Skip to main content

Abstract

The lampreys represent the most primitive group of presently living vertebrates. They are water inhabitants with elongated, eel-like bodies which lack paired fins (Fig. 10.1). In contrast to amphioxus, the head of the lamprey bears a number of special sense organs (nose, eyes, ears). The information gathered by these organs is relayed over the cranial nerves to centres in the enlarged rostral part of the CNS. There is a single nasal orifice high on top of the head and slightly behind this opening; a patch of pigment-free skin marks the position of the well-developed third or pineal eye. The animals lack jaws, having instead a large disc-shaped sucking mouth with many horny teeth. Many, but not all adult lampreys are predacious. The predacious varieties attach themselves to fish using their sucking mouths; then they produce a wound by rasping movements of a tongue-like structure which bears numerous sharp denticles. Finally, the lamprey ingests the blood and tissue fragments of its prey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam H (1956) Der III. Ventrikel und die mikroskopische Struktur seiner Wände bei Lampetra (Petromyzon) fluviatilis L und Myxine glutinosa L, nebst einigen Bemerkungen über das Infundibularorgan von Branchiostoma (Amphioxus) lanceolatum pall. In: Ariëns Kappers J (ed) Progress in neurobiology. Proceedings of the first international meeting of neurobiologists. Elsevier, Amsterdam, pp 146–158

    Google Scholar 

  • Addens JL (1933) The motor nuclei and roots of the cranial and first spinal nerves of vertebrates. I. Introduction and cylcostomes. Z Anat Entw Gesch 101:307–410

    Google Scholar 

  • Ahlborn F (1883) Untersuchungen über das Gehirn der Petromyzonten. Z Wiss Zool 39:191–294

    Google Scholar 

  • Alford S, Dubuc R (1993) Glutamate metabotropic receptormediated depression of synaptic inputs to lamprey reticulospinal neurones. Brain Res 605:175–179

    CAS  PubMed  Google Scholar 

  • Alford S, Grillner S (1991) The involvement of GABAB receptors and coupled G-proteins in spinal GABAergic presynaptic inhibition. J Neurosci 11:3718–3726

    CAS  PubMed  Google Scholar 

  • Alford S, Christenson J, Grillner S (1991) Presynaptic GABAA and GABAB receptor-mediated phasic modulation in axons of spinal motor interneurons. Eur J Neurosci 3:107–117

    PubMed  Google Scholar 

  • Anadón R, De Miguel E, Gonzalez-Fuentes MJ, Rodicio C (1989) HRP study of the central components of the trigeminal nerve in the larval sea lamprey: organization and homology of the primary medullary and spinal nucleus of the trigeminus. J Comp Neurol 283:602–610

    PubMed  Google Scholar 

  • Anadón R, Molist P, Pombal MA, Rodriguez-Moldes I, Rodico MC (1995) Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons. Eur J Neurosci 7:934–943

    PubMed  Google Scholar 

  • Ariëns Kappers CU (1920) Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen, vol 1. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1929) The evolution of the nervous system. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU (1947) Anatomie comparée du système nerveux. Bohn, Haarlem

    Google Scholar 

  • Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New York

    Google Scholar 

  • Baatrup E (1983a) Ciliated receptors in the pharyngeal terminal buds of larval Lampetra planeri (Bloch) (Cyclostomata). Acta Zool (Stockh) 64:67–75

    Google Scholar 

  • Baatrup E (1983b) Terminal buds in the branchial tube of the brook lamprey Lampetra planeri (Bloch) — putative respiratory monitors. Acta Zool (Stockh) 64:139–147

    Google Scholar 

  • Baatrup E (1985) Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch). Chem Senses 10:549–558

    CAS  Google Scholar 

  • Baatrup E, Døving KB (1985) Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey, Lampetra planeri (Bloch). Chem Senses 10:559–566

    CAS  Google Scholar 

  • Barnard JW (1936) A phylogenetic study of the visceral afferent areas associated with the facial, glossopharyngeal, and vagus nerves, and their fiber connections. The efferent facial nucleus. J Comp Neurol 65:503–603

    Google Scholar 

  • Barthe JY, Grillner S (1995) Neurotensin-induced modulation of spinal neurons and fictive locomotion in the lamprey. J Neurophysiol 73:1308–1312

    CAS  PubMed  Google Scholar 

  • Batueva IV, Shapovalov AI (1977a) Electrotonic and chemical EPSPs evoked in lamprey motoneurons by descending tract and dorsal root afferent stimulation. Neirofiziologiya 9:512–517 (English translation: Plenum, New York, 1978)

    CAS  Google Scholar 

  • Batueva IV, Shapovalov AI (1977b) Synaptic effects evoked in motoneurons by direct stimulation of single presynaptic fibers in the lamprey. Neirofiziologiya 9:390–396 (English translation: Plenum, New York, 1978)

    CAS  Google Scholar 

  • Batueva IV, Suderevskaya El, Vesselkin NP, Pierre J, Repérant J (1990) Localisation of GABA-immunopositive cells in the river lamprey spinal cord. J Hirnforsch 31:739–745

    CAS  PubMed  Google Scholar 

  • Baumgarten HG (1972) Biogenic monoamines in the cyclostome and lower vertebrate brain. Prog Histochem Cytochem 4:1–90

    CAS  PubMed  Google Scholar 

  • Belenky MA, Konstantinova MS, Polenov AL (1979a) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L. II. The proximal neurosecretory contact region. Cell Tissue Res 204:319–331

    CAS  PubMed  Google Scholar 

  • Belenky MA, Chetverukhin VK, Polenov AL (1979b) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L. III. High resolution radioautography of monoaminergic structures in neurohemal regions. Cell Tissue Res 204:333–342

    CAS  PubMed  Google Scholar 

  • Bennett MVL, Goodenough DA (1978) Gap junctions, electrotonic coupling, and intercellular communication. Neurosci Res Prog Bull 16:373–486

    Google Scholar 

  • Bergqvist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304

    Google Scholar 

  • Bergqvist H, Källén B (1953a) Studies on the topography of the migration areas in the vertebrate brain. Acta Anat 17:353–369

    Google Scholar 

  • Bergqvist H, Källén B (1953b) On the development of neuromeres to migration areas in the vertebrate cerebral tube. Acta Anat 18:66–73

    Google Scholar 

  • Bertolini B (1964) Ultrastructure of the spinal cord of the lamprey. J Ultrastruct Res 11:1–24

    CAS  PubMed  Google Scholar 

  • Birnberger KL, Rovainen CM (1971) Behavioral and intracellular studies of a habituating fin reflex in the sea lamprey. J Neurophysiol 34:983–989

    CAS  PubMed  Google Scholar 

  • Black D (1917) The motor nuclei of the cerebral nerves in phylogeny: a study of the phenomena of neurobiotaxis. I. Cyclostomi and pisces. J Comp Neurol 27:467–564

    Google Scholar 

  • Black D (1920) The motor nuclei of the cerebral nerves in phytogeny. III. Reptilia. J Comp Neurol 32:61–98

    Google Scholar 

  • Bodznick D, Northcutt RG (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212:465–467

    CAS  PubMed  Google Scholar 

  • Bodznick D, Preston DG (1983) Physiological characterization of electroreceptors in the lampreys Ichthyomyzon unicuspis and Petromyzon marinus. J Comp Physiol 152:209–217

    Google Scholar 

  • Bolliet V, Ali MA, Anctil M, Zachmann A (1993) Melatonin secretion in vitro from the pineal complex of the lamprey Petromyzon marinus. Gen Comp Endocrinol 89:101–106

    CAS  PubMed  Google Scholar 

  • Bone Q (1960) The central nervous system in amphioxus. J Comp Neurol 115:27–64

    Google Scholar 

  • Bone Q (1963) The central nervous system. In: Brodai A, Fänge R (eds) The biology of myxine. Universitetsforlaget, Oslo, pp 50-91

    Google Scholar 

  • Bowtell G, Williams TL (1991) Anguilliform body dynamics — modelling the interaction between muscle activation and body curvature. Philos Trans R Soc Lond Ser B Biol Sci 334:385–390

    Google Scholar 

  • Brodin L, Grillner S (1990) The lamprey CNS in vitro, an experimentally amenable model for synaptic transmission and integrative functions. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, UK, pp 103–153

    Google Scholar 

  • Brodin L, Buchanan JT, Hökfelt T, Grillner S, Verhofstad AAJ (1986) A spinal projection of 5-hydroxytryptamine neurons in the lamprey brainstem; evidence from combined retrograde tracing and immunohistochemistry. Neurosci Lett 67:53–57

    CAS  PubMed  Google Scholar 

  • Brodin L, Christenson J, Grillner S (1987) Single sensory neurones activate excitatory amino acid receptors in the lamprey spinal cord. Neurosci Lett 75:75–79

    CAS  PubMed  Google Scholar 

  • Brodin L, Buchanan JT, Hökfelt T, Grillner S, Rehfeld JF, Frey P, Verhofstad AAJ, Dockray GJ, Walsh JH (1988a) Immunohistochemical studies of cholecystokinin-like peptides and their relation to 5-HT CGRP, and bombesin immunoreactivities in the brainstem and spinal cord of lampreys. J Comp Neurol 271:1–18

    CAS  PubMed  Google Scholar 

  • Brodin L, Grillner S, Dubuc R, Ohta Y, Kasicki S, Hokfelt T (1988b) Reticulospinal neurons in lamprey: transmitters, synaptic interactions and their role during locomotion. Arch Ital Biol 126:317–345

    CAS  PubMed  Google Scholar 

  • Brodin L, Ohta Y, Hökfelt T, Grillner S (1989a) Further evidence for excitatory amino acid transmission in lamprey reticulospinal neurons: selective retrograde labeling with (3H)D-aspartate. J Comp Neurol 281:225–233

    CAS  PubMed  Google Scholar 

  • Brodin L, Rawitch A, Taylor T, Ohta Y, Ring H, Hökfelt T, Grillner S, Terenius L (1989b) Multiple forms of pancreatic polypeptide-related compounds in the lamprey CNS: partial characterization and immunohistochemical localization in the brain stem and spinal cord. J Neurosci 9:3428–3442

    CAS  PubMed  Google Scholar 

  • Brodin L, Hökfelt T, Grillner S, Panula P (1990a) Distribution of histaminergic neurons in the brain of the lamprey Lampetra fluviatilis as revealed by histamine-immunohistochemistry. J Comp Neurol 292:435–442

    CAS  PubMed  Google Scholar 

  • Brodin L, Theordorsson E, Christenson J, Cullheim S, Hökfelt T, Brown JC, Buchan A, Panula P, Verhofstad AAJ, Goldstein M (1990b) Neurotensin-like peptides in the CNS of lampreys. Chromatographic characterization and immunohistochemical localization with reference to aminergic markers. Eur J Neurosci 2:1095–1109

    PubMed  Google Scholar 

  • Brodin L, Dale N, Christenson J, Storm-Mathisen J, Hökfelt T, Grillner S (1990c) Three types of GABA-immunoreactive cells in the lamprey spinal cord. Brain Res 508:172–175

    CAS  PubMed  Google Scholar 

  • Brodin L, Shupliakov O, Pieribone VA, Hellgren J, Hill RH (1994) The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. J Neurophysiol 72:592–604

    CAS  PubMed  Google Scholar 

  • Bruckmoser P (1971) Elektrische Antworten im Vorderhirn von Lampetra fluviatilis L. bei Reizung des Nervus olfactorius. Z Vergl Physiol 75:69–85

    Google Scholar 

  • Buchanan JT (1982) Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology. J Neurophysiol 47:961–975

    CAS  PubMed  Google Scholar 

  • Buchanan JT (1986) Premotor interneurons in the lamprey spinal cord: morphology, synaptic interactions and activities during fictive swimming. In: Grillner S, Stein PSG, Stuard DG, Forssberg H, Herman RM (eds) Neurobiology of vertebrate locomotion. MacMillan, London, pp 321–334

    Google Scholar 

  • Buchanan JT (1993) Electrophysiological properties of identified classes of lamprey spinal neurons. J Neurophysiol 70:2313–2325

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Cohen AH (1982) Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation. J Neurosphysiol 47:948–960

    CAS  Google Scholar 

  • Buchanan JT, Grillner S (1987) Newly identified ‘glutamate interneurons’ and their role in locomotion in the lamprey spinal cord. Science 236:312–314

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Grillner S (1988) A new class of small inhibitory interneurones in the lamprey spinal cord. Brain Res 438:404–407

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Grillner S (1991) 5-Hydroxytryptamine depresses reticulospinal excitatory postsynaptic potentials in motoneurons of the lamprey. Neurosci Lett 112:71–74

    Google Scholar 

  • Buchanan JT, Kasicki S (1995) Activities of spinal neurons during brain stem-dependent fictive swimming in Lamprey. J Neurophysiol 73:80–87

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Brodin L, Dale N, Grillner S (1987a) Reticulospinal neurons activate excitatory amino acid receptors. Brain Res 408:321–325

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Brodin L, Hökfelt T, Van Dongen PAM, Grillner S (1987b) Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res 408:299–302

    CAS  PubMed  Google Scholar 

  • Buchanan JT, Grillner S, Cullheim S, Risling M (1989) Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function. J Neurophysiol 62:59–69

    CAS  PubMed  Google Scholar 

  • Bullock TH, Bodznick DA, Northcutt RG (1983) The phyloge-netic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46

    Google Scholar 

  • Bullock TH, Moore JK, Fields RD (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett 48:145–148

    CAS  PubMed  Google Scholar 

  • Bundgaard M (1982) Brain barrier systems in the lamprey. I. Ultrastructure and permeability of cerebral blood vessels. Brain Res 240:55–64

    CAS  PubMed  Google Scholar 

  • Bundgaard M, Van Deurs B (1982) Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus. Brain Res 240:65–75

    CAS  PubMed  Google Scholar 

  • Bussières N, Dubuc R (1992) Phasic modulation of vestibulospinal neuron activity during fictive locomotion in lampreys. Brain Res 575:174–179

    PubMed  Google Scholar 

  • Bussières N, Dubuc R (1995) Morphology and axonal trajectories of vestibulospinal neurones in lampreys. Soc Neurosci Abstr 21:142

    Google Scholar 

  • Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65

    CAS  PubMed  Google Scholar 

  • Cheung R, Plisetskaya EM, Youson JH (1990) Distribution of two forms of somatostatin in the brain, anterior intestine, and pancreas of adult lampreys (Petromyzon marinus). Cell Tissue Res 262:283–292

    CAS  PubMed  Google Scholar 

  • Chesler M (1986) Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. J Physiol (Lond) 381:241–261

    CAS  Google Scholar 

  • Chesler M, Nicholson C (1985) Regulation of intracellular pH in vertebrate central neurons. Brain Res 325:313–316

    CAS  PubMed  Google Scholar 

  • Christensen BN (1976) Morphological correlates of synaptic transmission in lamprey spinal cord. J Neurophysiol 39:197–212

    CAS  PubMed  Google Scholar 

  • Christensen BN (1983) Distribution of electrotonic synapses on identified lamprey neurons: a comparison of a model prediction with an electron microscopic analysis. J Neurophysiol 49:705–716

    CAS  PubMed  Google Scholar 

  • Christensen BN, Teubl WP (1979a) Estimates of cable parameters in lamprey spinal cord neurones. J Physiol (Lond) 297:299–318

    CAS  Google Scholar 

  • Christensen BN, Teubl WP (1979b) Localization of synaptic input on dendrites of a lamprey spinal cord neurone from physiological measurements of membrane properties. J Physiol (Lond) 297:319–333

    CAS  Google Scholar 

  • Christenson J, Boman A, Lagerbäck PA, Grillner S (1988a) The dorsal cell, one class ofprimary sensory neuron in the lamprey spinal cord. I. Touch, pressure but no nociception — a physiological study. Brain Res 440:1–8

    CAS  PubMed  Google Scholar 

  • Christenson J, Lagerbäck PA, Grillner S (1988b) The dorsal cell, one class of primary sensory neuron in the lamprey spinal cord. II. A light-and electron-microscopical study. Brain Res 440:9–17

    CAS  PubMed  Google Scholar 

  • Christenson J, Cullheim S, Grillner S, Hökfelt T (1990) 5-Hydroxytryptamine immunoreactive varicosities in the lamprey spinal cord have no synaptic specializations — an ultrastructural study. Brain Res 512:201–209

    CAS  PubMed  Google Scholar 

  • Christenson J, Alford S, Grillner S, Hokfelt T (1991) Colocalized GABA and somatostatin use different ionic mechanisms to hyperpolarize target neurons in the lamprey spinal cord. Neurosci Lett 134:93–97

    CAS  PubMed  Google Scholar 

  • Christenson J, Hill RH, Bongianni F, Grillner S (1993) Presence of low voltage activated calcium channels distinguishes touch from pressure sensory neurons in the lamprey spinal cord. Brain Res 608:58–66

    CAS  PubMed  Google Scholar 

  • Clark WB (1906) The cerebellum of Petromyzon fluviatilis. J Anat 40:318–325

    CAS  Google Scholar 

  • Cohen AH, Wallén P (1980) The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18

    CAS  PubMed  Google Scholar 

  • Cohen AH, Holmes PJ, Rand RH (1982) The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J Math Biol 13:345–369

    CAS  PubMed  Google Scholar 

  • Cole WC, Youson JH (1981) The effect of pinealectomy, continuous light, and continuous darkness on metamorphosis of anadromous sea lampreys, Petromyzon marinus L. J Exp Zool 218:397–404

    CAS  PubMed  Google Scholar 

  • Cole WC, Youson JH (1982) Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus L. Am J Anat 165:131–63

    CAS  PubMed  Google Scholar 

  • Crim JW, Urano A, Gorbman A (1979) Immunocytochemical studies of luteinizing hormone-releasing hormone in brains of agnathan fishes. I. Comparisons of adult pacific lamprey (Entosphenus tridentata) and the pacific hagfish (Eptatretus stouti). Gen Comp Endocrinol 37:294–305

    CAS  PubMed  Google Scholar 

  • Davis GR Jr, McClellan AD (1993) Time course of anatomical regeneration of descending brainstem neurons and behavioral recovery in spinal-transected lamprey. Brain Res 602:131–137

    PubMed  Google Scholar 

  • Davis GR Jr, McClellan AD (1994a) Long distance axonal regeneration of identified lamprey reticulospinal neurons. Exp Neurol 127:94–105

    PubMed  Google Scholar 

  • Davis GR Jr, McClellan AD (1994b) Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey. J Comp Neurol 344:65–82

    PubMed  Google Scholar 

  • Davis GR Jr, Troxel MT, Kohler VJ, Grossmann EM, McClellan AD (1993) Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: kinematics and electromyography. Exp Brain Res 97:83–95

    PubMed  Google Scholar 

  • Deliagina TG (1995) Vestibular compensation in the lamprey. Neuroreport 6:2599–2603

    CAS  PubMed  Google Scholar 

  • Deliagina TG, Orlovsky GN, Grillner S, Wallén P (1992a) Vestibular control of swimming in lamprey. II. Characteristics of spatial sensitivity of reticulospinal neurons. Exp Brain Res 90:489–498

    CAS  PubMed  Google Scholar 

  • Deliagina TG, Orlovsky GN, Grillner S, Wallén P (1992b) Vestibular control of swimming in lamprey. III. Activity of vestibular afferents: convergence of vestibular inputs on reticulospinal neurons. Exp Brain Res 90:499–507

    CAS  PubMed  Google Scholar 

  • Deliagina TG, Grillner S, Orlovsky GN, Ullén F (1993) Visual input affects the response to roll in reticulospinal neurons of the lamprey. Exp Brain Res 95:421–428

    CAS  PubMed  Google Scholar 

  • Deliagina TG, Ullén F, Gonzalez MJ, Ehrsson H, Orlovsky GN, Grillner S (1995) Initiation of locomotion by lateral line photoreceptors in lamprey: behavioural and neurophysiological studies. J Exp Biol 198:2581–2591

    PubMed  Google Scholar 

  • De Miguel E, Anadón R (1987) The development of the retina and the optic tectum of Petromyzon marinus L. J Hirnforsch 28:445–456

    PubMed  Google Scholar 

  • De Miguel E, Rodicio MC, Anadón R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302:529–542

    PubMed  Google Scholar 

  • Dickson DH, Collard TR (1979) Retinal development in the lamprey (Petromyzon marinus L): premetamorphic ammo-coete eye. J Anat 154:321–336

    CAS  Google Scholar 

  • Dubuc R, Grillner S (1987) Spinal cord input to reticulospinal neurones in the lamprey. Acta Physiol Scand 129:28A

    Google Scholar 

  • Dubuc R, Bongianni F, Ohta Y, Grillner S (1993a) Dorsal root and dorsal column mediated synaptic inputs to reticulospinal neurons in lampreys: involvement of glutamatergic, glycinergic, and GABAergic transmission. J Comp Neurol 327:251–259

    CAS  PubMed  Google Scholar 

  • Dubuc R, Bongianni F, Ohta Y, Grillner S (1993b) Anatomical and physiological study of brainstem nuclei relaying dorsal column inputs in lampreys. J Comp Neurol 327:260–270

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE (1969) Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann NY Acad Sci 167:80–101

    Google Scholar 

  • Ebbesson SOE, Hodde KC (1981) Ascending spinal systems in the nurse shark, Ginglymostoma cirratum. Cell Tissue Res 216:313–331

    CAS  PubMed  Google Scholar 

  • Ebbesson SOE, Northcutt RG (1976) Neurology of anamniotic vertebrates. In: Masterton RB, Bitterman ME, Campbell CBG, Hotton N (eds) Evolution of brain and behavior in vertebrates. Erlbaum, Hilsdale, pp 115–146

    Google Scholar 

  • Eddy JMP (1969) Metamorphosis and the pineal complex in the brook lamprey, Lampetra planeri. J Endocrinol 44:451–452

    CAS  PubMed  Google Scholar 

  • Eddy JMP (1972) The pineal complex. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 91–103

    Google Scholar 

  • Edinger L (1908) Vorlesungen über den Bau der Nervösen Zentralorgane. Vogel, Leipzig

    Google Scholar 

  • Eisthen H, Northcutt RG (1996) Silver lampreys (Ichthyomyzon unicuspis) lack a gonadotrophin-releasing hormoneand FMRFamide-immunoreactive terminal nerve. J Comp Neurol 370:159–172

    CAS  PubMed  Google Scholar 

  • El Manira A, Tegnér J, Grillner S (1994) Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J Neurophysiol 72:1852–1861

    CAS  PubMed  Google Scholar 

  • El Manira A, Shupliakov O, Fagerstadt P, Grillner S (1996) Monosynaptic input from cutaneous sensory afferents to fin motoneurons in lamprey. J Comp Neurol 369:533–542

    CAS  PubMed  Google Scholar 

  • Faber DS, Korn H (1978) Neurobiology of the Mauthner cell. Raven, New York

    Google Scholar 

  • Fahrenholz C (1936) Die sensiblen Einrichtungen der Neunaugenhaut. Z Mikrosk Anat Forsch 40:323–380

    Google Scholar 

  • Finger TE, Rovainen CM (1978) Retrograde HRP labeling of the oculomotoneurons in adult lampreys. Brain Res 154:123–127

    CAS  PubMed  Google Scholar 

  • Finger TE, Rovainen CM (1982) Spinal and medullary dorsal cell axons in the trigeminal nerve in lampreys. Brain Res 240:331–333

    CAS  PubMed  Google Scholar 

  • Fite KV (1985) Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: theme and variations. Brain Behav Evol 26:71–90

    CAS  PubMed  Google Scholar 

  • Foster RG, Garcia-Fernández JM, Provencio I, DeGrip WJ (1993) Opsin localization and chromophore retinoids identified within the basis brain of the lizard Anolis carolinensis. J Comp Physiol 172:33–45

    Google Scholar 

  • Freud S (1877) Über den Ursprung der hinteren Nervenwurzeln im Rückenmark von ammocoetes (Petromyzon planeri). Sitzungsber Akad Wiss Wien 75:15–30

    Google Scholar 

  • Freud S (1878) Über Spinalganglien und Rückenmark des Petromyzon. Sitzungsber Akad Wiss Wien 78:81–167

    Google Scholar 

  • Fritzsch B, Northcutt RG (1993) Origin and migration of trochlear, oculomotor and abducent motor neurons in Petromyzon marinus L. Dev Brain Res 74:122–126

    CAS  Google Scholar 

  • Fritzsch B, Sonntag R (1988) The trochlear motoneurons of lampreys (Lampetra fluviatilis): location, morphology and numbers as revealed with horseradish peroxidase. Cell Tissue Res 252:223–229

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Crapon de Caprona MD, Wachtler K, Kortje KH (1984) Neuroanatomical evidence for electroreception in lampreys. Z Naturforsch, Section C: Biosci 39:856–858

    CAS  Google Scholar 

  • Fritzsch B, Dubuc R, Ohta Y, Grillner S (1989) Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques. Neurosci Lett 96:241–246

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Sonntag R, Dubuc R, Ohta Y, Grillner S (1990) Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol 294:491–506

    CAS  PubMed  Google Scholar 

  • Gage SH (1928) The lampreys of New York State. Life history and economics. Biological survey of the Oswego river system, supplement to the 17th annual report, New York State Conservation Dept, 1927. Lyon, Albany, pp 158-191

    Google Scholar 

  • Garcia-Fernández JM, Foster RG (1994) Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus). Cell Tissue Res 275:319–326

    Google Scholar 

  • Gilland E, Baker R (1995) Organization of rhombomeres and brainstem efferent neuronal populations in larval sea lamprey, Petromyzon marinus. Soc Neurosci Abstr 21:779

    Google Scholar 

  • González MA, Anadón R (1992) Primary projections of the lateral line nerves in larval sea lamprey, Petromyzon marinus L: an HRP study. J Hirnforsch 33:185–194

    PubMed  Google Scholar 

  • Goossens N, Dierickx K, Vandesande F (1977) Immunocytochemical demonstration of the hypothalamo-hypophysial vasotocinergic system of Lampetra fluviatilis. Cell Tissue Res 177:317–323

    CAS  PubMed  Google Scholar 

  • Grillner S, Matsushima T (1991) The neural network underlying locomotion in lamprey — synaptic and cellular mechanisms. Neuron 7:1–15

    CAS  PubMed  Google Scholar 

  • Grillner S, McClellan A, Sigvardt K (1982) Mechanosensitive neurons in the spinal cord of the lamprey. Brain Res 235:169–173

    CAS  PubMed  Google Scholar 

  • Grillner S, Williams T, Lagerback PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223:500–503

    CAS  PubMed  Google Scholar 

  • Grillner S, Wallén P, Brodin L, Lansner A (1991) Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci 14:169–199

    CAS  PubMed  Google Scholar 

  • Grillner S, Deliagina T, Ekeberg Ö, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270–279

    CAS  PubMed  Google Scholar 

  • Groos G (1982) The comparative physiology of extraocular photoreception. Experientia 38:989–1128

    CAS  PubMed  Google Scholar 

  • Hagevik A, McClellan AD (1994a) Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey. Brain Res 636:147–152

    CAS  PubMed  Google Scholar 

  • Hagevik A, McClellan AD (1994b) Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. J Neurophysiol 72:1810–1829

    CAS  PubMed  Google Scholar 

  • Hardisty MW (1979) Biology of the cyclostomes. Chapman and Hall, London

    Google Scholar 

  • Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, London

    Google Scholar 

  • Hardisty MW, Rovainen CM (1982) Morphological and functional aspects of the muscular system. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, London, pp 137–231

    Google Scholar 

  • Harris-Warrick RM, Cohen AH (1985) Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol 116:27–46

    CAS  PubMed  Google Scholar 

  • Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat [Suppl] VI:1–213

    Google Scholar 

  • Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, Chicago

    Google Scholar 

  • Herrick CJ, Obenchain JB (1913) Notes on the anatomy of a cyclostome brain: Ichthyomyzon concolor. J Comp Neurol 23:635–675

    Google Scholar 

  • Hibbard E (1963a) The vascular supply to the central nervous system of the larval lamprey. Am J Anat 113:93–99

    CAS  PubMed  Google Scholar 

  • Hibbard E (1963b) Regeneration in the severed spinal cord of chordate larvae of Petromyzon marinus. Exp Neurol 7:175–185

    Google Scholar 

  • Hofer H (1963) Neuere Ergebnisse zur Kenntnis des Subkommissuralorganes, des Reissnerschen Fadens und der Massa caudalis. Verh Zool Ges 431-440

    Google Scholar 

  • Hofer H, Meinel W, Erhardt H, Wolter A (1984) Preliminary electron-microscopical observations on the ampulla caudalis and the discharge of the material of Reissner’s fibre into the capillary system of the terminal part of the tail of ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb (Leipz) 130(1):77–110

    CAS  Google Scholar 

  • Hoheisel G, Rühle HJ, Sterba G (1978) The reticular formation of lampreys (Petromyzonidae) — a target area for exohypothalamic vasotocinergic fibres. Cell Tissue Res 189:331–345

    CAS  PubMed  Google Scholar 

  • Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440

    Google Scholar 

  • Homma S (1975) Velar motoneurons of lamprey larvae. J Comp Physiol 104:175–183

    Google Scholar 

  • Homma S (1979) Conductance changes during bath application of ß-alanine and taurine in giant interneurons of the isolated lampreys spinal cord. Brain Res 173:287–293

    CAS  PubMed  Google Scholar 

  • Homma S (1981) Effects of DL-aminoadipate on synaptic transmission in spinal interneurones of the lamprey. J Comp Physiol 143:423–426

    CAS  Google Scholar 

  • Homma S, Rovainen CM (1978) Conductance increases produced by glycine and γ-aminobytyric acid in lamprey interneurons. J Physiol (Lond) 279:231–252

    CAS  Google Scholar 

  • Huard H, Lund JP, Dubuc R (1995) A study of trigeminal premotor neurones in lampreys. Soc Neurosci Abstr 21:142

    Google Scholar 

  • Hugosson R (1957) Morphologic and experimental studies on the development and significance of the rhombencephalic longitudinal cell columns. Thesis, Lund

    Google Scholar 

  • Iwahori N, Kiyota E, Nakamura K (1987) A Golgi study on the olfactory bulb in the lamprey, Lampetra japonica. Neurosci Res 5:126–139

    CAS  PubMed  Google Scholar 

  • Jansen J (1930) The brain of Myxine glutinosa. J Comp Neurol 49:359–507

    Google Scholar 

  • Johnels AG (1958) On the dorsal ganglion cells of the spinal cord in lampreys. Acta Zool 39:201–216

    Google Scholar 

  • Johnston JB (1902) The brain of Petromyzon. J Comp Neurol 12:2–86

    Google Scholar 

  • Johnston JB (1905) The cranial nerve components of Petromyzon. Morphol Jahrb 34:149–203

    Google Scholar 

  • Johnston JB (1912) The telencephalon in cyclostomes. J Comp Neurol 22:341–404

    Google Scholar 

  • Joss JMP (1973) The pineal complex, melatonin, and color change in the lamprey Lampetra. Gen Comp Endocrinol 21:188–195

    CAS  PubMed  Google Scholar 

  • Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophysiol 75:1074–1086

    CAS  PubMed  Google Scholar 

  • Karamian AI, Vessekin NP, Agayan AL (1984) Electrophysiological and behavioral studies of the optic tectum in cyclostomes, chap 2. In: Vanegas (ed) Comparative neurology of the optic tectum. Plenum, New York

    Google Scholar 

  • Kasicki S, Grillner S (1986) Müller cells and other reticulospinal neurones are phasically active during fictive locomotion in the isolated nervous system of the lamprey. Neurosci Lett 69:239–243

    CAS  PubMed  Google Scholar 

  • Kasicki S, Grillner S, Ohta Y, Dubuc R, Brodin L (1989) Phasic modulation of reticulospinal neurones during fictive locomotion and other types of spinal motor activity in lamprey. Brain Res 484:203–216

    CAS  PubMed  Google Scholar 

  • Kennedy MC, Rubinson K (1977) Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. J Comp Neurol 171:465–480

    CAS  PubMed  Google Scholar 

  • Kennedy MC, Rubinson K (1978) The structure of the optic tectum in the sea lamprey, Petromyzon marinus. Anat Rec 190:441–442

    Google Scholar 

  • Kennedy M, Rubinson K (1984) Development and structure of the lamprey optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 1–13

    Google Scholar 

  • Kim YS, Stumpf WE, Reid FA, Sar M, Selzer ME (1980) Estrogen target cells in the forebrain of river lamprey Ichthyomyzon unicuspis. J Comp Neurol 191:607–613

    CAS  PubMed  Google Scholar 

  • Kim YS, Stumpf WE, Sar M, Reid FA, Selzer ME, Epple AW (1981) Autoradiographic studies or estrogen target cells in the forebrain of larval lamprey, Petromyzon marinus. Brain Res 210:53–60

    CAS  PubMed  Google Scholar 

  • King JC, Sower SA, Anthony ELP (1988) Neuronal systems immunoreactive with antiserum to lamprey gonadotropin-releasing hormone in the brain of Petromyzon marinus. Cell Tissue Res 253:1–8

    CAS  PubMed  Google Scholar 

  • Kishida R, Koyama H, Goris RC (1988) Giant lateral-line afferent terminals in the electroreceptive dorsal nucleus of lampreys. Neurosci Res 6:83–87

    CAS  PubMed  Google Scholar 

  • Kleerekoper H (1972) The sense organs. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 373–404

    Google Scholar 

  • Kosareva AA (1980) Retinal projections in lamprey (Lampetra fluviatilis). J Hirnforsch 21:243–256

    CAS  PubMed  Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kusunoki T (1987) Organization of sensory and motor nuclei of the trigeminal nerve in lampreys. J Comp Neurol 264:437–448

    CAS  PubMed  Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kusunoki T (1989) Afferent and efferent projections of the VIIIth cranial nerve in the lamprey Lampetra japonica. J Comp Neurol 280:663–671

    CAS  PubMed  Google Scholar 

  • Koyama H, Kishida R, Goris RC, Kusunoki T (1990) Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica. J Comp Neurol 295:277–289

    CAS  PubMed  Google Scholar 

  • Koyama H, Kishida R, Goris R, Kusunoki T (1993) Giant terminals in the dorsal octavolateralis nucleus of lampreys. J Comp Neurol 335:245–251

    CAS  PubMed  Google Scholar 

  • Kuhlenbeck H (1929) Über die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95

    Google Scholar 

  • Kuhlenbeck H (1956) Die Formbestandteile der Regio praetectalis des Anamnier-Gehirns und ihre Beziehungen zum Hirnbauplan. Fol Anat Jpn 28:23–44

    CAS  Google Scholar 

  • Kutschin K (1863) Über den Bau des Rückenmarkes der Neunaugen (in Russian). Thesis, Kasan. (Reviewed by L Stieda.) Arch Mikr Anat 2:525–530

    Google Scholar 

  • Larsell O (1947a) The cerebellum of myxinoids and petromyzonts, including developmental stages in the lampreys. J Comp Neurol 86:395–445

    CAS  PubMed  Google Scholar 

  • Larsell O (1947b) The nucleus of the IVth nerve in petromyzonts. J Comp Neurol 86:447–466

    CAS  PubMed  Google Scholar 

  • Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, Minneapolis

    Google Scholar 

  • Lehmenkühler A, Syková E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351

    PubMed  Google Scholar 

  • Leonhardt H (1980) Organum subcommissurale. In: Oksche A (ed) Handbuch der Mikroskopischen Anatomie des Menschen, vol 4: Nervensystem, part 10: Neuroglia I. Springer, Berlin Heidelberg New York, pp 472–504

    Google Scholar 

  • Leonard JP, Wickelgren WO (1986) Prolongation of calcium action potentials by γ-aminobutyric acid in primary sensory neurones of lamprey. J Physiol (Lond) 375:481–497

    CAS  Google Scholar 

  • Lowenstein O (1970) The electrophvsiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis L) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond [Biol] 174:419–434

    CAS  Google Scholar 

  • Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L). Proc R Soc Lond [Biol] 170:113–134

    CAS  Google Scholar 

  • Lurie DI, Pijak DS, Selzer ME (1994) The structure of reticulospinal axon growth cones and their cellular environment during regeneration in the lamprey spinal cord. J Comp Neurol 344:559–580

    CAS  PubMed  Google Scholar 

  • Martin RJ (1979) A study of the morphology of the large reticulospinal neurons of the lamprey ammocoete by intracellular injection of procion yellow. Brain Behav Evol 16:1–18

    CAS  PubMed  Google Scholar 

  • Martin RJ, Bowsher D (1977) An electrophysiological investigation of the projection of the intramedullary primary afferent cells of the lamprey ammocoete. Neurosci Lett 5:39–43

    CAS  PubMed  Google Scholar 

  • Martin AR, Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol (Lond) 168:443–463

    CAS  Google Scholar 

  • Martin AR, Ringham GL (1975) Synaptic transfer at a vertebrate central nervous system synapse. J Physiol (Lond) 25:409–426

    Google Scholar 

  • Martin AR, Wickelgren WO (1971) Sensory cells in the spinal cord of the sea lamprey. J Physiol (Lond) 212:65–83

    CAS  Google Scholar 

  • Martin AR, Wickelgren WO, Berànek R (1970) Effects of iontophoretically applied drugs on spinal interneurons of the lamprey. J Physiol (Lond) 207:653–665

    CAS  Google Scholar 

  • Matsushima T, Grillner S (1990) Intersegmental coordination of undulatory movements — a “trailing oscillator” hypothesis. Neuroreport 1:97–100

    CAS  PubMed  Google Scholar 

  • Matsushima T, Grillner S (1992) Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. J Neurophysiol 67:373–388

    CAS  PubMed  Google Scholar 

  • Matsushima T, Tegnér J, Hill RH, Grillner S (1993) GABAB receptor activation causes a depression of low-voltage and high-voltage activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. J Neurophysiol 70:2606–2619

    CAS  PubMed  Google Scholar 

  • Matthews G, Wickelgren WO (1978) Trigeminal sensory neurons of the sea lamprey. J Comp Physiol 123:329–333

    Google Scholar 

  • Mayer F (1897) Das Centralnervensystem von Ammocoetes. I. Vorder-, Zwischen-und Mittelhirn. Anat Anz 13:649–657

    Google Scholar 

  • McClellan AD (1984) Descending control and sensory gating of ‘fictive’ swimming and turning responses elicited in an in vitro preparation of the lamprey brainstem/spinal cord. Brain Res 302:151–162

    CAS  PubMed  Google Scholar 

  • McClellan AD (1988a) Functional regeneration of descending brainstem command pathway for locomotion demonstrated in the in vitro lamprey CNS. Brain Res 448:339–345

    CAS  PubMed  Google Scholar 

  • McClellan AD (1988b) Brainstem command system for locomotion in the lamprey: localization of descending pathways in the spinal cord. Brain Res 457:338–349

    CAS  PubMed  Google Scholar 

  • McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 261:274–287

    CAS  PubMed  Google Scholar 

  • McClellan AD (1994) Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. J Neurophysiol 72:847–860

    CAS  PubMed  Google Scholar 

  • McClellan AD, Grillner S (1984) Activation of ‘fictive swimming’ by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system. Brain Res 300:357–361

    CAS  PubMed  Google Scholar 

  • McClellan AD, Jang WC (1993) Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling. J Neurophysiol 70:2442–2454

    CAS  PubMed  Google Scholar 

  • McKibben PS (1911) The nervus terminalis in urodele Amphibia. J Comp Neurol 21:261–310

    Google Scholar 

  • McPherson DR, Kemnitz CP (1994) Modulation of lamprey fictive swimming and motoneuron physiology by dopamine, and its immunocytochemical localization in the spinal cord. Neurosci Lett 166:23–26

    CAS  PubMed  Google Scholar 

  • Meiniel A (1980) Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res 207:407–427

    CAS  PubMed  Google Scholar 

  • Meiniel A (1981) New aspects of the phylogenetic evolution of sensory cell lines in the vertebrate pineal complex. In: Oksche A, Pévet P (eds) The pineal organ: photobiology — biochronometry — endocrinology. Elsevier, Amsterdam, pp27-48

    Google Scholar 

  • Meiniel A, Hartwig HG (1980) Indoleamines in the pineal complex of Lampetra planeri (Petromyzontidae): a fluorescence microscopic and microspectrofuorimetric study. J Neural Transm 48:65–83

    Google Scholar 

  • Meilen N, Kiemel T, Cohen AH (1995) Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling. J Neurophysiol 73:1020–1030

    Google Scholar 

  • Merrick SA, Pleasure SJ, Lurie DI, Pijak DS, Selzer ME, Lee VMY (1995) Glial cells of the lamprey nervous system contain keratin-like proteins. J Comp Neurol 355:199–210

    CAS  PubMed  Google Scholar 

  • Moore LE, Buchanan JT (1993) The effects of neurotransmitters on the integrative properties of spinal neurons in the lamprey. J Exp Biol 175:89–114

    CAS  PubMed  Google Scholar 

  • Morita Y, Tabata M, Tamotsu S (1985) Intracellular response and input resistance change of pineal photoreceptors and ganglion cells. Neurosci Res [Suppl] 2:79–88

    Google Scholar 

  • Morita Y, Tabata M, Uchida K, Samejima M (1992) Pinealdependent locomotor activity of lamprey, Lampetra japonica, measured in relation to LD cycle and circadian rhythmicity. J Comp Physiol A 171:555–562

    Google Scholar 

  • Münz H, Claas B, Stumpf WE, Jennes L (1982) Centrifugal innervation of the retina by luteinizing hormone-releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Res 222:313–323

    PubMed  Google Scholar 

  • Nakao T, Ishizawa A (1982) An electron microscopic study of autonomic nerve cells in the cloacal region of the lamprey, Lampetra japonica. J Neurocytol 11:517–532

    CAS  PubMed  Google Scholar 

  • Nakao T, Ishizawa A (1987a) Development of the spinal nerves in the lamprey: I. Rohon-Beard cells and interneurons. J Comp Neurol 256:342–355

    CAS  PubMed  Google Scholar 

  • Nakao T, Ishizawa A (1987b) Development of the spinal nerves in the lamprey: II. Outflows from the spinal cord. J Comp Neurol 256:356–368

    CAS  PubMed  Google Scholar 

  • Nakao T, Ishizawa A (1987c) Development of the spinal nerves in the lamprey: III. Spinal ganglia and dorsal roots in 26-day (13 mm) larvae. J Comp Neurol 256:369–385

    CAS  PubMed  Google Scholar 

  • Nakao T, Ishizawa A (1987d) Development of the spinal nerves of the larval lamprey: IV. Spinal nerve roots of 21-mm larval and adult lampreys, with special reference to the relation of meninges with the root sheath and the perineurium. J Comp Neurol 256:386–399

    CAS  PubMed  Google Scholar 

  • Nakao T, Suzuki S (1978) Sympathetic nerves in the branchial region of lamprey, Lampetra japonica. Acta Anat Nippon 53:51–52

    Google Scholar 

  • Nakao T, Suzuki S (1980) The structure and innervation of the cloacal region of lamprey. Acta Anat Nippon 55:438

    Google Scholar 

  • Nieuwenhuys R (1967a) Comparative anatomy of olfactory centres and tracts. Prog Brain Res 23:1–64

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1972) Topological analysis of the brain stem of the lamprey Lampetra fluviatilis. J Comp Neurol 145:165–178

    CAS  PubMed  Google Scholar 

  • Nieuwenhuys R (1977) The brain of the lamprey in a comparative perspective. Ann NY Acad Sci 299:97–145

    CAS  PubMed  Google Scholar 

  • Northcutt R (1979a) Experimental determination of the primary trigeminal projections in lampreys. Brain Res 163:323–327

    CAS  PubMed  Google Scholar 

  • Northcutt RG (1979b) Central projections of the eighth cranial nerve in lampreys. Brain Res 167:163–167

    CAS  PubMed  Google Scholar 

  • Northcutt RG, Przybylski RJ (1973) Retinal projections in the lamprey Petromyzon marinus L. Anat Rec 175:400

    Google Scholar 

  • Northcutt RG, Puzdrowski RL (1988) Projections of the olfactory bulb and nervus terminalis in the silver lamprey. Brain Behav Evol 32:96–107

    CAS  PubMed  Google Scholar 

  • Nortcutt RG, Wicht H (1996) Afferent and efferent connections of the lateral and medial palloia of the silver lamprey. Brain Behav Evol (in press)

    Google Scholar 

  • Nozaki M (1985) Tissue distribution of hormonal peptides in primitive fishes. In: Foreman D, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Plenum, New York, pp 433–454

    Google Scholar 

  • Nozaki M, Gorbman A (1984) Distribution of immunoreactive sites for several components of pro-opiocortin in the pituitary and brain of adult lampreys, Petromyzon marinus and Entosphenus tridentatus. Gen Comp Endocrinol 53:335–352

    CAS  PubMed  Google Scholar 

  • Nozaki M, Gorbman A (1986) Occurrence and distribution of substance P-related immunoreactivity in the brain of adult lampreys. Gen Comp Endocrinol 62:217–229

    CAS  PubMed  Google Scholar 

  • Öhman P (1977) Fine structure of the optic nerve of Lampetra fluviatilis (Cyclostomi). Vision Res 17:719–722

    PubMed  Google Scholar 

  • Ohta Y, Grillner S (1989) Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey. J Neurophysiol 62:1079–1089

    CAS  PubMed  Google Scholar 

  • Ohta Y, Brodin L, Grillner S, Hökfelt T, Walsh JH (1988) Possible target neurons of the reticulospinal cholecystokinin (CCK) projection to the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow. Brain Res 445:400–403

    CAS  PubMed  Google Scholar 

  • Ohta Y, Dubuc R, Grillner S (1991) A new population of neurons with crossed axons in the lamprey spinal cord. Brain Res 564:143–148

    CAS  PubMed  Google Scholar 

  • Ohtomi M, Fujii K, Kobayashi H (1989) Distribution of FMRFamide-like immunoreactivity in the brain and neurohypophysis of the lamprey, Lampetra japonica. Cell Tissue Res 256:581–584

    CAS  PubMed  Google Scholar 

  • Oksche A (1969) The subcommissural organ. J Neurol Visc Relat [Suppl] 9:111–139

    Google Scholar 

  • Olsson R (1955) Structure and development of Reissner’s fibre in the caudal end of amphioxus and some lower vertebrates. Acta Zool (Stockh) 36:167–198

    Google Scholar 

  • Olsson R (1958) Studies on the subcommissural organ. Acta Zool (Stockh) 39:71–102

    CAS  Google Scholar 

  • Onstott D, Elde R (1986) Immunohistochemical localization of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225

    CAS  PubMed  Google Scholar 

  • Orlovsky GN, Deliagina TG, Wallén P (1992) Vestibular control of swimming in lamprey. I. Responses of reticulospinal neurons to roll and pitch. Exp Brain Res 90:479–488

    CAS  PubMed  Google Scholar 

  • Owsiannikow P (1903) Das Rückenmark und das Verlängerte Mark des Neunauges. Mem Acad Imp Sci St Petersbourg 14:1–32

    Google Scholar 

  • Pearson AA (1936) The acustico-lateral centers and the cerebellum, with fiber connections, of fishes. J Comp Neurol 65:201–294

    Google Scholar 

  • Peruzzo B, Rodriguez S, Delannoy L, Hein S, Rodriguez EM, Oksche A (1987) Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner’s fiber complex in lamprey larvae (Geotria australis): evidence for a terminal vascular route of secretory material. Cell Tissue Res 247:367–376

    Google Scholar 

  • Peters A (1960) The structure of peripheral nerves of the lamprey (Lampetra fluviatilis). J Ultrastruct Res 4:349–359

    CAS  PubMed  Google Scholar 

  • Pfenninger KH, Rovainen CM (1974) Stimulation-and calcium-dependence of vesicle attachment sites in the presynaptic membrane; a freeze-cleave study on the lamprey spinal cord. Brain Res 72:1–23

    CAS  PubMed  Google Scholar 

  • Pfister C (1971a) Die Matrix im Gehirn von Neunaugenembryonen (Lampetra planeri) (Bloch 1874). Z Mikrosk Anat Forsch 4:485–492

    Google Scholar 

  • Pfister C (1971b) Die Matrixentwicklung in Tel-und Diencephalon von Lampetra planeri (Bloch) (Cyclostomata) im Verlaufe des Individualzyklus. J Hirnforsch 13:363–375

    PubMed  Google Scholar 

  • Pfister C (1971c) Die Matrixentwicklung in Mes-und Rhombencephalon von Lampetra planeri (Bloch) (Cyclostomata) im Verlaufe des Individualzyklus. J Hirnforsch 13:377–383

    PubMed  Google Scholar 

  • Pierre J, Réperant J, Ward R, Vesselkin NP, Rio JP, Miceli D, Kratskin I (1992) The serotoninergic system of the brain of the lamprey, Lampetra fluviatilis: an evolutionary perspective. J Chem Neuroanat 5:195–219

    CAS  PubMed  Google Scholar 

  • Pierre J, Rio JP, Mahouche M, Repérant J (1994) Catecholamine systems in the brain of cyclostomes, the lamprey, Lampetra fluviatilis. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 7–19

    Google Scholar 

  • Polenov AL, Belenky MA, Konstantinova MS (1974) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L Cell Tissue Res 150:505–519

    CAS  Google Scholar 

  • Polenova OA, Vesselkin NP (1993) Olfactory and nonolfactory projections in the river lamprey (Lampetra fluviatilis) telencephalon. J Hirnforsch 34:261–279

    CAS  PubMed  Google Scholar 

  • Pombal MA, Rodicio MC, Anadón R (1994) Development and organization of the ocular motor nuclei in the larval sea lamprey, Petromyzon marinus L: an HRP study. J Comp Neurol 341:393–406

    CAS  PubMed  Google Scholar 

  • Pombal MA, El Manira A, Orlovsky G, Grillner S (1995) Identification of the striatum and its inputs, and the role of the ventral thalamus in the control of reticulospinal neurons and locomotion in lamprey. Soc Neurosci Abstr 21:142

    Google Scholar 

  • Poon MLT (1980) Induction of swimming in lamprey by Ldopa and amino acids. J Comp Physiol 136:337–344

    CAS  Google Scholar 

  • Pu GA, Dowling JE (1981) Anatomical and physiological characteristics of pineal photoreceptor cells in the larval lamprey Petromyzon marinus. J Neurophysiol 46:1018–1038

    CAS  PubMed  Google Scholar 

  • Puzdrowski RL, Northcutt RG (1989) Central projections of the pineal complex in the silver lamprey Ichthyomyzon unicuspis. Cell Tissue Res 225:269–274

    Google Scholar 

  • Reissner E (1860) Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis. Arch Anat Physiol Wiss Med, Leipzig, pp 545-588

    Google Scholar 

  • Repérant J, Vesselkin NP, Ermakova TV, Kenigfest NB, Kosareva AA (1980) Radioautographic evidence for both orthograde and retrograde axonal transport of labeled compounds after intraocular injection of [3H]proline in the lamprey (Lampetra fluviatilis). Brain Res 200:179–183

    PubMed  Google Scholar 

  • Retzius G (1893a) Ependym und Neuroglia bei den Cyclostomen. Biol Untersuch (Stockh) 5:15–18

    Google Scholar 

  • Retzius G (1893b) Über Geschmacksknospen bei Petromyzon. Biol Untersuch (Stockh) 5:69–70

    Google Scholar 

  • Ringham GL (1975) Localization and electrical characteristics of a giant synapse in the spinal cord of the lamprey. J Physiol (Lond) 251:395–407

    CAS  Google Scholar 

  • Rio JP, Vesselkin NP, Kirpitchnikova E, Kenigfest NB, Versaux-Botteri C, Repérant J (1993) Presumptive GABAergic centrifugal input to the lamprey retina: a double-labeling study with axonal tracing and GABA immunocytochemistry. Brain Res 600:9–19

    CAS  PubMed  Google Scholar 

  • Rodicio MC, De Miguel E, Pompai MA, Anadón R (1992) The origin of trochlear motoneurons in the larval sea lamprey, Petromyzon marinus L. An HRP study. Neurosci Lett 138:19–22

    CAS  PubMed  Google Scholar 

  • Rodicio MC, Pombal MA, Anadón A (1995) Early development and organization of the retinopetal system in the larval sea lamprey, Petromyzon marinus L: an HRP study. Anat Embryol (Berl) 192:517–526

    CAS  Google Scholar 

  • Rodriguez S, Rodriguez PA, Banse C, Rodriguez EM, Oksche A (1987) Reissner’s fiber, massa caudali and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis). Light-microscopic immunocytochemical and lectinhistochemical studies. Cell Tissue Res 247:359–366

    Google Scholar 

  • Ronan M (1988) Anatomical and physiological evidence for electroreception in larval lampreys. Brain Res 448:173–177

    CAS  PubMed  Google Scholar 

  • Ronan M (1989) Origins of the descending spinal projections in petromyzontid and myxinoid agnathans. J Comp Neurol 281:54–68

    CAS  PubMed  Google Scholar 

  • Ronan MC, Bodznick D (1986) End buds: non-ampullary electroreceptors in adult lampreys. J Comp Physiol [A] 158:9–15

    CAS  Google Scholar 

  • Ronan M, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30:62–81

    CAS  PubMed  Google Scholar 

  • Ronan M, Northcutt G (1990) Projections ascending from the spinal cord to the brain in petromyzonid and myxinoid agnathans. J Comp Neurol 291:491–508

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1967a) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). I. Müller and Mauthner cells. J Neurophysiol 30:1000–1023

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1967b) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). II. Dorsal cells and giant interneurons. J Neurophysiol 30:1024–1042

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1974a) Synaptic interactions of identified cells in the spinal cord of the sea lamprey. J Comp Neurol 154:189–206

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1974b) Synaptic interactions of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154:207–224

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1974c) Respiratory motoneurons in lampreys. J Comp Physiol 94:57–68

    Google Scholar 

  • Rovainen CM (1976) Vestibulo-ocular reflexes in the adult sea lamprey. J Comp Physiol 112:159–164

    Google Scholar 

  • Rovainen CM (1977) Neural control of ventilation in the lamprey. Fed Proc 36:2386–2389

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1978) Müller cells, ‘Mauthner’ cells, and other identified reticulospinal neurons in the lamprey. In: Faber DS, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 245–269

    Google Scholar 

  • Rovainen CM (1979a) Electrophysiology of vestibulospinal and vestibuloreticulospinal systems in lampreys. J Neurophysiol 42:745–766

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1979b) Neurobiology of lampreys. Physiol Rev 59:1007–1077

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1982) Neurophysiology. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, London, pp 1–136

    Google Scholar 

  • Rovainen CM (1983a) Identified neurons in the lamprey spinal cord and their roles in fictive swimming. In: Roberts A, Roberts B (eds) Neural origin of rhythmic movements. The Society for Experimental Biology Symposium 37, pp 305-330

    Google Scholar 

  • Rovainen CM (1983b) Generation of respiratory activity by the lamprey brain exposed to picrotoxin and strychnine, and weak synaptic inhibition in motoneurons. Neuroscience 10:875–882

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1985a) Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey. J Neurophysiol 54:959–977

    CAS  PubMed  Google Scholar 

  • Rovainen CM (1985b) Respiratory bursts at the midline of the rostral medulla of the lamprey. J Comp Physiol [A] 157:303–309

    CAS  Google Scholar 

  • Rovainen CM, Birnberger KL (1971) Identification and properties of motoneurons to fin muscle of the sea lamprey. J Neurophysiol 34:974–982

    CAS  PubMed  Google Scholar 

  • Rovainen CM, Dill DA (1984) Counts of axons in electron microscopic sections of ventral roots in lampreys. J Comp Neurol 225:433–440

    CAS  PubMed  Google Scholar 

  • Rovainen CM, Yan Q (1985) Sensory responses of dorsal cells in the lamprey brain. J Comp Physiol [A] 156:181–183

    Google Scholar 

  • Rovainen CM, Johnson PA, Roach EA, Mankovsky JA (1973) Projections of individual axons in lamprey spinal cord determined by tracings through serial sections. J Comp Neurol 149:193–202

    CAS  PubMed  Google Scholar 

  • Rubinson K (1990) The developing visual system and metamorphosis in the lamprey. J Neurobiol 21:1123–1135

    CAS  PubMed  Google Scholar 

  • Rubinson K, Cain H (1989) Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus). Vis Neurosci 3:241–248

    CAS  PubMed  Google Scholar 

  • Rubinson K, Kennedy MC (1979) The organization of the optic tectum in larval, transforming and adult sea lamprey, Petromyzon marinus. In: Freeman RD (ed) Developmental neurobiology of vision. Plenum, New York, pp 359-369

    Google Scholar 

  • Rüdeberg SI (1961) Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Thesis, Lund

    Google Scholar 

  • Rurak DW, Perks AM (1976) The neurohypophysial principle of the Western brook lamprey, Lampetra richardsonii. Studies in the adult. Gen Comp Endocrinol 29:301–312

    CAS  PubMed  Google Scholar 

  • Rurak DW, Perks AM (1977) The neurohypophysial principle of the Western brook lamprey, Lampetra richardsonii. Studies in the ammocoete larva. Gen Comp Endocrinol 31:91–100

    CAS  PubMed  Google Scholar 

  • Russell DF (1986) Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J Comp Physiol [A] 158:91–102

    CAS  Google Scholar 

  • Saito T (1928) Über die Müllerschen Zellen im Gehirn des japanischen Flussneunauges (Entosphenus japonicus Martens). Folia Anat Jpn 6:457–475

    Google Scholar 

  • Saito T (1930) Über das Gehirn des japanischen Flussneunauges (Entosphenus japonicus Martens). Folia Anat Jpn 8:189–263

    Google Scholar 

  • Samejima M, Tamotsu S, Watanabe K, Morita Y (1989) Photoreceptor cells and neural elements with long axonal processes in the pineal organ of the lamprey, Lampetra japonica, identified by use of the horseradish peroxidase method. Cell Tissue Res 258:219–224

    Google Scholar 

  • Schaper A (1899) Zur Histologie des Kleinhirns der Petromyzonten. Anat Anz 16:439–446

    Google Scholar 

  • Schilling K (1907) Über das Gehirn von Petromyzon fluviatilis. Abh Senckenb Naturforsch Ges [Frankf A M] 30:423–446

    Google Scholar 

  • Schober W (1964) Vergleichend-anatomische Untersuchungen am Gehirn der Larven und adulten Tiere von Lampetra fluviatilis und Lampetra planeri. J Hirnforsch 7:107–209

    CAS  PubMed  Google Scholar 

  • Schober A, Malz CR, Schober W, Meyer DL (1994) NADPH-diaphorase in the central nervous system of the larval lamprey (Lampetra planeri). J Comp Neurol 345:94–104

    CAS  PubMed  Google Scholar 

  • Schotland J, Shupliakov O, Wikström M, Brodin L, Srinivasan M, You ZB, Herrera-Marschitz M, Zhang W, Hökfelt T, Grillner S (1995) Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature 374:266–268

    CAS  PubMed  Google Scholar 

  • Schultz RE, Berkowitz EC, Pease C (1956) The electron microscopy of the lamprey spinal cord. J Morphol 98:251–273

    Google Scholar 

  • Schwab ME (1973) Some new aspects about the prosencephalon of Lampetra fluviatilis L. Acta Anat 86:353–375

    CAS  PubMed  Google Scholar 

  • Selzer ME (1979) Variability in maps of identified neurons in the sea lamprey spinal cord examined by a wholemount technique. Brain Res 163:181–193

    CAS  PubMed  Google Scholar 

  • Shapovalov AI (1977) Interneuronal synapses with electrical and chemical mechanisms of transmission and evolution of the central nervous system. Zhur Evolyut Biokhim Fiziol 13:621–632

    CAS  Google Scholar 

  • Shapovalov AI (1980) Interneuronal synapses with electrical dual and chemical mode of transmission in vertebrates. Neuroscience 5:1113–1124

    CAS  PubMed  Google Scholar 

  • Sheridan PH, Youngs LJ, Krieger NR, Selzer ME (1984) Glycine uptake by lamprey spinal neurons demonstrated by light microscopic autoradiography. J Comp Neurol 223:252–258

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Wallén P, Grillner S (1992) Two types of motoneurons supplying dorsal fin muscles in lamprey and their activity during fictive locomotion. J Comp Neurol 321:112–123

    CAS  PubMed  Google Scholar 

  • Shupliakov O, Pierbone VA, Gad H, Brodin L (1995) Synaptic vesicle depletion in reticulospinal axons is reduced by 5-hydroxytryptamine: direct evidence for presynaptic modulation of glutaminergic transmission. Eur J Neurosci 7:1111–1116

    CAS  PubMed  Google Scholar 

  • Sirota M, Viana Di Prisco G, Dubuc R (1995) Electrical microstimulation of mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Soc Neurosci Abstr 21:142

    Google Scholar 

  • Smith DS (1971) On the significance of cross-bridges between microtubules and synaptic vesicles. Philos Trans R Soc Lond [Biol] 261:395–405

    CAS  Google Scholar 

  • Smith DS, Järlfors U, Beránek R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J Cell Biol 46:199–219

    CAS  PubMed  Google Scholar 

  • Stefanelli A (1933a) Numero, grandezza e forma di alcuni peculiari elementi nervosi dei Petromizonti. Z Zeilforsch 18:146–165

    Google Scholar 

  • Stefanelli A (1933b) Le cellule e le fibre di Müller dei Petromizonti. Arch Ital Anat Embryol 31:519–548

    Google Scholar 

  • Stefanelli A (1934) I centri tegmentali dell’encefalo dei Petromizonti. Arch Zool Ital 20:117–202

    Google Scholar 

  • Stefanelli A (1937) II sistema statico dei Petromizonti (sistema laterale, sistema vestibolare, cervelletto). I. Centri nervosi e vie centrali. Arch Zool Ital 24:209–273

    Google Scholar 

  • Stefanelli A, Caravita S (1970) Ultrastructural features of the synaptic complex of the vestibular nuclei of Lampetra planeri (Bloch). Z Zeilforsch 108:282–296

    CAS  Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1979) Serotonergic neuron systems in the brain of the lamprey, Lampetra fluviatilis. Anat Rec 193:693–694

    Google Scholar 

  • Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: an LHRH-and FMRF-amideimmunoreactive olfactoretinal pathway. Proc Natl Acad Sci USA 81:940–944

    CAS  PubMed  Google Scholar 

  • Sterba G (1969) Morphologie und Funktion des Subcommissuralorgans. In: Sterba G (ed) Zirkumventrikuläre Organe und Liquor. Int Symp Schloss Reinhardsbrunn 1968. Fischer, Jena, pp 17-32

    Google Scholar 

  • Sterba G (1972) Neuro-and gliasecretion. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 69–89

    Google Scholar 

  • Studnicka FK (1895) Beiträge zur Anatomie und Entwicklungsgeschichte des Vorderhirns der Cranioten. Sitzungsber K Böhm Gesell Wiss Math Naturwiss Kl Abt 1:1–41

    Google Scholar 

  • Studnicka FK (1912) Über die Entwicklung und die Bedeutung der Seitenaugen von Ammocoetes. Anat Anz 41:561–578

    Google Scholar 

  • Swain GP, Snedeker JA, Ayers J, Selzer ME (1993) Cytoarchitecture of spinal-projecting neurons in the brain of the larval sea lamprey. J Comp Neurol 336:194–210

    CAS  PubMed  Google Scholar 

  • Swain GP, Ayers J, Selzer ME (1995) Metamorphosis of spinalprojecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy. J Comp Neurol 362:453–467

    CAS  PubMed  Google Scholar 

  • Tamotsu S, Morita Y (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. J Comp Physiol [A] 159:1–5

    CAS  Google Scholar 

  • Tamotsu S, Korf HW, Morita Y, Oksche A (1990) Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res 262:205–216

    CAS  PubMed  Google Scholar 

  • Tang D, Selzer E (1979) Projections of lamprey spinal neurons determined by the retrograde axonal transport of horseradish peroxidase. J Comp Neurol 188:629–646

    CAS  PubMed  Google Scholar 

  • Tégner J, Matsushima T, El Manira A, Grillner S (1993) The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. J Neurophysiol 69:647–657

    PubMed  Google Scholar 

  • Teräväinen H (1971) Anatomical and physiological studies on muscles of lamprey. J Neurophysiol 34:954–973

    PubMed  Google Scholar 

  • Teräväinen H, Rovainen CM (1971a) Fast and slow motoneurons to body muscle of the sea lamprey. J Neurophysiol 34:990–999

    PubMed  Google Scholar 

  • Teräväinen H, Rovainen CM (1971b) Electrical activity of myotomal and sensory dorsal cells during spinal reflexes in lampreys. J Neurophysiol 34:999–1009

    PubMed  Google Scholar 

  • Thompson KJ (1990) Control of respiratory motor pattern by sensory neurons in spinal cord of lamprey. J Comp Physiol [A] 166:675–684

    CAS  Google Scholar 

  • Travén HGC, Brodin L, Lansner A, Ekeberg O, Wallén P, Grillner S (1993) Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. J Neurophysiol 70:695–709

    PubMed  Google Scholar 

  • Tretjakoff D (1909a) Das Nervensystem von Ammocoetes. I. Das Rückenmark. Arch Mikrosk Anat 73:607–680

    Google Scholar 

  • Tretjakoff D (1909b) Das Nervensystem von Ammocoetes. II. Gehirn. Arch Mikrosk Anat 74:636–779

    Google Scholar 

  • Tsuneki K, Gorbman A (1975a) Ultrastructure of the anterior neurohypophysis and the pars distalis of the lamprey, Lampetra tridentata. Gen Comp Endocrinol 25:487–508

    CAS  PubMed  Google Scholar 

  • Tsuneki K, Gorbman A (1975b) Ultrastructure of pars nervosa and pars intermedia of the lamprey, Lampetra tridentata. Cell Tissue Res 157:165–184

    CAS  PubMed  Google Scholar 

  • Uchida K, Nakamura T, Morita Y (1992) Signal transmission from pineal photoreceptors to luminosity-type ganglion cells in the lamprey, Lampetra japonica. Neuroscience 47:241–247

    CAS  PubMed  Google Scholar 

  • Ullén F, Orlovsky GN, Deliagina TG, Grillner S (1993) Role of dermal photoreceptors and lateral eyes in initiation and orientation of locomotion in lamprey. Behav Brain Res 54:107–110

    PubMed  Google Scholar 

  • Ullén F, Deliagina TG, Orlovsky GN Grillner S (1995a) Spatial orientation in the lamprey. 1. Control of pitch and roll. J Exp Biol 198:665–673

    Google Scholar 

  • Ullén F, Deliagina TG, Orlovsky GN, Grillner S (1995b) Spatial orientation in the lamprey. 2. Visual influence on orientation during locomotion and in the attached state. J Exp Biol 198:675–681

    Google Scholar 

  • Urban L, Székely G (1982) The dorsal column nuclei of the frog. Neuroscience 7:1187–1196

    CAS  PubMed  Google Scholar 

  • Van Dongen PAM, Hökfelt T, Grillner S, Verhofstad AAJ, Steinbusch HWM, Cuello AC, Terenius L (1985a) Immunohistochemical demonstration of some putative neurotransmitters in the lamprey spinal cord and spinal ganglia: 5-hydroxytryptamine-, tachykinin-, and neuropeptide-Y-immunoreactive neurons and fibers. J Comp Neurol 234:501–522

    PubMed  Google Scholar 

  • Van Dongen PAM, Hökfelt T, Grillner S, Verhofstad AAJ, Steinbusch HWM (1985b) Possible target neurons of 5-hydroxytryptamine fibers in the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow. J Comp Neurol 234:523–535

    PubMed  Google Scholar 

  • Van Dongen PAM, Theodorsson-Norheim E, Brodin L, Hökfelt T, Grillner S, Peters A, Cuello AC, Forssmann WG, Reinecke M, Singer EA, Lazarus LH (1986) Immunohisto-chemical and Chromatographic studies of peptides with tachykinin-like immunoreactivity in the central nervous system of the lamprey. Peptides 7:297–313

    PubMed  Google Scholar 

  • Vesselkin NP, Ermakova TV, Repérant J, Kosareva AA, Kenigfest NB (1980) The retinofugal and retinopetal systems in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Res 195:453–460

    CAS  PubMed  Google Scholar 

  • Vesselkin NP, Repérant J, Kenigfest NB, Miceli D, Ermakova TV, Rio JP (1984) An anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra fluviatilis). Brain Res 292:41–56

    CAS  PubMed  Google Scholar 

  • Vesselkin NP, Repérant J, Kenigfest NB, Rio JP, Miceli D, Shupliakov OV (1989) Centrifugal innervation of the lamprey retina. Light-and electron-microscopic and electrophysiological investigation. Brain Res 493:51–65

    CAS  PubMed  Google Scholar 

  • Viana Di Prisco G, Dubuc R (1995) A study of synaptic responses in lamprey reticulospinal neurones elicited by cutaneous stimulation. Soc Neurosci Abstr 21:142

    Google Scholar 

  • Viana Di Prisco G, Wallén P, Grillner S (1990) Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion. Brain Res 530:161–166

    Google Scholar 

  • Viana Di Prisco G, Ohta Y, Bongianni F, Grillner S, Dubuc R (1995) Trigeminal inputs to reticulospinal neurones in lampreys are mediated by excitatory and inhibitory amino acids. Brain Res 695:76–80

    CAS  PubMed  Google Scholar 

  • Vinay L, Grillner S (1992) Spino-bulbar neurons convey information to the brainstem about different phases of the locomotor cycle in the lamprey. Brain Res 582:134–138

    CAS  PubMed  Google Scholar 

  • Von Bartheld CS, Meyer DL (1986) Central projections of the nervus terminalis in the bichir, Polypterus palmas. Cell Tissue Res 244:181–186

    Google Scholar 

  • Von Bartheld CS, Meyer DL (1988) Central projections of the nervus terminalis in lampreys, lungfishes, and bichirs. Brain Behav Evol 32:151–159

    Google Scholar 

  • Von Bartheld CS, Lindörfer HW, Meyer DL (1987) The nervus terminalis also exists in cyclostomes and birds. Cell Tissue Res 250:431–434

    Google Scholar 

  • Von Kupffer K (1906) Die Morphogenie des Centralnerven-systems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol II, part 3. Fischer, Jena, pp 1-272

    Google Scholar 

  • Wächtler K (1974) The distribution of acetylcholinesterase in the cyclostome brain. I. Lampetra planeri (L). Cell Tissue Res 152:259–270

    PubMed  Google Scholar 

  • Wächtler K (1983) The acetylcholine-system in the brain of cyclostomes with special references to the telencephalon. J Hirnforsch 24:63–70

    PubMed  Google Scholar 

  • Wald U, Selzer M (1981) The inulin space of the lamprey spinal cord. Brain Res 208:113–122

    CAS  PubMed  Google Scholar 

  • Wallén P (1994) Sensorimotor integration in the lamprey locomotor system. Eur J Morphol 32:168–175

    PubMed  Google Scholar 

  • Wallén P, Williams TL (1984) Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol (Lond) 347:225–239

    Google Scholar 

  • Wallén P, Grillner S, Feldman J, Bergelt S (1985) Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey. J Neurosci 5:651–654

    Google Scholar 

  • Wallén P, Buchanan JT, Grillner S, Hill RH, Christenson J, Hökfelt T (1989) Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol 61:759–68

    PubMed  Google Scholar 

  • Wallén P, Vinay L, Barthe JY, Grillner S (1995) Locomotor-related modulation of stretch receptor neurons in the lamprey. Soc Neurosci Abstr 21:152

    Google Scholar 

  • Wannier T (1994) Rostro-caudal distribution of reticulospinal projections from different brainstem nuclei in the lamprey. Brain Res 666:275–278

    CAS  PubMed  Google Scholar 

  • Wannier T, Orlovsky G, Grillner S (1995) Reticulospinal neurones provide monosynaptic glycinergic inhibition of spinal neurones in lamprey. Neuroreport 6:1597–1600

    CAS  PubMed  Google Scholar 

  • Wasowicz M, Pierre J, Repérant J, Ward R., Vesselkin NP, Versaux-Botteri C (1994) Immunoreactivity to glial fibrillary acid protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis). J Brain Res 35:71–78

    CAS  Google Scholar 

  • Whitear M, Lane EB (1981) Fine structure of Merkel cells in lampreys. Cell Tissue Res 220:139–151

    CAS  PubMed  Google Scholar 

  • Whitear M, Lane EB (1983) Oligovillous cells of the epidermis: sensory elements of lamprey skin. J Zool (Lond) 199:359–384

    Google Scholar 

  • Whiting HP (1948) Nervous structure of the spinal cord of the young larval brook-lamprey. Q J Microsc Sci 89:359–385

    CAS  PubMed  Google Scholar 

  • Whiting HP (1957) Mauthner neurones in young larval lampreys (Lampetra spp). Q J Microsc Sci 98:163–178

    Google Scholar 

  • Wickelgren WO (1977a) Physiological and anatomical characteristics of reticulospinal neurones in lamprey. J Physiol (Lond) 270:89–114

    CAS  Google Scholar 

  • Wickelgren WO (1977b) Post-tetanic potentation, habituation and facilitation of synaptic potentials in reticulospinal neurones of lamprey. J Physiol (Lond) 270:115–131

    CAS  Google Scholar 

  • Wickelgren WO, Leonard JP, Grimes MJ, Clard RD (1985) Ultrstuctural correlates of transmitter release in presyn-aptic areas of lamprey reticulospinal axons. J Neurosci 5:1188–1201

    CAS  PubMed  Google Scholar 

  • Wikström M, Hill R, Hellgren J, Grillner S (1995) The action of 5-HT on calcium-dependent potassium channels and on the spinal locomotor network in lamprey is mediated by 5-HT1A-like receptors. Brain Res 678:191–199

    PubMed  Google Scholar 

  • Wislocki GB, Leduc EH, Mitchele AJ (1956) On the ending of Reissner’s fiber in the filum terminale of the spinal cord. J Comp Neurol 104:493–517

    PubMed  Google Scholar 

  • Wright GM (1986) Immunocytochemical demonstration of growth hormone, prolactin and somatostatin-like immu-noreactivities in the brain of larval, young adult and upstream migrant adult sea lamprey, Petromyzon marinus. Cell Tissue Res 246:23–31

    CAS  PubMed  Google Scholar 

  • Yamada Y (1973) Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey, Entosphenus japonicus. J Ultrastruct Res 43:1–17

    CAS  PubMed  Google Scholar 

  • Yáñez J, Anadón R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L): an experimental study. J Comp Neurol 345:148–160

    PubMed  Google Scholar 

  • Yáñez J, Anadón R, Holmqvist BI, Ekström P (1993) Neural projections of the pineal organ in the larval sea lamprey (Petromyzon marinus L) revealed by indocarbocyanine dye tracing. Neurosci Lett 164:213–216

    PubMed  Google Scholar 

  • Zompa IC, Dubuc R (1995) Optic nerve and tectal inputs to reticulospinal neurones in lampreys. Soc Neurosci Abstr 21:142

    Google Scholar 

Download references

Authors

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nieuwenhuys, R., Nicholson, C. (1998). Lampreys, Petromyzontoidea. In: The Central Nervous System of Vertebrates. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18262-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18262-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62127-7

  • Online ISBN: 978-3-642-18262-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics