Skip to main content

Exponential Time Complexity of Weighted Counting of Independent Sets

  • Conference paper
Parameterized and Exact Computation (IPEC 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6478))

Included in the following conference series:

Abstract

We consider weighted counting of independent sets using a rational weight x: Given a graph with n vertices, count its independent sets such that each set of size k contributes x k. This is equivalent to computation of the partition function of the lattice gas with hard-core self-repulsion and hard-core pair interaction. We show the following conditional lower bounds: If counting the satisfying assignments of a 3-CNF formula in n variables (#3SAT) needs time 2Ω(n) (i.e. there is a c > 0 such that no algorithm can solve #3SAT in time 2cn), counting the independent sets of size n/3 of an n-vertex graph needs time 2Ω(n) and weighted counting of independent sets needs time \(2^{\Omega(n/\log^3 n)}\) for all rational weights x ≠ 0.

We have two technical ingredients: The first is a reduction from 3SAT to independent sets that preserves the number of solutions and increases the instance size only by a constant factor. Second, we devise a combination of vertex cloning and path addition. This graph transformation allows us to adapt a recent technique by Dell, Husfeldt, and Wahlén which enables interpolation by a family of reductions, each of which increases the instance size only polylogarithmically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arratia, R., Bollobás, B., Sorkin, G.B.: A two-variable interlace polynomial. Combinatorica 24(4), 567–584 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bläser, M., Hoffmann, C.: On the complexity of the interlace polynomial. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science (STACS). Dagstuhl Seminar Proceedings, vol. 08001, pp. 97–108. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2008); Updated full version: arXiv:cs.CC/0707.4565v3

    Google Scholar 

  3. Bourgeois, N., Escoffier, B., Paschos, V.T., van Rooij, J.M.M.: A bottom-up method and fast algorithms for max independent set. In: Kaplan, H. (ed.) Algorithm Theory - SWAT 2010. LNCS, vol. 6139, pp. 62–73. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  5. Courcelle, B.: A multivariate interlace polynomial and its computation for graphs of bounded clique-width. The Electronic Journal of Combinatorics 15(1) (2008)

    Google Scholar 

  6. Dahllöf, V., Jonsson, P.: An algorithm for counting maximum weighted independent sets and its applications. In: SODA, pp. 292–298 (2002)

    Google Scholar 

  7. Dell, H., Husfeldt, T., Wahlén, M.: Exponential time complexity of the permanent and the Tutte polynomial. In: Abramsky, S., Gavoille, C., Kirchner, C., auf der Heide, F.M., Spirakis, P.G. (eds.) ICALP 2010, Part I. LNCS, vol. 6198, pp. 426–437. Springer, Heidelberg (2010); Full paper: Electronic Colloquium on Computational Complexity TR10-078

    Google Scholar 

  8. Dyer, M.E., Greenhill, C.S.: On Markov chains for independent sets. J. Algorithms 35(1), 17–49 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fomin, F.V., Grandoni, F., Kratsch, D.: A measure & conquer approach for the analysis of exact algorithms. J. ACM 56(5) (2009)

    Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability – A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  11. Gutman, I., Harary, F.: Generalizations of the matching polynomial. Utilitas Math. 24, 97–106 (1983)

    MathSciNet  MATH  Google Scholar 

  12. Hoede, C., Li, X.: Clique polynomials and independent set polynomials of graphs. Discrete Mathematics 125(1-3), 219–228 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hoffmann, C.: Computational Complexity of Graph Polynomials. PhD thesis, Saarland University, Department of Computer Science (2010)

    Google Scholar 

  14. Hoffmann, C.: Exponential time complexity of weighted counting of independent sets (2010); arXiv:cs.CC/1007.1146

    Google Scholar 

  15. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jerrum, M., Valiant, L.G., Vazirani, V.V.: Random generation of combinatorial structures from a uniform distribution. Theor. Comp. Sc. 43, 169–188 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jian, T.: An O(20.304n) algorithm for solving maximum independent set problem. IEEE Trans. Computers 35(9), 847–851 (1986)

    Article  MATH  Google Scholar 

  18. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum Press, New York (1972)

    Chapter  Google Scholar 

  19. Kneis, J., Langer, A., Rossmanith, P.: A fine-grained analysis of a simple independent set algorithm. In: Kannan, R., Narayan Kumar, K. (eds.) IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2009), Dagstuhl, Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 4, pp. 287–298 (2009); Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik

    Google Scholar 

  20. Luby, M., Vigoda, E.: Approximately counting up to four (extended abstract). In: STOC, pp. 682–687 (1997)

    Google Scholar 

  21. Papadimitriou, C.H.: Computational Complexity. Addison Wesley Longman, Amsterdam (1994)

    MATH  Google Scholar 

  22. Robson, J.M.: Algorithms for maximum independent sets. J. Algorithms 7(3), 425–440 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  23. Roth, D.: On the hardness of approximate reasoning. Artif. Intell. 82(1-2), 273–302 (1996)

    Article  MathSciNet  Google Scholar 

  24. Scott, A.D., Sokal, A.D.: The repulsive lattice gas, the independent-set polynomial, and the Lovász local lemma. J. Stat. Phys. 118, 1151 (2005)

    Article  MATH  Google Scholar 

  25. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of moderate size. In: Staples, J., Katoh, N., Eades, P., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  26. Sokal, A.D.: Chromatic roots are dense in the whole complex plane. Combinatorics, Probability & Computing 13(2), 221–261 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tarjan, R.E., Trojanowski, A.E.: Finding a maximum independent set. SIAM J. Comput. 6(3), 537–546 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  28. Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM Journal on Computing 8(3), 410–421 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  29. Vigoda, E.: A note on the glauber dynamics for sampling independent sets. Electr. J. Comb. 8(1) (2001)

    Google Scholar 

  30. Weitz, D.: Counting independent sets up to the tree threshold. In: Kleinberg, J.M. (ed.) STOC, pp. 140–149. ACM, New York (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hoffmann, C. (2010). Exponential Time Complexity of Weighted Counting of Independent Sets. In: Raman, V., Saurabh, S. (eds) Parameterized and Exact Computation. IPEC 2010. Lecture Notes in Computer Science, vol 6478. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-17493-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-17493-3_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-17492-6

  • Online ISBN: 978-3-642-17493-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics