Skip to main content

Adaptive Constructive Polynomial Fitting

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6474))

Abstract

To extract geometric primitives from edges, we use an incremental linear-time fitting algorithm, which is based on constructive polynomial fitting. In this work, we propose to determine the polynomial order by observing the regularity and the increase of the fitting cost. When using a fixed polynomial order under- or even overfitting could occur. Second, due to a fixed treshold on the fitting cost, arbitrary endpoints are detected for the segments, which are unsuitable as feature points. We propose to allow a variable segment thickness by detecting discontinuities and irregularities in the fitting cost. Our method is evaluated on the MPEG-7 core experiment CE-Shape-1 database part B [1]. In the experimental results, the edges are approximated closely by the polynomials of variable order. Furthermore, the polynomial segments have robust endpoints, which are suitable as feature points. When comparing adaptive constructive polynomial fitting (ACPF) to non-adaptive constructive polynomial fitting (NACPF), the average Hausdorff distance per segment decreases by 8.85% and the object recognition rate increases by 10.24%, while preserving simplicity and computational efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeannin, S., Bober, M.: Description of core experiments for mpeg-7 motion/shape, Technical Report ISO/IEC JTC 1/SC 29/WG 11 MPEG99/N2690 (1999)

    Google Scholar 

  2. Dorst, L., Smeulders, A.W.M.: Length estimators for digitized contours. Computer Vision, Graphics, and Image Processing 40(3), 311–333 (1987)

    Article  Google Scholar 

  3. Debled-Rennesson, I., Reveills, J.-P.: A Linear Algorithm for Segmentation of Digital Curves. Int. J. of Pattern Recognition and Artificial Intelligence 9(4), 635–662 (1995)

    Article  Google Scholar 

  4. Buzer, L.: An Incremental Linear Time Algorithm for Digital Line and Plane Recognition Using a Linear Incremental Feasibility Problem. In: Braquelaire, A., Lachaud, J.-O., Vialard, A. (eds.) DGCI 2002. LNCS, vol. 2301, pp. 372–381. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Piegl, L.: On NURBS: A Survey. IEEE Computer Graphics and Applications 11(1), 55–71 (1991)

    Article  Google Scholar 

  6. Goshtasby, A.: Design and Recovery of 2D and 3D Shapes Using Rational Gaussian Curves and Surfaces. International Journal of Computer Vision 10(3), 233–256 (1993)

    Article  MathSciNet  Google Scholar 

  7. Turk, G., O’Brien, J.F.: Variational Implicit Surfaces. Technical Report GIT-GVU-99-15, Graphics, Visualization, and Usability Center, Georgia Technical Univ. (1999)

    Google Scholar 

  8. Taubin, G.: Estimation of Planar Curves, Surfaces and Nonplanar Space Curves Defined by Implicit Equations, with Applications to Edge and Range Image Segmentation. IEEE Trans. PAMI 13(11), 1115–1138 (1991)

    Article  Google Scholar 

  9. Blane, M.M., Lei, Z., Civi, H., Cooper, D.B.: The 3L Algorithm for Fitting Implicit Polynomial Curves and Surfaces to Data. IEEE Trans. PAMI 22(3), 298–313 (2000)

    Article  Google Scholar 

  10. Sahin, T., Unel, M.: Stable Algebraic Surfaces for 3D Object Representation. Journal of Mathematical Imaging and Vision 32(2), 127–137 (2008)

    Article  Google Scholar 

  11. Keren, D., Gotsman, C.: Fitting Curves and Surfaces with Constrained Implicit Polynomials. IEEE Trans. PAMI 21(1), 31–41 (1999)

    Article  Google Scholar 

  12. Keren, D.: Topologically Faithful Fitting of Simple Closed Curves. IEEE Trans. PAMI 26(1), 118–123 (2004)

    Article  Google Scholar 

  13. Tasdizen, T., Tarel, J., Cooper, D.: Improving the Stability of Algebraic Curves for Applications. IEEE Trans. Image Processing 9(3), 405–416 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Helzer, A., Barzohar, M., Malah, D.: Stable Fitting of 2D Curves and 3d Surfaces by Implicit Polynomials. IEEE Trans. PAMI 26(10), 1283–1294 (2004)

    Article  Google Scholar 

  15. Veelaert, P., Teelen, K.: Fast polynomial segmentation of digitized curves. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 482–493. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  16. Deboeverie, F., Veelaert, P., Teelen, K., Philips, W.: Face Recognition Using Parabola Edge Map. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 994–1005. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Deboeverie, F., Teelen, K., Veelaert, P., Philips, W.: Vehicle tracking using geometric features. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2009. LNCS, vol. 5807, pp. 506–515. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  18. Canny, J.F.: A computational approach to edge detection. IEEE Trans. PAMI, 679–698 (1986)

    Google Scholar 

  19. http://knight.cis.temple.edu/shape/MPEG7/results.html

  20. Yang, X., Koknar-Tezel, S., Latecki, L.J.: Locally Constrained Diffusion Process on Locally Densified Distance Spaces with Applications to Shape Retrieval. In: CVPR, pp. 357–364 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Deboeverie, F., Teelen, K., Veelaert, P., Philips, W. (2010). Adaptive Constructive Polynomial Fitting. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2010. Lecture Notes in Computer Science, vol 6474. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17688-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17688-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17687-6

  • Online ISBN: 978-3-642-17688-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics