Skip to main content

Part of the book series: Lecture Notes in Physics ((LNP,volume 831))

Abstract

In spite of its apparent simplicity, the dynamics of single wave packets contains valuable physical information to understand more complex quantum-mechanical time-dependent problems and phenomena. In this chapter, an analysis of wave packet dynamics stressing different aspects of physical interest is presented, such as the role of translational motion and spreading, and how they influence its subsequent evolution are widely discussed. Diffraction will be considered in the context of how boundaries influence the subsequent wave-packet evolution, and the concepts of nonlocality and classical limit will be revisited. Going beyond standard treatments, phenomena such as space localization under the influence of a (quantum) viscid or viscous medium, or the quantum Zeno (and anti-Zeno) effect arising after a series of frequently repeated measurements will be considered. In this regard, the concept of quantum stochastic trajectory will also be introduced, discussing its connection to the so-called weak measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In brief, the main difference between the Lagrangian and Eulerian descriptions [11, 12] is that in the Lagrangian approach one observes the evolution of the fluid as a whole, while in the Eulerian one the fluid is studied within a co-moving framework.

  2. 2.

    For convenience in the notation, throughout this section operators will not be denoted with the usual ‘hat’. They can be distinguished, though, from simple variables by context.

  3. 3.

    Here we will also consider the same notation convention of Sect. 1.7.

References

  1. Berry, M.V., Balazs, N.L.: Nonspreading wave packets. Am. J. Phys. 47, 264–267 (1979)

    Article  ADS  Google Scholar 

  2. Unnikrishnan, K., Rau, A.R.P.: Uniqueness of the Airy packet in quantum mechanics. Am. J. Phys. 64, 1034–1035 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Siviloglou, G.A., Broky, J., Dogariu, A., Christodoulides, D.N.: Observation of Airy beams. Phys. Rev. Lett. 99, 213901(1–4) (2007)

    Article  ADS  Google Scholar 

  4. Heller, E.J.: Time-dependent approach to semiclassical dynamics. J. Chem. Phys. 62, 1544–1555 (1975)

    Article  ADS  Google Scholar 

  5. Tannor, D.J.: Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Books, Sausalito (2006)

    Google Scholar 

  6. Sanz, A.S., Miret-Artés, S.: A trajectory-based understanding of quantum interference. J. Phys. A, Math. Theor. 41, 435303(1–23) (2008)

    Article  ADS  Google Scholar 

  7. Sanz, A.S., Miret-Artés, S.: Quantum phase analysis with quantum trajectories: A step towards the creation of a Bohmian thinking. Am. J. Phys. 80, 525–533 (2011)

    Article  ADS  Google Scholar 

  8. Sanz, A.S., Miret-Artés, S.: Aspects of nonlocality from a quantum trajectory perspective: A WKB approach to Bohmian mechanics. Chem. Phys. Lett. 445, 350–354 (2007)

    Article  ADS  Google Scholar 

  9. Sanz, A.S., Miret-Artés, S.: Selective adsorption resonances: Quantum and stochastic approaches. Phys. Rep. 451, 37–154 (2007)

    Article  ADS  Google Scholar 

  10. Sanz, A.S., Miret-Artés, S.: Quantum trajectories in elastic atom-surface scattering: Threshold and selective adsorption resonances. J. Chem. Phys. 122, 014702(1–12) (2005)

    Article  ADS  Google Scholar 

  11. Gerhardt, P.M., Gross, R.J., Hochstein, J.I.: Fundamentals of Fluid Mechanics. Addison-Wesley, New York (1992)

    Google Scholar 

  12. Spurk, J.H.: Fluid Mechanics. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  13. John, M.V.: Modified de Broglie-Bohm approach to quantum mechanics. Found. Phys. Lett. 15, 329–343 (2002)

    Article  MathSciNet  Google Scholar 

  14. John, M.V.: Probability and complex quantum trajectories. Ann. Phys. 324, 220–231 (2009)

    Article  ADS  MATH  Google Scholar 

  15. Yang, C.-D.: Quantum dynamics of hydrogen atom in complex space. Ann. Phys. 319, 399–443 (2005)

    Article  ADS  MATH  Google Scholar 

  16. Yang, C.-D.: Wave-particle duality in complex space. Ann. Phys. 319, 444–470 (2005)

    Article  ADS  MATH  Google Scholar 

  17. Yang, C.-D.: Solving quantum trajectories in Coulomb potential by quantum Hamilton–Jacobi theory. Int. J. Quant. Chem. 106, 1620–1639 (2006)

    Article  ADS  Google Scholar 

  18. Yang, C.-D.: On modeling and visualizing single-electron spin motion. Chaos Solitons Fractals 30, 41–50 (2006)

    Article  ADS  Google Scholar 

  19. Yang, C.-D.: Modeling quantum harmonic oscillator in complex domain. Chaos Solitons Fractals 30, 342–362 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Yang, C.-D.: Quantum Hamilton mechanics: Hamilton equations of quantum motion, origin of quantum operators, and proof of quantization axiom. Ann. Phys. 321, 2876–2926 (2006)

    Article  ADS  MATH  Google Scholar 

  21. Yang, C.-D.: The origin and proof of quantization axiom \({\bf p} \to \hat{\bf p} = -i\hbar\nabla\) in complex spacetime. Chaos Solitons Fractals 32, 274–283 (2007)

    Article  ADS  Google Scholar 

  22. Yang, C.-D.: Complex tunneling dynamics. Chaos Solitons Fractals 32, 312–345 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Yang, C.-D.: Quantum motion in complex space. Chaos Solitons Fractals 33, 1073–1092 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Yang, C.-D., Wei, C.-H.: Parameterization of all path integral trajectories. Chaos Solitons Fractals 33, 118–134 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Bohm, D., Vigier, J.P.: Model of the causal interpretation of quantum theory in terms of a fluid with irregular fluctuations. Phys. Rev. 96, 208–216 (1954)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechanics. Phys. Rep. 172, 93–122 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  27. Feynman, R.P., Hibbs, A.R.: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  28. Jönsson, C.: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161, 454–474 (1961)

    Article  ADS  Google Scholar 

  29. Jönsson, C.: Electron diffraction at multiple slits. Am. J. Phys. 42, 4–11 (1974). English translation by D. Brandt and S. Hirschi

    Article  ADS  Google Scholar 

  30. Hirschi, S.: Erratum: “Electron diffraction at multiple slits”. Am. J. Phys. 42, 423 (1974)

    Article  ADS  Google Scholar 

  31. Donati, O., Missiroli, G.F., Pozzi, G.: An experiment on electron interference. Am. J. Phys. 41, 639–644 (1973)

    Article  ADS  Google Scholar 

  32. Merli, P.G., Missiroli, G.F., Pozzi, G.: On the statistical aspect of electron interference phenomena. Am. J. Phys. 44, 306–307 (1976)

    Article  ADS  Google Scholar 

  33. Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., Ezawa, H.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57, 117–120 (1989)

    Article  ADS  Google Scholar 

  34. Zeilinger, A., Gähler, R., Shull, C.G., Treimer, W., Mampe, W.: Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60, 1067–1073 (1988)

    Article  ADS  Google Scholar 

  35. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nat. Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  36. Hornberger, K., Gerlich, S., Haslinger, P., Nimmrichter, S., Arndt, M.: Colloquium: Quantum interference of clusters and molecules. Rev. Mod. Phys. 84, 157–173 (2012)

    Article  ADS  Google Scholar 

  37. Juffmann, T., Milic, A., Müllneritsch, M., Asenbaum, P., Tsukernik, A., Tüxen, J., Mayor, M., Cheshnovsky, O., Arndt, M.: Real-time single-molecule imaging of quantum interference. Nat. Nanotechnol. 7, 297–300 (2012)

    Article  ADS  Google Scholar 

  38. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics. III. Quantum Mechanics. Addison-Wesley, Reading (1964)

    Google Scholar 

  39. Guantes, R., Sanz, A.S., Margalef-Roig, J., Miret-Artés, S.: Atom-surface diffraction: A trajectory description. Surf. Sci. Rep. 53, 199–330 (2004)

    Article  ADS  Google Scholar 

  40. Elmore, W.C., Heald, M.A.: Physics of Waves. Dover, New York (1985), Chap. 10

    Google Scholar 

  41. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195–200 (1964)

    Google Scholar 

  42. Bell, J.S.: On the problem of hidden variables in quantum mechanics. Rev. Mod. Phys. 38, 447–452 (1966)

    Article  ADS  MATH  Google Scholar 

  43. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy. Cambridge University Press, Cambridge (1987)

    MATH  Google Scholar 

  44. Sanz, A.S., Miret-Artés, S.: Aspects of nonlocality from a quantum trajectory perspective: A WKB approach to Bohmian mechanics. Chem. Phys. Lett. 445, 350–354 (2007)

    Article  ADS  Google Scholar 

  45. Sanz, A.S., Borondo, F., Miret-Artés, S.: Particle diffraction studied using quantum trajectories. J. Phys. Condens. Matter 14, 6109–6145 (2002)

    Article  ADS  Google Scholar 

  46. Sanz, A.S., Borondo, F., Miret-Artés, S.: Causal trajectories description of atom diffraction by surfaces. Phys. Rev. B 61, 7743–7751 (2000)

    Article  ADS  Google Scholar 

  47. Sanz, A.S., Borondo, F., Miret-Artés, S.: On the classical limit in atom-surface diffraction. Europhys. Lett. 55, 303–309 (2001)

    Article  ADS  Google Scholar 

  48. Sanz, A.S., Borondo, F., Miret-Artés, S.: Quantum trajectories in atom-surface scattering with single adsorbates: The role of quantum vortices. J. Chem. Phys. 120, 8794–8806 (2004)

    Article  ADS  Google Scholar 

  49. Gindersperger, E., Meier, C., Beswick, J.A.: Mixing quantum and classical dynamics using Bohmian trajectories. J. Chem. Phys. 113, 9369–9372 (2000)

    Article  ADS  Google Scholar 

  50. Caldirola, P.: Forze non conservative nella meccanica quantistica. Nuovo Cimento 18, 393–400 (1941)

    Article  Google Scholar 

  51. Kanai, E.: On the quantization of the dissipative systems. Prog. Theor. Phys. 3, 440–442 (1948)

    Article  ADS  Google Scholar 

  52. Yu, L.-H., Sun, C.-P.: Evolution of the wave function in a dissipative system. Phys. Rev. A 49, 592–595 (1994)

    Article  ADS  MATH  Google Scholar 

  53. Sun, C.-P., Yu, L.-H.: Exact dynamics of a quantum dissipative system in a constant external field. Phys. Rev. A 51, 1845–1853 (1995)

    Article  ADS  Google Scholar 

  54. Sanz, A.S., Martínez-Casado, R., Peñate-Rodríguez, H.C., Rojas-Lorenzo, G., Miret-Artés, S.: Dissipative Bohmian mechanics: A trajectory analysis of wave-packet dynamics in viscid media. arXiv:1306.6607v1 (2013)

  55. Hakim, V., Ambegaokar, V.: Quantum theory of a free particle interacting with a linearly dissipative environment. Phys. Rev. A 32, 423–434 (1985)

    Article  ADS  Google Scholar 

  56. Ford, G.W., O’Connell, R.F.: Exact solution of the Hu-Paz-Zhang master equation. Phys. Rev. D 64, 105020(1–13) (2001)

    Article  MathSciNet  ADS  Google Scholar 

  57. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Quantum Langevin equation. Phys. Rev. A 37, 4419–4428 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  58. Ford, G.W., O’Connell, R.F.: Canonical commutator and mass renormalization. J. Stat. Phys. 57, 803–810 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  59. Ford, G.W., Lewis, J.T., O’Connell, R.F.: Quantum measurement and decoherence. Phys. Rev. A 64, 032101(1–4) (2001)

    Article  MathSciNet  ADS  Google Scholar 

  60. Ford, G.W., O’Connell, R.F.: Decoherence without dissipation. Phys. Lett. A 286, 87–90 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Ford, G.W., O’Connell, R.F.: Decoherence at zero temperature. J. Opt. B, Quantum Semiclass. Opt. 5, S609–S612 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  62. Dorlas, T.C., O’Connell, R.F.: Quantum Zeno and anti-Zeno effects: An exact model. In: Donkor, E., Pirich, A.R., Brandt, H.E. (eds.) Quantum Information and Computation II. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5436, pp. 194–201. SPIE, Bellingham (2004)

    Chapter  Google Scholar 

  63. Peñate-Rodríguez, H.C., Martínez-Casado, R., Rojas-Lorenzo, G., Sanz, A.S., Miret-Artés, S.: Quantum Zeno and anti-Zeno effects in surface diffusion of interacting adsorbates. J. Phys. Condens. Matter 24, 104013(1–10) (2011)

    Article  ADS  Google Scholar 

  64. Ingold, G.-L.: Path integrals and their application to dissipative quantum systems. Lect. Notes Phys. 611, 1–53 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  65. Grandshteyn, I.S., Ryzhik, I.M.: Table of Integrals Series and Products, 7th edn. American Press, New York (2007)

    Google Scholar 

  66. Mazur, J.: Zeno’s Paradox: Unraveling the Ancient Mystery behind the Science of Space and Time. Plume, New York (2007)

    Google Scholar 

  67. Facchi, P., Pascazio, S.: Quantum Zeno dynamics: Mathematical and physical aspects. J. Phys. A 41, 493001(1–51) (2008)

    Article  MathSciNet  Google Scholar 

  68. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756–763 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  69. Peres, A.: Zeno paradox in quantum theory. Am. J. Phys. 48, 931–932 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  70. von Neumann, J.: Die Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    Google Scholar 

  71. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295–2300 (1990)

    Article  ADS  Google Scholar 

  72. Cook, R.J.: What are quantum jumps? Phys. Scr. T 21, 49–51 (1988)

    Article  ADS  Google Scholar 

  73. Wilkinson, S.R., Bharucha, C.F., Fischer, M.C., Madison, K.W., Morrow, P.R., Niu, Q., Sundaram, B., Raizen, M.G.: Experimental evidence for non-exponential decay in quantum tunnelling. Nature 387, 575–577 (1997)

    Article  ADS  Google Scholar 

  74. Fischer, M.C., Gutiérrez-Medina, B., Raizen, M.G.: Observation of the quantum Zeno and anti-Zeno effects in an unstable system. Phys. Rev. Lett. 87, 040402(1–4) (2001)

    Article  ADS  Google Scholar 

  75. Kaulakys, B., Gontis, V.: Quantum anti-Zeno effect. Phys. Rev. A 56, 1131–1137 (1997)

    Article  ADS  Google Scholar 

  76. Luis, A., Sánchez-Soto, L.L.: Anti-Zeno effect in parametric down-conversion. Phys. Rev. A 57, 781–787 (1998)

    Article  ADS  Google Scholar 

  77. Kofman, A.G., Kurizki, G.: Acceleration of quantum decay processes by frequent observations. Nature 405, 546–550 (2000)

    Article  ADS  Google Scholar 

  78. Sanz, A.S., Sanz-Sanz, C., González-Lezana, T., Roncero, O., Miret-Artés, S.: Quantum Zeno effect: Quantum shuffling and Markovianity. Ann. Phys. 327, 1277–1289 (2012)

    Article  ADS  MATH  Google Scholar 

  79. Chiu, C.B., Sudarshan, E.C.G., Misra, B.: Time evolution of unstable quantum states and a resolution of Zeno’s paradox. Phys. Rev. D 16, 520–529 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  80. Porras, M.A., Luis, A., Gonzalo, I., Sanz, A.S.: Zeno dynamics in wave-packet diffraction spreading. Phys. Rev. A 84, 052109(1–6) (2011)

    Article  ADS  Google Scholar 

  81. Kloeden, P.E., Platen, E.: Numerical Solution of Stochastic Differential Equations. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  82. Sanz-Sanz, C., Sanz, A.S., González-Lezana, T., Roncero, O., Miret-Artés, S.: Communication: Quantum Zeno-based control mechanism for molecular fragmentation. J. Chem. Phys. 136, 121101(1–4) (2011)

    Article  ADS  Google Scholar 

  83. Milburn, G.J.: Quantum Zeno effect and motional narrowing in a two-level system. J. Opt. Soc. Am. B 5, 1317–1322 (1988)

    Article  ADS  Google Scholar 

  84. Home, D., Whitaker, M.A.B.: A conceptual analysis of quantum Zeno; paradox, measurement and experiment. Ann. Phys. 258, 237–285 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  85. Kofman, A.G., Kurizki, G.: Quantum Zeno effect on atomic excitation decay in resonators. Phys. Rev. A 54, R3750–R3753 (1996)

    Article  ADS  Google Scholar 

  86. Facchi, P., Nakazato, H., Pascazio, S.: From the quantum Zeno to the inverse quantum Zeno effect. Phys. Rev. Lett. 86, 2699–2703 (2001)

    Article  ADS  Google Scholar 

  87. Peres, A.: Nonexponential decay law. Ann. Phys. 129, 33–46 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  88. Maniscalco, S., Piilo, J., Suominen, K.A.: Zeno and anti-Zeno effects for quantum Brownian motion. Phys. Rev. Lett. 97, 130402(1–4) (2006)

    Article  ADS  Google Scholar 

  89. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  90. Lax, M.: Quantum noise. IV. Quantum theory of noise sources. Phys. Rev. 145, 110–129 (1966)

    Article  ADS  Google Scholar 

  91. Martínez-Casado, R., Vega, J.L., Sanz, A.S., Miret-Artés, S.: Surface diffusion and low vibrational motion with interacting adsorbates: A shot noise description. Phys. Rev. E 75, 051128(1–12) (2007)

    Article  ADS  Google Scholar 

  92. Joos, E., Zeh, H.D., Kiefer, C., Giulini, D.J.W., Kupsch, J., Stamatescu, I.-O.: Decoherence and the Appearance of a Classical World in Quantum Theory, 2nd edn. Springer, Berlin (2003)

    Book  Google Scholar 

  93. Weiss, U.: Quantum Dissipative Systems, 3rd edn. World Scientific, Singapore (2008)

    Book  MATH  Google Scholar 

  94. Joos, E.: Continuous measurement: Watchdog effect versus golden rule. Phys. Rev. D 29, 1626–1633 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  95. Olavo, L.S.F.: Foundations of quantum mechanics: Connection with stochastic processes. Phys. Rev. A 61, 052109(1–14) (2000)

    Article  ADS  Google Scholar 

  96. Olavo, L.S.F., Lapas, L.C., Figueiredo, A.: Foundations of quantum mechanics: The Langevin equations for quantum mechanics. Ann. Phys. 327, 1391–1407 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  97. Lundeen, J.S., Sutherland, B., Patel, A., Stewart, C., Bamber, C.: Direct measurement of the quantum wavefunction. Nature 474, 188–191 (2011)

    Article  Google Scholar 

  98. Kocsis, S., Braverman, B., Ravets, S., Stevens, M.J., Mirin, R.P., Shalm, L.K., Steinberg, A.M.: Observing the average trajectories of single photons in a two-slit interferometer. Science 332, 1170–1173 (2011)

    Article  ADS  Google Scholar 

  99. Hiley, B.J.: Weak values: Approach through the Clifford and Moyal algebras. J. Phys. Conf. Ser. 361, 012014(1–11) (2012)

    Article  ADS  Google Scholar 

  100. Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sanz, Á.S., Miret-Artés, S. (2014). Wave-Packet Dynamics: The Free-Particle Physics. In: A Trajectory Description of Quantum Processes. II. Applications. Lecture Notes in Physics, vol 831. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17974-7_1

Download citation

Publish with us

Policies and ethics