Skip to main content

A High-Level Framework for Distributed Processing of Large-Scale Graphs

  • Conference paper
Distributed Computing and Networking (ICDCN 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6522))

Included in the following conference series:

Abstract

Distributed processing of real-world graphs is challenging due to their size and the inherent irregular structure of graph computations. We present hipg, a distributed framework that facilitates high-level programming of parallel graph algorithms by expressing them as a hierarchy of distributed computations executed independently and managed by the user. hipg programs are in general short and elegant; they achieve good portability, memory utilization and performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J. of Par. and Distr. Computing 48(1), 71–95 (1998)

    Article  Google Scholar 

  2. Feige, U., Krauthgamer, R.: A polylog approximation of the minimum bisection. SIAM Review 48(1), 99–130 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph processing. PPL 17(1), 5–20 (2007)

    MathSciNet  Google Scholar 

  4. Siek, J., Lee, L.-Q., Lumsdaine, A.: The Boost Graph Library. Addison-Wesley, Reading (2002)

    Google Scholar 

  5. Gregor, D., Lumsdaine, A.: The parallel BGL: A generic library for distributed graph computations. In: Parallel Object-Oriented Scientific Computing (2005)

    Google Scholar 

  6. Gregor, D., Lumsdaine, A.: Lifting sequential graph algorithms for distributed-memory parallel computation. OOPSLA 40(10), 423–437 (2005)

    Google Scholar 

  7. Cormen, T., Leiserson, C., Rivest, R.: Introduction to algorithms. MIT Press, Cambridge (1990)

    MATH  Google Scholar 

  8. Fleischer, L., Hendrickson, B., Pinar, A.: On identifying strongly connected components in parallel. In: Rolim, J.D.P. (ed.) IPDPS-WS 2000. LNCS, vol. 1800, pp. 505–511. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  9. Bal, H.E., Maassen, J., van Nieuwpoort, R., Drost, N., Kemp, R., van Kessel, T., Palmer, N., Wrzesińska, G., Kielmann, T., van Reeuwijk, K., Seinstra, F., Jacobs, C., Verstoep, K.: Real-world distributed computing with Ibis. IEEE 43(8), 54–62 (2010)

    Google Scholar 

  10. The Java SE HotSpot virtual machine. java.sun.com/products/hotspot

    Google Scholar 

  11. Dijkstra, E.: Shmuel Safra’s version of termination detection. Circulated privately (January 1987)

    Google Scholar 

  12. Tel, G.: Introduction to distributed algorithms. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  13. Distributed ASCI Supercomputer DAS-3, www.cs.vu.nl/das3

  14. Pennock, D.M., Flake, G.W., Lawrence, S., Glover, E.J., Giles, C.L.: Winners don’t take all: Characterizing the competition for links on the web. PNAS 99(8), 5207–5211 (2002)

    Article  MATH  Google Scholar 

  15. Malewicz, G., Austern, M.H., Bik, A.J., Dehnert, J.C., Horn, I., Leiser, N., Czajkowski, G.: Pregel: A system for large-scale graph processing. In: SIGMOD, pp. 135–146 (2010)

    Google Scholar 

  16. Barnat, J., Chaloupka, J., van de Pol, J.: Improved distributed algorithms for SCC decomposition. In: PDMC 2007. ENTCS, vol. 198(1), pp. 63–77 (2008)

    Google Scholar 

  17. Berry, J., Hendrickson, B., Kahan, S., Konecny, P.: Graph software development and performance on the MTA-2 and Eldorado. At 48-th Cray Users Group meeting (2006)

    Google Scholar 

  18. Coarfa, C.: et al. An evaluation of global address space languages: Co-array Fortran and Unified Parallel C. In: PPoPP 2005, pp. 36–47. ACM, New York (2005)

    Google Scholar 

  19. Charles, P.: et al. X10: An object-oriented approach to non-uniform cluster computing. In: OOPSLA, pp. 519–538. ACM, New York (2005)

    Google Scholar 

  20. Chamberlain, B.L., Choi, S.-E., Lewis, E.C., Snyder, L., Weathersby, W.D., Lin, C.: The case for high-level parallel programming in ZPL. IEEE Comput. Sci. Eng. 5(3), 76–86 (1998)

    Article  Google Scholar 

  21. Cong, G., Kodali, S., Krishnamoorthy, S., Lea, D., Saraswat, V., Wen, T.: Solving large, irregular graph problems using adaptive work-stealing. In: ICPP, pp. 536–545. IEEE, Los Alamitos (2008)

    Google Scholar 

  22. Valiant, L.: A bridging model for parallel computation. Comm. ACM 33(8), 103–111 (1990)

    Google Scholar 

  23. Chan, A., Dehne, F., Taylor, R.: CGMgraph/CGMlib: Implementing and testing CGMgraph alg. on PC clusters and shared memory machines. J. of HPC App., 19(1):81–97 (2005)

    Google Scholar 

  24. MPI Forum: MPI: A message passing interface. J of Supercomp Appl. 8(3/4), 169–416 (1994)

    Google Scholar 

  25. Hielscher, F., Gottschling, P.: ParGraph library. pargraph.sourceforge.net (2004)

    Google Scholar 

  26. Blom, S., van Langevelde, I., Lisser, B.: Compressed and distributed file formats for labeled transition systems. In: PDMC 2003. ENTCS, vol. 89, pp. 68–83 (2003)

    Google Scholar 

  27. Denoyer, L., Gallinari, P.: The Wikipedia XML corpus. SIGIR Forum 40(1), 64–69 (2006)

    Article  Google Scholar 

  28. Resource description framework, http://www.w3.org/RDF

  29. Joyce, A.R., Palsson, B.O.: The model organism as a system: Integrating ’omics’ data sets. Nat. Rev. Mol. Cell. Biol. 7(3), 198–210 (2006)

    Article  Google Scholar 

  30. Hammer, M., Weber, M.: To store or not to store reloaded: Reclaiming memory on demand. In: Brim, L., Haverkort, B.R., Leucker, M., van de Pol, J. (eds.) FMICS 2006 and PDMC 2006. LNCS, vol. 4346, pp. 51–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krepska, E., Kielmann, T., Fokkink, W., Bal, H. (2011). A High-Level Framework for Distributed Processing of Large-Scale Graphs. In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds) Distributed Computing and Networking. ICDCN 2011. Lecture Notes in Computer Science, vol 6522. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17679-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17679-1_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17678-4

  • Online ISBN: 978-3-642-17679-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics