Skip to main content

A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease

  • Conference paper
Advances in Information Technology (IAIT 2010)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 114))

Included in the following conference series:

Abstract

The aim of this study is to show a comparison of multi-layered perceptron neural network (MLPNN) and support vector machine (SVM) on determination of coronary artery disease existence upon exercise stress testing (EST) data. EST and coronary angiography were performed on 480 patients with acquiring 23 verifying features from each. The robustness of the proposed methods is examined using classification accuracy, k-fold cross-validation method and Cohen’s kappa coefficient. The obtained classification accuracies are approximately 78% and 79% for MLPNN and SVM respectively. Both MLPNN and SVM methods are rather satisfactory than human-based method looking to Cohen’s kappa coefficients. Besides, SVM is slightly better than MLPNN when looking to the diagnostic accuracy, average of sensitivity and specificity, and also Cohen’s kappa coefficient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gibbons, R., Balady, G., Bricker, J.T., et al.: ACC/AHA Guideline update for exercise testing: summary article. A report of the American college of cardiology/American heart association task force on practice guidelines (Committee to update the 1997 exercise testing guidelines). J. Am. Coll. Cardiol. 40(8), 1531–1540 (2002)

    Article  Google Scholar 

  2. San Roman, J.A., Vilacosta, I., Castillo, J.A., Rollan, M.J., Hernandez, M., Peral, V., Garcimartin, I., del Mar de la Torre, M., Fernandez-Aviles, F.: Selection of the optimal stress test for the diagnosis of coronary artery disease. Heart 80(4), 370–376 (1998)

    Article  Google Scholar 

  3. Thom, T., Haase, N., Rosamond, W., Howard, V.J., Rumsfeld, J., Manolio, T., Zheng, Z.J., Flegal, K., O’Donnell, C., Kittner, S., Lloyd-Jones, D., Goff Jr., D.C., Hong, Y., Adams, R., Friday, G., Furie, K., Gorelick, P., Kissela, B., Marler, J., Meigs, J., Roger, V., Sidney, S., Sorlie, P., Steinberger, J., Wasserthiel-Smoller, S., Wilson, M., Wolf, P.: Heart disease and stroke statistics–2006 update: A report from the American heart association statistics committee and Stroke statistics subcommittee. Circulation 113, e85–e151 (2006)

    Article  Google Scholar 

  4. Comak, E., Arslan, A., Turkoglu, I.: A decision support system based on support vector machines for diagnosis of the heart valve diseases. Computers in Biology and Medicine 37, 21–27 (2007)

    Article  Google Scholar 

  5. Ozbay, Y., Ceylan, R., Karlik, B.: A fuzzy clustering neural network architecture for classification of ECG arrhythmias. Computers in Biology and Medicine 36(4), 376–388 (2006)

    Article  Google Scholar 

  6. Polat, K., Sahan, S., Gunes, S.: A new method to medical diagnosis: artificial immune recognition system (AIRS) with fuzzy weighted pre-processing and application to ECG arrhythmia. Expert Systems with Applications 31(2), 264–269 (2006)

    Article  Google Scholar 

  7. Turkoglu, I., Arslan, A., Ilkay, E.: An expert system for diagnosis of the heart valve diseases. Expert Systems with Applications 23(3), 229–236 (2002)

    Article  Google Scholar 

  8. Kannathal, N., Lim, C.M., Rajendra Acharya, U., Sadasivan, P.K.: Cardiac state diagnosis using adaptive neuro-fuzzy technique. Medical Engineering & Physics 28(8), 809–815 (2006)

    Article  Google Scholar 

  9. Ceylan, M., Ceylan, R., Dirgenali, F., Kara, S., Ozbay, Y.: Classification of carotid artery doppler signals in the early phase of atherosclerosis using complex-valued artificial neural network. Computers in Biology and Medicine 37, 28–36 (2007)

    Article  Google Scholar 

  10. Lapuerta, P., Azen, S.P., Labree, L.: Use of neural networks in predicting the risk of coronary artery disease. Computers and Biomedical Research 28(1), 38–52 (1995)

    Article  Google Scholar 

  11. Süt, N., Şenocak, M.: Assessment of the performances of multilayer perceptron neural networks in comparison with recurrent neural networks and two statistical methods for diagnosing coronary artery disease. Expert Systems 24(3), 131–142 (2007)

    Article  Google Scholar 

  12. Scott, J.A., Aziz, K., Yasuda, T., Gewirtz, H.: Integration of clinical and imaging data to predict the presence of coronary artery disease using neural networks. Journal of Nuclear Cardiology 11(4), 26 (2004)

    Article  Google Scholar 

  13. Kurt, I., Ture, M., Kurum, A.T.: Comparing performances of logistic regression, classification and regression tree, and neural networks for predicting coronary artery disease. Expert Systems with Applications 34, 366–374 (2008)

    Article  Google Scholar 

  14. Zhidong, Z.: Noninvasive diagnosis of coronary artery disease based on instantaneous frequency of diastolic murmurs and SVM. In: Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, pp. 5651–5654 (2005)

    Google Scholar 

  15. Cios, K.J., Goodenday, L.S.: Hybrid intelligence system for diagnosing coronary stenosis. Combining fuzzy generalized operators with decision rules generated by machine learning algorithms. IEEE Engineering in Medicine and Biology Magazine 13(5), 723–729 (1994)

    Article  Google Scholar 

  16. Mobley, B.A., Moore, W.E., Schechter, E., Eichner, J.E., McKee, P.A.: Neural network predictions of significant coronary artery stenosis in women. Computational Intelligence Processing in Medical Diagnosis, 261–290 (2002)

    Google Scholar 

  17. Mobley, B.A., Moore, W.E., Schechter, E., Eichner, J.E., McKee, P.A.: Neural network predictions of significant coronary artery stenosis in men. Artificial Intelligence in Medicine 34, 151–161 (2005)

    Article  Google Scholar 

  18. Rumelhart, D.E., McClelland, J.L.: PDP Research Group: Paralel distributed processing: exploration in the microstructure of cognition, vol. 1, p. 950. MIT Press, MA (1989)

    Google Scholar 

  19. Sagiroglu, S., Colak, I., Bayindir, R.: Power factor correction technique based on artificial neural networks. Energy Conversion and Management 47(18-19), 3204–3215 (2006)

    Article  Google Scholar 

  20. Serhatlioglu, S., Hardalac, F., Guler, I.: Classification of transcranial doppler signals using artificial neural network. Journal of Medical Systems 27, 205–214 (2003)

    Article  Google Scholar 

  21. Pao, Y.H.: Adaptive pattern recognition and neural networks. Addison-Wesley, Reading (1989)

    MATH  Google Scholar 

  22. Vapnik, V.: The nature of statistical learning theory. Springer, New York (1995)

    Book  MATH  Google Scholar 

  23. Gunn, S.R.: Support vector machines for classification and regression. ISIS, Technical Report, University of Southampton, Department of Electrical and Computer Science (1998)

    Google Scholar 

  24. Chen, K.Y., Wang, C.H.: A hybrid SARIMA and support vector machines in forecasting the production values of the machinery industry in Taiwan. Expert Systems with Applications 32(1), 254–264 (2007)

    Article  MathSciNet  Google Scholar 

  25. Kulkarni, A., Jayaraman, V.K., Kulkarni, B.D.: Support vector classification with parameter tuning assisted by agent-based technique. Computers and Chemical Engineering 28, 311–318 (2004)

    Article  Google Scholar 

  26. Seo, K.K.: An application of one-class support vector machines in content-based image retrieval. Expert Systems with Applications 33(2), 491–498 (2007)

    Article  Google Scholar 

  27. Takeuchi, K., Collier, N.: Bio-medical entity extraction using support vector machines. Artificial Intelligence in Medicine 33(2), 125–137 (2003)

    Article  Google Scholar 

  28. An, S., Liu, W., Venkatesh, S.: Fast cross-validation algorithms for least squares support vector machine and kernel ridge regression. Pattern Recognition 40, 2154–2162 (2007)

    Article  MATH  Google Scholar 

  29. Shao, J.: Linear model selection by cross-validation. Journal of American Statistical Association 88, 486–494 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nielsen, C., Lang, R.S.: Principles of screening. The Medical Clinics of North America 83(6), 1323–1337 (1999)

    Article  Google Scholar 

  31. Agresti, A.: An introduction to categorical data analysis, 2nd edn. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  32. Sprent, P., Smeeton, N.C.: Applied non-parametric statistical methods, 3rd edn. Chapman & Hall, Boca Raton (1999)

    MATH  Google Scholar 

  33. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Babaoğlu, İ., Baykan, Ö.K., Aygül, N., Özdemir, K., Bayrak, M. (2010). A Comparison of Artificial Intelligence Methods on Determining Coronary Artery Disease. In: Papasratorn, B., Lavangnananda, K., Chutimaskul, W., Vanijja, V. (eds) Advances in Information Technology. IAIT 2010. Communications in Computer and Information Science, vol 114. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16699-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16699-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16698-3

  • Online ISBN: 978-3-642-16699-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics