1992) Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: presence of sex differences. J Chem Neuroanat 5:107–129

    CAS  PubMed  Google Scholar 

  • Westerfield M, McMurray JV, Eisen JS (1986) Identified motoneurons and their innervation of axial muscles in the zebrafish. J Neurosci 6:2267–2277

    CAS  PubMed  Google Scholar 

  • White SA, Fernald RD (1993) Gonadotropin-releasing hormone-containing neurons change size with reproductive state in female Haplochromis burtoni. J Neurosci 13:434–441

    CAS  PubMed  Google Scholar 

  • Williams B, Hernandez N, Vanegas H (1983) Electrophysiological analysis of the teleostean nucleus isthmi and its relationships with the optic tectum. J Comp Physiol 152:545–554

    Google Scholar 

  • Wilm C, Fritzsch B (1989) Development of tectal neurons in the perciform teleost Haplochromis burtoni. A Golgi study. Dev Brain Res 47:35–52

    CAS  Google Scholar 

  • Wilm C, Fritzsch B (1990) Ipsilateral retinofugal projections in a percomorph bony fish: their experimental induction, specificity and maintenance. Brain Behav Evol 36:271–299

    CAS  PubMed  Google Scholar 

  • Wilm C, Fritzsch B (1992a) Evidence for a driving role of ingrowing axons for the shifting of older retinal terminals in the tectum of fish. J Neurobiol 23:149–162

    CAS  PubMed  Google Scholar 

  • Wilm C, Fritzsch B (1992b) Ipsilateral retinal projections into the tectum during regenerations of the optic nerve in the cichlid fish Haplochromis burtoni: a DiI study in fixed tissue. J Neurobiol 23:692–707

    CAS  PubMed  Google Scholar 

  • Wilm C, Fritzsch B (1993) Ipsilateral retinopetal projection of the nucleus olfactoretinalis (NOR) during development and regeneration: a DiI study in a cichlid fish. J Neurobiol 24:70–79

    CAS  PubMed  Google Scholar 

  • Wullimann MF (1988) The tertiary gustatory center in sunfishes is not nucleus glomerulosus. Neurosci Lett 86:6–10

    CAS  PubMed  Google Scholar 

  • Wullimann MF (1994) The teleostean torus longitudinalis: a short review on its structure, histochemistry, connectivity, possible function and phylogeny. Eur J Morphol 32:235–242

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Meyer DL (1990) Phylogeny of putative cholinergic visual pathways through the pretectum to the hypothalamus in teleost fish. Brain Behav Evol 36:14–29

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Meyer DL (1993) Possible multiple evolution of indirect telencephalo-cerebellar pathways in teleosts: studies in Carassius auratus and Panto don buchholzi. Cell Tissue Res 274:447–455

    Google Scholar 

  • Wullimann MF, Northcutt RG (1988) Connections of the corpus cerebelli in the green sunfish and the common goldfish: a comparison of perciform and cypriniform teleosts. Brain Behav Evol 32:293–316

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Northcutt RG (1989) Afferent connections of the valvula cerebelli in two teleosts, the common goldfish and the green sunfish. J Comp Neurol 289:554–567

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Northcutt RG (1990) Visual and electrosensory circuits of the diencephalon in mormyrids: an evolutionary perspective. J Comp Neurol 297:537–552

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Rooney DJ (1990) A direct cerebellotelencephalic projection in an electrosensory mormyrid fish. Brain Res 520:354–357

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Roth G (1994) Descending telencephalic information reaches longitudinal torus and cerebellum via the dorsal preglomerular nucleus in the teleost fish, Pantodon buchholzi: a case of neural preaptation?. Brain Behav Evol 44:338–352

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Hofmann MH, Meyer DL (1991a) Histochemical, connectional and cytoarchitectonic evidence for a secondary reduction of the pretectum in the European eel, Anguilla anguilla. A case of parallel evolution. Brain Behav Evol 38:290–301

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Hofmann MH, Meyer DL (1991b) The valvula cerebelli of the spiny eel, Macrognathus aculeatus, receives primary lateral line afferents from the rostrum of the upper jaw. Cell Tissue Res 266:285–293

    Google Scholar 

  • Wullimann MF, Meyer DL, Northcutt RG (1991c) The visually related posterior pretectal nucleus in the non-percomorph teleost Osteoglossum bicirrhosum projects to the hypothalamus: a DiI study. J Comp Neurol 312:415–435

    CAS  PubMed  Google Scholar 

  • Wullimann MF, Rupp B, Reichert H (1995) Neuroanatomy of the zebrafish brain: a topological atlas. Birkhäuser, Basel

    Google Scholar 

  • Yamamoto M (1982) Comparative morphology of peripheral olfactory organ in teleosts. In Hara TJ (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 39–59

    Google Scholar 

  • Yamamoto T, Maler L, Hertzberg EL, Nagy JI (1989) Gap junction protein in weakly electric fish (Gymnotidae): immunohistochemical localization with emphasis on structures of the electrosensory system. J Comp Neurol 289:509–536

    CAS  PubMed  Google Scholar 

  • Yamamoto T, Maler L, Nagy JI (1992) Organization of galanin-like immunoreactive neuronal systems in weakly electric fish (Apteronotus leptorhynchus). J Chem Neuroanat 5:19–38

    CAS  PubMed  Google Scholar 

  • Yasargil GM, Sandri C (1990) Topography and ultrastructure of commissural interneurons that may establish reciprocal inhibitory connections of the Mauthner axons in the spinal cord of the tench, Tinca tinca L. J Neurocytol 19:111–126

    CAS  PubMed  Google Scholar 

  • Yoshida M, Nagatsu I, Kawakami-Kondo Y, Karasawa N, Spatz M, Nagatsu T (1983) Monoaminergic neurons in the brain of goldfish as observed by immunohistochemical techniques. Experientia 39:1171–1174

    CAS  PubMed  Google Scholar 

  • Yoshimoto M, Ito H (1993) Cytoarchitecture, fiber connections, and ultrastructure of the nucleus pretectalis superficialis pars magnocellularis (PSm) in Carp. J Comp Neurol 336:433–446

    CAS  PubMed  Google Scholar 

  • Yulis CR, Lederis K (1986a) Extraurophyseal distribution of urotensin II immunoreactive neuronal perikarya and their processes. Proc Natl Acad Sci USA 83:7079–7083

    CAS  PubMed  Google Scholar 

  • Yulis CR, Lederis K (1986b) The distribution of extraurophyseal urotensin II-immunoreactivity in the central nervous system of Catostomus commersoni after urophysectomy. Neurosci Lett 70:75–80

    CAS  PubMed  Google Scholar 

  • Yulis CR, Lederis K (1988a) Occurrence of anterior spinal, cerebrospinal fluid-contacting, urotensin II neuronal systems in various fish species. Gen Comp Endrocrinol 70:301–311

    CAS  Google Scholar 

  • Yulis CR, Lederis K (1988b) Relationship between urotensin II-and somatostatin-immunoreactive spinal cord neurons of Catostomus commersoni and Oncorhynchus kisutch (Teleostei). Cell Tissue Res 254:539–542

    CAS  PubMed  Google Scholar 

  • Yulis CR, Garcia ME, Rodriguez EM (1990) The caudal spinal cord of coho salmon (Oncorhynchus kisutch): immunocytochemical evidence of a ‘caudal serotoninergic system’. Cell Tissue Res 259:543–550

    CAS  Google Scholar 

  • Zakon HH (1986) The electroreceptive perifery. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 103–156

    Google Scholar 

  • Zakon HH (1993) Weakly electric fish as model systems for studying long-term steroid action on neural circuits. Brain Behav Evol 42:242–251

    CAS  PubMed  Google Scholar 

  • Zeiske E, Theisen B, Breucker H (1992) Structure, development and evolutionary aspects of the periopheral olfactory system. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 13–39

    Google Scholar 

  • Ziegra CJ, Oswald RE, Bass AH (1990) [3H] Kainate localization in goldfish brain: receptor autoradiography and membrane binding. Brain Res 527:308–317

    CAS  PubMed  Google Scholar 

  • Zimmermann H, Altner H (1970) Zur Charakterisierung neuronaler und gliöser Elemente im Epithel des Saccus vasculosus von Knochenfischen. Z Zellforsch 111:106–126

    CAS  PubMed  Google Scholar 

  • Zipser B, Bennett MVL (1976a) Responses of cells of posterior lateral line lobe to activation of electroreceptors in a mormyrid fish. J Neurophysiol 39:693–712

    CAS  PubMed  Google Scholar 

  • Zipser B, Bennett MVL (1976b) Interaction of electrosensory and electromotor signals in lateral line lobe of a mormyrid fish. J Neurophysiol 39:713–721

    CAS  PubMed  Google Scholar 

  • Zottoli SJ (1977) Correlation of the startle reflex and Mauthner cell auditory responses in unrestrained goldfish. J Exp Biol 66:243–254

    CAS  PubMed  Google Scholar 

  • Zottoli SJ (1978) Comparison of Mauthner cell size in teleosts. J Comp Neurol 178:741–758

    CAS  PubMed  Google Scholar 

  • Zottoli SJ, Danielson PD (1989) Lateral line afferent and efferent systems of the goldfish with special reference to the Mauthner cell. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and Evolution. Springer, Berlin Heidelberg New York, pp 461–478

    Google Scholar 

  • Zottoli SJ, Faber DS (1980) An identifiable class of statoacustical interneurons with bilateral projections in the goldfish medulla. Neuroscience 5:1287–1302

    CAS  PubMed  Google Scholar 

  • Zottoli SJ, van Hörne G (1983) Posterior lateral line afferent and efferent pathways within the central nervous system of the goldfish with special reference to the Mauthner cell. J Comp Neurol 219:100–111

    CAS  PubMed  Google Scholar 

  • Zottoli SJ, Rhodes KJ, Mufson EJ (1987) Comparison of acetylcholinesterase and choline acetyltransferase staining patterns in the optic tectum of the goldfish Carassius aura-tus. A histochemical and immunocytochemical analysis. Brain Behav Evol 30:143–159

    CAS  PubMed  Google Scholar 

  • Zottoli SJ, Rhodes KJ, Corrodi G, Mufson EJ (1988) Putative cholinergic projections from the nucleus isthmi and the nucleus reticularis mesencephali to the optic tectum in the goldfish (Carassius auratus). J Comp Neurol 273:385–398

    CAS  PubMed  Google Scholar 

  • Zupanc GKH (1991a) The synaptic organization of the prepacemaker nucleus in weakly electric knifefish Eigenmannia: a quantitative ultrastructural study. J Neurocytol 20:818–833

    CAS  PubMed  Google Scholar 

  • Zupanc GKH (1991b) Clustering of cell bodies, bundling of dendrites and gap junctions: morphological substrate for electrical coupling in the prepacemaker nucleus. Neurosci Lett 129:29–34

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1989) Sexual maturitydependent changes in neuronal morphology in the prepacemaker of adult electric knifefish, Eigenmannia. J Neurosci 9:3816–3827

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Heiligenberg W (1992) The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. J Comp Neurol 323:558–569

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Maler L, Heiligenberg W (1991) Somatostatinlike immunoreactivity in the region of the prepacemaker nucleus in weakly electric knifefish: Eigenmannia. A quantitative analysis. Brain Res 559:249–260

    CAS  PubMed  Google Scholar 

  • Zupanc GKH, Airey JA, Maler L, Sutko JL, Ellisman MH (1992) Immunohistochemical localization of ryanodine binding proteins in the central nervous system of gymnotiform fish. J Comp Neurol 325:135–151

    CAS  PubMed  Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Meek, J., Nieuwenhuys, R. (1998). Holosteans and Teleosts. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics