Skip to main content

A Semantic Model for Service Composition with Coordination Time Delays

  • Conference paper
Formal Methods and Software Engineering (ICFEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 6447))

Included in the following conference series:

Abstract

The correct behavior of a service composition depends on the appropriate coordination of its services. According to the idea of channel-based coordination, services exchange messages though channels without any knowledge about each other. The Reo coordination language aims at building connectors out of basic channels to implement arbitrarily complex interaction protocols. The activity within a Reo connector consists of two types of communication, each of which incurs a delay: internal coordination and data transfer. Semantic models have been proposed for Reo that articulate data transfer delays, but none of them explicitly considers coordination delays. More importantly, these models implicitly assume that (1) internal coordination and data transfer activities take place in two separate phases, and (2) data transfer delays do not affect the coordination phase. This assumptions prevent maximal concurrency in data exchange and distort the evaluation of end-to-end delays in service composition models. In this paper, we introduce a novel compositional automata-based semantic model for Reo that explicitly represents both internal coordination and data transfer aspects in channel-based connectors. Furthermore, we map the proposed model to the process algebra mCRL2 , which allows us to generate state spaces for connectors with time delays and analyze them automatically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbab, F.: Reo: A channel-based coordination model for component composition. Mathematical Structures in Computer Science 14, 329–366 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling Component Connectors in Reo by Constraint Automata. Science of Computer Programming 61, 75–113 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arbab, F., Chothia, T., Sun, M., Moon, Y.J.: Component connectors with QoS guarantees. In: Murphy, A.L., Vitek, J. (eds.) COORDINATION 2007. LNCS, vol. 4467, pp. 286–304. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Arbab, F., Chothia, T., van der Mei, R., Sun, M., Moon, Y., Verhoef, C.: From coordination to stochastic models of QoS. In: Field, J., Vasconcelos, V.T. (eds.) COORDINATION 2009. LNCS, vol. 5521, pp. 268–287. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Kokash, N., Krause, C., de Vink, E.: Verification of context-dependent channel-based service models. In: de Boer, F.S. (ed.) FMCO 2009. LNCS, vol. 6286, pp. 21–40. Springer, Heidelberg (2010)

    Google Scholar 

  6. Chothia, T., Kleijn, J.: Q-automata: Modelling the resource usage of concurrent components. In: Proc. FOCLASA 2006, pp. 79–94 (2007)

    Google Scholar 

  7. Kokash, N., Krause, C., de Vink, E.: Data-aware design and verification of service composition with Reo and mCRL2. In: Proc. of SAC 2010, pp. 2406–2413. ACM Press, New York (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kokash, N., Changizi, B., Arbab, F. (2010). A Semantic Model for Service Composition with Coordination Time Delays. In: Dong, J.S., Zhu, H. (eds) Formal Methods and Software Engineering. ICFEM 2010. Lecture Notes in Computer Science, vol 6447. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16901-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16901-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16900-7

  • Online ISBN: 978-3-642-16901-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics