Skip to main content

Fibronectin and Other Adhesive Glycoproteins

  • Chapter
  • First Online:
The Extracellular Matrix: an Overview

Part of the book series: Biology of Extracellular Matrix ((BEM))

Abstract

Cells adhere to the extracellular matrix through interaction with adhesive extracellular matrix glycoproteins, including fibronectin, laminins, vitronectin, thrombospondins, tenascins, entactins (or nidogens), nephronectin, fibrinogen, and others. Most adhesive glycoproteins bind cells through cell surface integrin receptors in conjunction with other cell surface receptors, such as dystroglycans and syndecans, and interact with other extracellular matrix proteins to form an intensive matrix network. Interactions between cells and the extracellular matrix may mediate many cellular responses, such as cell migration, growth, differentiation, and survival. Cells receive and respond to signals from surrounding extracellular matrix, and in turn, modulate surrounding extracellular matrix through control of matrix assembly. This chapter discusses the adhesive glycoproteins and focuses on the interaction between integrins and adhesive glycoproteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JC (1997) Thrombospondin-1. Int J Biochem Cell Biol 29:861–865

    Article  CAS  PubMed  Google Scholar 

  • Adams JC, Monk R, Taylor AL, Ozbek S, Fascetti N, Baumgartner S, Engel J (2003) Characterisation of Drosophila thrombospondin defines an early origin of pentameric thrombospondins. J Mol Biol 328:479–494

    Article  CAS  PubMed  Google Scholar 

  • Akiyama SK, Yamada SS, Chen WT, Yamada KM (1989) Analysis of fibronectin receptor function with monoclonal antibodies: roles in cell adhesion, migration, matrix assembly, and cytoskeletal organization. J Cell Biol 109:863–875

    Article  CAS  PubMed  Google Scholar 

  • Ambort D, Brellier F, Becker-Pauly C, Stocker W, Andrejevic-Blant S, Chiquet M, Sterchi EE (2010) Specific processing of tenascin-C by the metalloprotease meprinbeta neutralizes its inhibition of cell spreading. Matrix Biol 29:31–42

    Article  CAS  PubMed  Google Scholar 

  • Andrews MR, Czvitkovich S, Dassie E, Vogelaar CF, Faissner A, Blits B, Gage FH, Ffrench-Constant C, Fawcett JW (2009) Alpha9 integrin promotes neurite outgrowth on tenascin-C and enhances sensory axon regeneration. J Neurosci 29:5546–5557

    Article  CAS  PubMed  Google Scholar 

  • Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–24761

    CAS  PubMed  Google Scholar 

  • Bae E, Sakai T, Mosher DF (2004) Assembly of exogenous fibronectin by fibronectin-null cells is dependent on the adhesive substrate. J Biol Chem 279:35749–35759

    Article  CAS  PubMed  Google Scholar 

  • Bagavandoss P, Wilks JW (1990) Specific inhibition of endothelial cell proliferation by thrombospondin. Biochem Biophys Res Commun 170:867–872

    Article  CAS  PubMed  Google Scholar 

  • Banno A, Ginsberg MH (2008) Integrin activation. Biochem Soc Trans 36:229–234

    Article  CAS  PubMed  Google Scholar 

  • Barkalow FJ, Schwarzbauer JE (1991) Localization of the major heparin-binding site in fibronectin. J Biol Chem 266:7812–7818

    CAS  PubMed  Google Scholar 

  • Baron M, Norman D, Willis A, Campbell ID (1990) Structure of the fibronectin type 1 module. Nature 345:642–646

    Article  CAS  PubMed  Google Scholar 

  • Bazigou E, Xie S, Chen C, Weston A, Miura N, Sorokin L, Adams R, Muro AF, Sheppard D, Makinen T (2009) Integrin-alpha9 is required for fibronectin matrix assembly during lymphatic valve morphogenesis. Dev Cell 17:175–186

    Article  CAS  PubMed  Google Scholar 

  • Belkin AM, Stepp MA (2000) Integrins as receptors for laminins. Microsc Res Tech 51:280–301

    Article  CAS  PubMed  Google Scholar 

  • Bernard BA, Yamada KM, Olden K (1982) Carbohydrates selectively protect a specific domain of fibronectin against proteases. J Biol Chem 257:8549–8554

    CAS  PubMed  Google Scholar 

  • Beyth RJ, Culp LA (1984) Complementary adhesive responses of human skin fibroblasts to the cell-binding domain of fibronectin and the heparan sulfate-binding protein, platelet factor-4. Exp Cell Res 155:537–548

    Article  CAS  PubMed  Google Scholar 

  • Bingham RJ, Rudino-Pinera E, Meenan NA, Schwarz-Linek U, Turkenburg JP, Hook M, Garman EF, Potts JR (2008) Crystal structures of fibronectin-binding sites from Staphylococcus aureus FnBPA in complex with fibronectin domains. Proc Natl Acad Sci USA 105:12254–12258

    Article  CAS  PubMed  Google Scholar 

  • Bork P, Doolittle RF (1992) Proposed acquisition of an animal protein domain by bacteria. Proc Natl Acad Sci USA 89:8990–8994

    Article  CAS  PubMed  Google Scholar 

  • Brandenberger R, Schmidt A, Linton J, Wang D, Backus C, Denda S, Muller U, Reichardt LF (2001) Identification and characterization of a novel extracellular matrix protein nephronectin that is associated with integrin alpha8beta1 in the embryonic kidney. J Cell Biol 154:447–458

    Article  CAS  PubMed  Google Scholar 

  • Brooks PC, Clark RA, Cheresh DA (1994) Requirement of vascular integrin alpha v beta 3 for angiogenesis. Science 264:569–571

    Article  CAS  PubMed  Google Scholar 

  • Burton-Wurster N, Gendelman R, Chen H, Gu DN, Tetreault JW, Lust G, Schwarzbauer JE, MacLeod JN (1999) The cartilage-specific (V + C)- fibronectin isoform exists primarily in homodimeric and monomeric configurations. Biochem J 341(Pt 3):555–561

    Article  CAS  PubMed  Google Scholar 

  • Cardin AD, Weintraub HJ (1989) Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis 9:21–32

    CAS  PubMed  Google Scholar 

  • Carlson CB, Bernstein DA, Annis DS, Misenheimer TM, Hannah BL, Mosher DF, Keck JL (2005) Structure of the calcium-rich signature domain of human thrombospondin-2. Nat Struct Mol Biol 12:910–914

    Article  CAS  PubMed  Google Scholar 

  • Carnemolla B, Leprini A, Allemanni G, Saginati M, Zardi L (1992) The inclusion of the type III repeat ED-B in the fibronectin molecule generates conformational modifications that unmask a cryptic sequence. J Biol Chem 267:24689–24692

    CAS  PubMed  Google Scholar 

  • Chen H, Sottile J, O’Rourke KM, Dixit VM, Mosher DF (1994) Properties of recombinant mouse thrombospondin 2 expressed in Spodoptera cells. J Biol Chem 269:32226–32232

    CAS  PubMed  Google Scholar 

  • Cho J, Mosher DF (2006) Enhancement of thrombogenesis by plasma fibronectin cross-linked to fibrin and assembled in platelet thrombi. Blood 107:3555–3563

    Article  CAS  PubMed  Google Scholar 

  • Collier IE, Wilhelm SM, Eisen AZ, Marmer BL, Grant GA, Seltzer JL, Kronberger A, He CS, Bauer EA, Goldberg GI (1988) H-ras oncogene-transformed human bronchial epithelial cells (TBE-1) secrete a single metalloprotease capable of degrading basement membrane collagen. J Biol Chem 263:6579–6587

    CAS  PubMed  Google Scholar 

  • Colognato H, Yurchenco PD (2000) Form and function: the laminin family of heterotrimers. Dev Dyn 218:213–234

    Article  CAS  PubMed  Google Scholar 

  • Colucci S, Giannelli G, Grano M, Faccio R, Quaranta V, Zallone AZ (1996) Human osteoclast-like cells selectively recognize laminin isoforms, an event that induces migration and activates Ca2+ mediated signals. J Cell Sci 109(Pt 6):1527–1535

    CAS  PubMed  Google Scholar 

  • Constantine KL, Brew SA, Ingham KC, Llinas M (1992) 1H-n.m.r. studies of the fibronectin 13 kDa collagen-binding fragment. Evidence for autonomous conserved type I and type II domain folds. Biochem J 283(Pt 1):247–254

    CAS  PubMed  Google Scholar 

  • Coussen F, Choquet D, Sheetz MP, Erickson HP (2002) Trimers of the fibronectin cell adhesion domain localize to actin filament bundles and undergo rearward translocation. J Cell Sci 115:2581–2590

    CAS  PubMed  Google Scholar 

  • Curnis F, Longhi R, Crippa L, Cattaneo A, Dondossola E, Bachi A, Corti A (2006) Spontaneous formation of L-isoaspartate and gain of function in fibronectin. J Biol Chem 281:36466–36476

    Article  CAS  PubMed  Google Scholar 

  • Darribere T, Guida K, Larjava H, Johnson KE, Yamada KM, Thiery JP, Boucaut JC (1990) In vivo analyses of integrin beta 1 subunit function in fibronectin matrix assembly. J Cell Biol 110:1813–1823

    Article  CAS  PubMed  Google Scholar 

  • Dickinson CD, Gay DA, Parello J, Ruoslahti E, Ely KR (1994a) Crystals of the cell-binding module of fibronectin obtained from a series of recombinant fragments differing in length. J Mol Biol 238:123–127

    Article  CAS  PubMed  Google Scholar 

  • Dickinson CD, Veerapandian B, Dai XP, Hamlin RC, Xuong NH, Ruoslahti E, Ely KR (1994b) Crystal structure of the tenth type III cell adhesion module of human fibronectin. J Mol Biol 236:1079–1092

    Article  CAS  PubMed  Google Scholar 

  • Dong LJ, Hsieh JC, Chung AE (1995) Two distinct cell attachment sites in entactin are revealed by amino acid substitutions and deletion of the RGD sequence in the cysteine-rich epidermal growth factor repeat 2. J Biol Chem 270:15838–15843

    Article  CAS  PubMed  Google Scholar 

  • Dzamba BJ, Jakab KR, Marsden M, Schwartz MA, DeSimone DW (2009) Cadherin adhesion, tissue tension, and noncanonical Wnt signaling regulate fibronectin matrix organization. Dev Cell 16:421–432

    Article  CAS  PubMed  Google Scholar 

  • Elices MJ, Tsai V, Strahl D, Goel AS, Tollefson V, Arrhenius T, Wayner EA, Gaeta FC, Fikes JD, Firestein GS (1994) Expression and functional significance of alternatively spliced CS1 fibronectin in rheumatoid arthritis microvasculature. J Clin Invest 93:405–416

    Article  CAS  PubMed  Google Scholar 

  • Engel J, Odermatt E, Engel A, Madri JA, Furthmayr H, Rohde H, Timpl R (1981) Shapes, domain organizations and flexibility of laminin and fibronectin, two multifunctional proteins of the extracellular matrix. J Mol Biol 150:97–120

    Article  CAS  PubMed  Google Scholar 

  • Engvall E, Ruoslahti E, Miller EJ (1978) Affinity of fibronectin to collagens of different genetic types and to fibrinogen. J Exp Med 147:1584–1595

    Article  CAS  PubMed  Google Scholar 

  • Ensenberger MG, Annis DS, Mosher DF (2004) Actions of the functional upstream domain of protein F1 of Streptococcus pyogenes on the conformation of fibronectin. Biophys Chem 112:201–207

    Article  CAS  PubMed  Google Scholar 

  • Erat MC, Slatter DA, Lowe ED, Millard CJ, Farndale RW, Campbell ID, Vakonakis I (2009) Identification and structural analysis of type I collagen sites in complex with fibronectin fragments. Proc Natl Acad Sci USA 106:4195–4200

    Article  CAS  PubMed  Google Scholar 

  • Erickson HP, Carrell N, McDonagh J (1981) Fibronectin molecule visualized in electron microscopy: a long, thin, flexible strand. J Cell Biol 91:673–678

    Article  CAS  PubMed  Google Scholar 

  • Esemuede N, Lee T, Pierre-Paul D, Sumpio BE, Gahtan V (2004) The role of thrombospondin-1 in human disease. J Surg Res 122:135–142

    Article  CAS  PubMed  Google Scholar 

  • Etheredge RE, Han S, Fossel E, Tanzer ML, Glimcher MJ (1985) Identification and quantitation of O-phosphoserine in human plasma fibronectin. FEBS Lett 186:259–262

    Article  CAS  PubMed  Google Scholar 

  • Felding-Habermann B, Cheresh DA (1993) Vitronectin and its receptors. Curr Opin Cell Biol 5:864–868

    Article  CAS  PubMed  Google Scholar 

  • ffrench-Constant C (1995) Alternative splicing of fibronectin – many different proteins but few different functions. Exp Cell Res 221:261–271

    Article  CAS  PubMed  Google Scholar 

  • Fogerty FJ, Akiyama SK, Yamada KM, Mosher DF (1990) Inhibition of binding of fibronectin to matrix assembly sites by anti-integrin (alpha 5 beta 1) antibodies. J Cell Biol 111:699–708

    Article  CAS  PubMed  Google Scholar 

  • Fox JW, Mayer U, Nischt R, Aumailley M, Reinhardt D, Wiedemann H, Mann K, Timpl R, Krieg T, Engel J et al (1991) Recombinant nidogen consists of three globular domains and mediates binding of laminin to collagen type IV. EMBO J 10:3137–3146

    CAS  PubMed  Google Scholar 

  • Frazier WA (1991) Thrombospondins. Curr Opin Cell Biol 3:792–799

    Article  CAS  PubMed  Google Scholar 

  • Friedland JC, Lee MH, Boettiger D (2009) Mechanically activated integrin switch controls alpha5beta1 function. Science 323:642–644

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Yoshida N, Kataoka Y, Manabe R, Mizuno-Horikawa Y, Sato M, Kuriyama K, Yasui N, Sekiguchi K (2002) Mice lacking the EDB segment of fibronectin develop normally but exhibit reduced cell growth and fibronectin matrix assembly in vitro. Cancer Res 62:5603–5610

    CAS  PubMed  Google Scholar 

  • Gechtman Z, Belleli A, Lechpammer S, Shaltiel S (1997) The cluster of basic amino acids in vitronectin contributes to its binding of plasminogen activator inhibitor-1: evidence from thrombin-, elastase- and plasmin-cleaved vitronectins and anti-peptide antibodies. Biochem J 325(Pt 2):339–349

    CAS  PubMed  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  • George EL, Georges-Labouesse EN, Patel-King RS, Rayburn H, Hynes RO (1993) Defects in mesoderm, neural tube and vascular development in mouse embryos lacking fibronectin. Development 119:1079–1091

    CAS  PubMed  Google Scholar 

  • Giancotti FG, Ruoslahti E (1990) Elevated levels of the alpha 5 beta 1 fibronectin receptor suppress the transformed phenotype of Chinese hamster ovary cells. Cell 60:849–859

    Article  CAS  PubMed  Google Scholar 

  • Ginsberg MH, Partridge A, Shattil SJ (2005) Integrin regulation. Curr Opin Cell Biol 17:509–516

    Article  CAS  PubMed  Google Scholar 

  • Givant-Horwitz V, Davidson B, Reich R (2005) Laminin-induced signaling in tumor cells. Cancer Lett 223:1–10

    Article  CAS  PubMed  Google Scholar 

  • Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JC (1999) A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 10:259–270

    CAS  PubMed  Google Scholar 

  • Gresham HD, Graham IL, Griffin GL, Hsieh JC, Dong LJ, Chung AE, Senior RM (1996) Domain-specific interactions between entactin and neutrophil integrins. G2 domain ligation of integrin alpha3beta1 and E domain ligation of the leukocyte response integrin signal for different responses. J Biol Chem 271:30587–30594

    Article  CAS  PubMed  Google Scholar 

  • Guan JL, Hynes RO (1990) Lymphoid cells recognize an alternatively spliced segment of fibronectin via the integrin receptor alpha 4 beta 1. Cell 60:53–61

    Article  CAS  PubMed  Google Scholar 

  • Halliday NL, Tomasek JJ (1995) Mechanical properties of the extracellular matrix influence fibronectin fibril assembly in vitro. Exp Cell Res 217:109–117

    Article  CAS  PubMed  Google Scholar 

  • Harburger DS, Calderwood DA (2009) Integrin signalling at a glance. J Cell Sci 122:159–163

    Article  CAS  PubMed  Google Scholar 

  • Hintermann E, Quaranta V (2004) Epithelial cell motility on laminin-5: regulation by matrix assembly, proteolysis, integrins and erbB receptors. Matrix Biol 23:75–85

    Article  CAS  PubMed  Google Scholar 

  • Hirano H, Yamada Y, Sullivan M, de Crombrugghe B, Pastan I, Yamada KM (1983) Isolation of genomic DNA clones spanning the entire fibronectin gene. Proc Natl Acad Sci USA 80:46–50

    Article  CAS  PubMed  Google Scholar 

  • Hsieh JC, Wu C, Chung AE (1994) The binding of fibronectin to entactin is mediated through the 29 kDa amino terminal fragment of fibronectin and the G2 domain of entactin. Biochem Biophys Res Commun 199:1509–1517

    Article  CAS  PubMed  Google Scholar 

  • Huang JT, Lee V (2005) Identification and characterization of a novel human nephronectin gene in silico. Int J Mol Med 15:719–724

    CAS  PubMed  Google Scholar 

  • Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594

    CAS  PubMed  Google Scholar 

  • Humphries JD, Byron A, Humphries MJ (2006) Integrin ligands at a glance. J Cell Sci 119: 3901–3903

    Article  CAS  PubMed  Google Scholar 

  • Huveneers S, Truong H, Fassler R, Sonnenberg A, Danen EH (2008) Binding of soluble fibronectin to integrin alpha5 beta1 - link to focal adhesion redistribution and contractile shape. J Cell Sci 121:2452–2462

    Article  CAS  PubMed  Google Scholar 

  • Hynes R (1990) Fibronectins. Springer, New York

    Google Scholar 

  • Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110:673–687

    Article  CAS  PubMed  Google Scholar 

  • Hynes RO (2009) The extracellular matrix: not just pretty fibrils. Science 326:1216–1219

    Article  CAS  PubMed  Google Scholar 

  • Ido H, Harada K, Futaki S, Hayashi Y, Nishiuchi R, Natsuka Y, Li S, Wada Y, Combs AC, Ervasti JM, Sekiguchi K (2004) Molecular dissection of the alpha-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J Biol Chem 279:10946–10954

    Article  CAS  PubMed  Google Scholar 

  • Ido H, Harada K, Yagi Y, Sekiguchi K (2006) Probing the integrin-binding site within the globular domain of laminin-511 with the function-blocking monoclonal antibody 4C7. Matrix Biol 25:112–117

    Article  CAS  PubMed  Google Scholar 

  • Ido H, Ito S, Taniguchi Y, Hayashi M, Sato-Nishiuchi R, Sanzen N, Hayashi Y, Futaki S, Sekiguchi K (2008) Laminin isoforms containing the gamma3 chain are unable to bind to integrins due to the absence of the glutamic acid residue conserved in the C-terminal regions of the gamma1 and gamma2 chains. J Biol Chem 283:28149–28157

    Article  CAS  PubMed  Google Scholar 

  • Ido H, Nakamura A, Kobayashi R, Ito S, Li S, Futaki S, Sekiguchi K (2007) The requirement of the glutamic acid residue at the third position from the carboxyl termini of the laminin gamma chains in integrin binding by laminins. J Biol Chem 282:11144–11154

    Article  CAS  PubMed  Google Scholar 

  • Ingham KC, Brew SA, Atha DH (1990) Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem J 272:605–611

    CAS  PubMed  Google Scholar 

  • Ingham KC, Brew SA, Novokhatny VV (1995) Influence of carbohydrate on structure, stability, and function of gelatin-binding fragments of fibronectin. Arch Biochem Biophys 316:235–240

    Article  CAS  PubMed  Google Scholar 

  • Izzard CS, Radinsky R, Culp LA (1986) Substratum contacts and cytoskeletal reorganization of BALB/c 3T3 cells on a cell-binding fragment and heparin-binding fragments of plasma fibronectin. Exp Cell Res 165:320–336

    Article  CAS  PubMed  Google Scholar 

  • Jarnagin WR, Rockey DC, Koteliansky VE, Wang SS, Bissell DM (1994) Expression of variant fibronectins in wound healing: cellular source and biological activity of the EIIIA segment in rat hepatic fibrogenesis. J Cell Biol 127:2037–2048

    Article  CAS  PubMed  Google Scholar 

  • Jones FS, Jones PL (2000) The tenascin family of ECM glycoproteins: structure, function, and regulation during embryonic development and tissue remodeling. Dev Dyn 218:235–259

    Article  CAS  PubMed  Google Scholar 

  • Jones GE, Arumugham RG, Tanzer ML (1986) Fibronectin glycosylation modulates fibroblast adhesion and spreading. J Cell Biol 103:1663–1670

    Article  CAS  PubMed  Google Scholar 

  • Joshi P, Chung CY, Aukhil I, Erickson HP (1993) Endothelial cells adhere to the RGD domain and the fibrinogen-like terminal knob of tenascin. J Cell Sci 106(Pt 1):389–400

    CAS  PubMed  Google Scholar 

  • Kibbey MC, Grant DS, Kleinman HK (1992) Role of the SIKVAV site of laminin in promotion of angiogenesis and tumor growth: an in vivo Matrigel model. J Natl Cancer Inst 84:1633–1638

    Article  CAS  PubMed  Google Scholar 

  • Kohfeldt E, Sasaki T, Gohring W, Timpl R (1998) Nidogen-2: a new basement membrane protein with diverse binding properties. J Mol Biol 282:99–109

    Article  CAS  PubMed  Google Scholar 

  • Kornblihtt AR, Pesce CG, Alonso CR, Cramer P, Srebrow A, Werbajh S, Muro AF (1996) The fibronectin gene as a model for splicing and transcription studies. FASEB J 10:248–257

    CAS  PubMed  Google Scholar 

  • Kosmehl H, Berndt A, Katenkamp D (1996) Molecular variants of fibronectin and laminin: structure, physiological occurrence and histopathological aspects. Virchows Arch 429: 311–322

    Article  CAS  PubMed  Google Scholar 

  • Kost C, Stuber W, Ehrlich HJ, Pannekoek H, Preissner KT (1992) Mapping of binding sites for heparin, plasminogen activator inhibitor-1, and plasminogen to vitronectin's heparin-binding region reveals a novel vitronectin-dependent feedback mechanism for the control of plasmin formation. J Biol Chem 267:12098–12105

    CAS  PubMed  Google Scholar 

  • Kubota S, Tashiro K, Yamada Y (1992) Signaling site of laminin with mitogenic activity. J Biol Chem 267:4285–4288

    CAS  PubMed  Google Scholar 

  • Kvansakul M, Adams JC, Hohenester E (2004) Structure of a thrombospondin C-terminal fragment reveals a novel calcium core in the type 3 repeats. EMBO J 23:1223–1233

    Article  CAS  PubMed  Google Scholar 

  • Kvansakul M, Hopf M, Ries A, Timpl R, Hohenester E (2001) Structural basis for the high-affinity interaction of nidogen-1 with immunoglobulin-like domain 3 of perlecan. EMBO J 20:5342–5346

    Article  CAS  PubMed  Google Scholar 

  • Lark MW, Laterra J, Culp LA (1985) Close and focal contact adhesions of fibroblasts to a fibronectin-containing matrix. Fed Proc 44:394–403

    CAS  PubMed  Google Scholar 

  • Laterra J, Norton EK, Izzard CS, Culp LA (1983a) Contact formation by fibroblasts adhering to heparan sulfate-binding substrata (fibronectin or platelet factor 4). Exp Cell Res 146:15–27

    Article  CAS  PubMed  Google Scholar 

  • Laterra J, Silbert JE, Culp LA (1983b) Cell surface heparan sulfate mediates some adhesive responses to glycosaminoglycan-binding matrices, including fibronectin. J Cell Biol 96: 112–123

    Article  CAS  PubMed  Google Scholar 

  • Lawler J (2000) The functions of thrombospondin-1 and-2. Curr Opin Cell Biol 12:634–640

    Article  CAS  PubMed  Google Scholar 

  • Lawler J, Hynes RO (1989) An integrin receptor on normal and thrombasthenic platelets that binds thrombospondin. Blood 74:2022–2027

    CAS  PubMed  Google Scholar 

  • Lawler J, Weinstein R, Hynes RO (1988) Cell attachment to thrombospondin: the role of ARG-GLY-ASP, calcium, and integrin receptors. J Cell Biol 107:2351–2361

    Article  CAS  PubMed  Google Scholar 

  • Leahy DJ, Aukhil I, Erickson HP (1996) 2.0 A crystal structure of a four-domain segment of human fibronectin encompassing the RGD loop and synergy region. Cell 84:155–164

    Article  CAS  PubMed  Google Scholar 

  • Leikina E, Mertts MV, Kuznetsova N, Leikin S (2002) Type I collagen is thermally unstable at body temperature. Proc Natl Acad Sci USA 99:1314–1318

    Article  CAS  PubMed  Google Scholar 

  • Leiss M, Beckmann K, Giros A, Costell M, Fassler R (2008) The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20:502–507

    Article  CAS  PubMed  Google Scholar 

  • Li S, Harrison D, Carbonetto S, Fassler R, Smyth N, Edgar D, Yurchenco PD (2002) Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol 157:1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Liao YF, Gotwals PJ, Koteliansky VE, Sheppard D, Van De Water L (2002) The EIIIA segment of fibronectin is a ligand for integrins alpha 9beta 1 and alpha 4beta 1 providing a novel mechanism for regulating cell adhesion by alternative splicing. J Biol Chem 277:14467–14474

    Article  CAS  PubMed  Google Scholar 

  • Linton JM, Martin GR, Reichardt LF (2007) The ECM protein nephronectin promotes kidney development via integrin alpha8beta1-mediated stimulation of Gdnf expression. Development 134:2501–2509

    Article  CAS  PubMed  Google Scholar 

  • Liu MC, Lipmann F (1985) Isolation of tyrosine-O-sulfate by Pronase hydrolysis from fibronectin secreted by Fujinami sarcoma virus-infected rat fibroblasts. Proc Natl Acad Sci USA 82:34–37

    Article  CAS  PubMed  Google Scholar 

  • Lotz MM, Burdsal CA, Erickson HP, McClay DR (1989) Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol 109:1795–1805

    Article  CAS  PubMed  Google Scholar 

  • MacLeod JN, Burton-Wurster N, Gu DN, Lust G (1996) Fibronectin mRNA splice variant in articular cartilage lacks bases encoding the V, III-15, and I-10 protein segments. J Biol Chem 271:18954–18960

    Article  CAS  PubMed  Google Scholar 

  • Magnusson MK, Mosher DF (1998) Fibronectin: structure, assembly, and cardiovascular implications. Arterioscler Thromb Vasc Biol 18:1363–1370

    CAS  PubMed  Google Scholar 

  • Main AL, Harvey TS, Baron M, Boyd J, Campbell ID (1992) The three-dimensional structure of the tenth type III module of fibronectin: an insight into RGD-mediated interactions. Cell 71:671–678

    Article  CAS  PubMed  Google Scholar 

  • Majack RA, Goodman LV, Dixit VM (1988) Cell surface thrombospondin is functionally essential for vascular smooth muscle cell proliferation. J Cell Biol 106:415–422

    Article  CAS  PubMed  Google Scholar 

  • Malinda KM, Kleinman HK (1996) The laminins. Int J Biochem Cell Biol 28:957–959

    Article  CAS  PubMed  Google Scholar 

  • Manabe R, Ohe N, Maeda T, Fukuda T, Sekiguchi K (1997) Modulation of cell-adhesive activity of fibronectin by the alternatively spliced EDA segment. J Cell Biol 139:295–307

    Article  CAS  PubMed  Google Scholar 

  • Manabe R, Tsutsui K, Yamada T, Kimura M, Nakano I, Shimono C, Sanzen N, Furutani Y, Fukuda T, Oguri Y, Shimamoto K, Kiyozumi D, Sato Y, Sado Y, Senoo H, Yamashina S, Fukuda S, Kawai J, Sugiura N, Kimata K, Hayashizaki Y, Sekiguchi K (2008) Transcriptome-based systematic identification of extracellular matrix proteins. Proc Natl Acad Sci USA 105:12849–12854

    Article  CAS  PubMed  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    Article  CAS  PubMed  Google Scholar 

  • Marshall JF, Rutherford DC, McCartney AC, Mitjans F, Goodman SL, Hart IR (1995) Alpha v beta 1 is a receptor for vitronectin and fibrinogen, and acts with alpha 5 beta 1 to mediate spreading on fibronectin. J Cell Sci 108(Pt 3):1227–1238

    CAS  PubMed  Google Scholar 

  • Mayer U, Kohfeldt E, Timpl R (1998) Structural and genetic analysis of laminin-nidogen interaction. Ann NY Acad Sci 857:130–142

    Article  CAS  PubMed  Google Scholar 

  • McDonald JA, Quade BJ, Broekelmann TJ, LaChance R, Forsman K, Hasegawa E, Akiyama S (1987) Fibronectin’s cell-adhesive domain and an amino-terminal matrix assembly domain participate in its assembly into fibroblast pericellular matrix. J Biol Chem 262:2957–2967

    CAS  PubMed  Google Scholar 

  • McKeown-Longo PJ, Mosher DF (1985) Interaction of the 70,000-mol-wt amino-terminal fragment of fibronectin with the matrix-assembly receptor of fibroblasts. J Cell Biol 100:364–374

    Article  CAS  PubMed  Google Scholar 

  • Meloty-Kapella CV, Degen M, Chiquet-Ehrismann R, Tucker RP (2008) Effects of tenascin-W on osteoblasts in vitro. Cell Tissue Res 334:445–455

    Article  PubMed  Google Scholar 

  • Menrad A, Menssen HD (2005) ED-B fibronectin as a target for antibody-based cancer treatments. Expert Opin Ther Targets 9:491–500

    Article  CAS  PubMed  Google Scholar 

  • Mercado ML, Nur-e-Kamal A, Liu HY, Gross SR, Movahed R, Meiners S (2004) Neurite outgrowth by the alternatively spliced region of human tenascin-C is mediated by neuronal alpha7beta1 integrin. J Neurosci 24:238–247

    Article  CAS  PubMed  Google Scholar 

  • Meredith JE Jr, Winitz S, Lewis JM, Hess S, Ren XD, Renshaw MW, Schwartz MA (1996) The regulation of growth and intracellular signaling by integrins. Endocr Rev 17:207–220

    CAS  PubMed  Google Scholar 

  • Midwood KS, Schwarzbauer JE (2002) Tenascin-C modulates matrix contraction via focal adhesion kinase- and Rho-mediated signaling pathways. Mol Biol Cell 13:3601–3613

    Article  CAS  PubMed  Google Scholar 

  • Millard CJ, Campbell ID, Pickford AR (2005) Gelatin binding to the 8F19F1 module pair of human fibronectin requires site-specific N-glycosylation. FEBS Lett 579:4529–4534

    Article  CAS  PubMed  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    Article  CAS  PubMed  Google Scholar 

  • Morrison PR, Edsall JT, Miller SG (1948) Preparation and properties of serum and plasma proteins; the separation of purified fibrinogen from fraction I of human plasma. J Am Chem Soc 70:3103–3108

    Article  CAS  PubMed  Google Scholar 

  • Mosesson MW, Umfleet RA (1970) The cold-insoluble globulin of human plasma. I. Purification, primary characterization, and relationship to fibrinogen and other cold-insoluble fraction components. J Biol Chem 245:5728–5736

    CAS  PubMed  Google Scholar 

  • Mosher D (1989) Fibronectin. Academic, San Diego

    Google Scholar 

  • Mosher DF (1990) Physiology of thrombospondin. Annu Rev Med 41:85–97

    Article  CAS  PubMed  Google Scholar 

  • Mostafavi-Pour Z, Askari JA, Whittard JD, Humphries MJ (2001) Identification of a novel heparin-binding site in the alternatively spliced IIICS region of fibronectin: roles of integrins and proteoglycans in cell adhesion to fibronectin splice variants. Matrix Biol 20:63–73

    Article  CAS  PubMed  Google Scholar 

  • Mould AP, Askari JA, Aota S, Yamada KM, Irie A, Takada Y, Mardon HJ, Humphries MJ (1997) Defining the topology of integrin alpha5beta1-fibronectin interactions using inhibitory anti-alpha5 and anti-beta1 monoclonal antibodies. Evidence that the synergy sequence of fibronectin is recognized by the amino-terminal repeats of the alpha5 subunit. J Biol Chem 272: 17283–17292

    Article  CAS  PubMed  Google Scholar 

  • Mould AP, Komoriya A, Yamada KM, Humphries MJ (1991) The CS5 peptide is a second site in the IIICS region of fibronectin recognized by the integrin alpha 4 beta 1. Inhibition of alpha 4 beta 1 function by RGD peptide homologues. J Biol Chem 266:3579–3585

    CAS  PubMed  Google Scholar 

  • Moyano JV, Carnemolla B, Albar JP, Leprini A, Gaggero B, Zardi L, Garcia-Pardo A (1999) Cooperative role for activated alpha4 beta1 integrin and chondroitin sulfate proteoglycans in cell adhesion to the heparin III domain of fibronectin. Identification of a novel heparin and cell binding sequence in repeat III5. J Biol Chem 274:135–142

    Article  CAS  PubMed  Google Scholar 

  • Moyano JV, Carnemolla B, Dominguez-Jimenez C, Garcia-Gila M, Albar JP, Sanchez-Aparicio P, Leprini A, Querze G, Zardi L, Garcia-Pardo A (1997) Fibronectin type III5 repeat contains a novel cell adhesion sequence, KLDAPT, which binds activated alpha4beta1 and alpha4beta7 integrins. J Biol Chem 272:24832–24836

    Article  CAS  PubMed  Google Scholar 

  • Muller U, Wang D, Denda S, Meneses JJ, Pedersen RA, Reichardt LF (1997) Integrin alpha8beta1 is critically important for epithelial-mesenchymal interactions during kidney morphogenesis. Cell 88:603–613

    Article  CAS  PubMed  Google Scholar 

  • Muro AF, Chauhan AK, Gajovic S, Iaconcig A, Porro F, Stanta G, Baralle FE (2003) Regulated splicing of the fibronectin EDA exon is essential for proper skin wound healing and normal lifespan. J Cell Biol 162:149–160

    Article  CAS  PubMed  Google Scholar 

  • Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD (2003) Plasma fibronectin promotes thrombus growth and stability in injured arterioles. Proc Natl Acad Sci USA 100:2415–2419

    Article  CAS  PubMed  Google Scholar 

  • Nishimura SL, Sheppard D, Pytela R (1994) Integrin alpha v beta 8. Interaction with vitronectin and functional divergence of the beta 8 cytoplasmic domain. J Biol Chem 269:28708–28715

    CAS  PubMed  Google Scholar 

  • Nishiuchi R, Takagi J, Hayashi M, Ido H, Yagi Y, Sanzen N, Tsuji T, Yamada M, Sekiguchi K (2006) Ligand-binding specificities of laminin-binding integrins: a comprehensive survey of laminin-integrin interactions using recombinant alpha3beta1, alpha6beta1, alpha7beta1 and alpha6beta4 integrins. Matrix Biol 25:189–197

    Article  CAS  PubMed  Google Scholar 

  • Nomizu M, Kuratomi Y, Malinda KM, Song SY, Miyoshi K, Otaka A, Powell SK, Hoffman MP, Kleinman HK, Yamada Y (1998) Cell binding sequences in mouse laminin alpha1 chain. J Biol Chem 273:32491–32499

    Article  CAS  PubMed  Google Scholar 

  • O’Leary JM, Hamilton JM, Deane CM, Valeyev NV, Sandell LJ, Downing AK (2004) Solution structure and dynamics of a prototypical chordin-like cysteine-rich repeat (von Willebrand Factor type C module) from collagen IIA. J Biol Chem 279:53857–53866

    Article  PubMed  CAS  Google Scholar 

  • Obara M, Kang MS, Yamada KM (1988) Site-directed mutagenesis of the cell-binding domain of human fibronectin: separable, synergistic sites mediate adhesive function. Cell 53:649–657

    Article  CAS  PubMed  Google Scholar 

  • Obara M, Sakuma T, Fujikawa K (2010) The third type III module of human fibronectin mediates cell adhesion and migration. J Biochem 147:327–335

    Article  CAS  PubMed  Google Scholar 

  • Ohashi T, Erickson HP (2005) Domain unfolding plays a role in superfibronectin formation. J Biol Chem 280:39143–39151

    Article  CAS  PubMed  Google Scholar 

  • Olden K, Pratt RM, Yamada KM (1979) Role of carbohydrate in biological function of the adhesive glycoprotein fibronectin. Proc Natl Acad Sci USA 76:3343–3347

    Article  CAS  PubMed  Google Scholar 

  • Orend G, Chiquet-Ehrismann R (2000) Adhesion modulation by antiadhesive molecules of the extracellular matrix. Exp Cell Res 261:104–110

    Article  CAS  PubMed  Google Scholar 

  • Ozhogina OA, Trexler M, Banyai L, Llinas M, Patthy L (2001) Origin of fibronectin type II (FN2) modules: structural analyses of distantly-related members of the kringle family idey the kringle domain of neurotrypsin as a potential link between FN2 domains and kringles. Protein Sci 10:2114–2122

    Article  CAS  PubMed  Google Scholar 

  • Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    Article  CAS  PubMed  Google Scholar 

  • Patarroyo M, Tryggvason K, Virtanen I (2002) Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12:197–207

    Article  CAS  PubMed  Google Scholar 

  • Paul JI, Hynes RO (1984) Multiple fibronectin subunits and their post-translational modifications. J Biol Chem 259:13477–13487

    CAS  PubMed  Google Scholar 

  • Pickford AR, Potts JR, Bright JR, Phan I, Campbell ID (1997) Solution structure of a type 2 module from fibronectin: implications for the structure and function of the gelatin-binding domain. Structure 5:359–370

    Article  CAS  PubMed  Google Scholar 

  • Pickford AR, Smith SP, Staunton D, Boyd J, Campbell ID (2001) The hairpin structure of the (6)F1(1)F2(2)F2 fragment from human fibronectin enhances gelatin binding. EMBO J 20: 1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Pierschbacher MD, Ruoslahti E (1984) Cell attachment activity of fibronectin can be duplicated by small synthetic fragments of the molecule. Nature 309:30–33

    Article  CAS  PubMed  Google Scholar 

  • Poschl E, Mayer U, Stetefeld J, Baumgartner R, Holak TA, Huber R, Timpl R (1996) Site-directed mutagenesis and structural interpretation of the nidogen binding site of the laminin gamma1 chain. EMBO J 15:5154–5159

    CAS  PubMed  Google Scholar 

  • Potts JR, Bright JR, Bolton D, Pickford AR, Campbell ID (1999) Solution structure of the N-terminal F1 module pair from human fibronectin. Biochemistry 38:8304–8312

    Article  CAS  PubMed  Google Scholar 

  • Preissner KT (1991) Structure and biological role of vitronectin. Annu Rev Cell Biol 7:275–310

    Article  CAS  PubMed  Google Scholar 

  • Prieto AL, Edelman GM, Crossin KL (1993) Multiple integrins mediate cell attachment to cytotactin/tenascin. Proc Natl Acad Sci USA 90:10154–10158

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Mann K, Nischt R, Fox JW, Chu ML, Krieg T, Timpl R (1993) Mapping of nidogen binding sites for collagen type IV, heparan sulfate proteoglycan, and zinc. J Biol Chem 268:10881–10887

    CAS  PubMed  Google Scholar 

  • Rozzo C, Ratti P, Ponzoni M, Cornaglia-Ferraris P (1993) Modulation of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrin heterodimers during human neuroblastoma cell differentiation. FEBS Lett 332:263–267

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E (2003) The RGD story: a personal account. Matrix Biol 22:459–465

    Article  CAS  PubMed  Google Scholar 

  • Ruoslahti E, Engvall E, Hayman EG, Spiro RG (1981) Comparative studies on amniotic fluid and plasma fibronectins. Biochem J 193:295–299

    CAS  PubMed  Google Scholar 

  • Salmivirta K, Talts JF, Olsson M, Sasaki T, Timpl R, Ekblom P (2002) Binding of mouse nidogen-2 to basement membrane components and cells and its expression in embryonic and adult tissues suggest complementary functions of the two nidogens. Exp Cell Res 279:188–201

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Gohring W, Pan TC, Chu ML, Timpl R (1995) Binding of mouse and human fibulin-2 to extracellular matrix ligands. J Mol Biol 254:892–899

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Uemura T, Morimitsu K, Sato-Nishiuchi R, Manabe R, Takagi J, Yamada M, Sekiguchi K (2009) Molecular basis of the recognition of nephronectin by integrin alpha8beta1. J Biol Chem 284:14524–14536

    Article  CAS  PubMed  Google Scholar 

  • Savill J, Dransfield I, Hogg N, Haslett C (1990) Vitronectin receptor-mediated phagocytosis of cells undergoing apoptosis. Nature 343:170–173

    Article  CAS  PubMed  Google Scholar 

  • Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF (1993) Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem 268:1066–1073

    CAS  PubMed  Google Scholar 

  • Scheele S, Nystrom A, Durbeej M, Talts JF, Ekblom M, Ekblom P (2007) Laminin isoforms in development and disease. J Mol Med 85:825–836

    Article  CAS  PubMed  Google Scholar 

  • Schnapp LM, Hatch N, Ramos DM, Klimanskaya IV, Sheppard D, Pytela R (1995) The human integrin alpha 8 beta 1 functions as a receptor for tenascin, fibronectin, and vitronectin. J Biol Chem 270:23196–23202

    Article  CAS  PubMed  Google Scholar 

  • Schvartz I, Seger D, Shaltiel S (1999) Vitronectin. Int J Biochem Cell Biol 31:539–544

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MA, Assoian RK (2001) Integrins and cell proliferation: regulation of cyclin-dependent kinases via cytoplasmic signaling pathways. J Cell Sci 114:2553–2560

    CAS  PubMed  Google Scholar 

  • Schwarz-Linek U, Hook M, Potts JR (2004) The molecular basis of fibronectin-mediated bacterial adherence to host cells. Mol Microbiol 52:631–641

    Article  CAS  PubMed  Google Scholar 

  • Schwarzbauer JE (1991) Identification of the fibronectin sequences required for assembly of a fibrillar matrix. J Cell Biol 113:1463–1473

    Article  CAS  PubMed  Google Scholar 

  • Sechler JL, Corbett SA, Schwarzbauer JE (1997) Modulatory roles for integrin activation and the synergy site of fibronectin during matrix assembly. Mol Biol Cell 8:2563–2573

    CAS  PubMed  Google Scholar 

  • Sechler JL, Cumiskey AM, Gazzola DM, Schwarzbauer JE (2000) A novel RGD-independent fibronectin assembly pathway initiated by alpha4beta1 integrin binding to the alternatively spliced V region. J Cell Sci 113(Pt 8):1491–1498

    CAS  PubMed  Google Scholar 

  • Seiffert D, Crain K, Wagner NV, Loskutoff DJ (1994) Vitronectin gene expression in vivo. Evidence for extrahepatic synthesis and acute phase regulation. J Biol Chem 269:19836–19842

    CAS  PubMed  Google Scholar 

  • Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI (1999) Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 18:1468–1479

    Article  CAS  PubMed  Google Scholar 

  • Shinde AV, Bystroff C, Wang C, Vogelezang MG, Vincent PA, Hynes RO, Van De Water L (2008) Identification of the peptide sequences within the EIIIA (EDA) segment of fibronectin that mediate integrin alpha9beta1-dependent cellular activities. J Biol Chem 283:2858–2870

    Article  CAS  PubMed  Google Scholar 

  • Skorstengaard K, Thogersen HC, Petersen TE (1984) Complete primary structure of the collagen-binding domain of bovine fibronectin. Eur J Biochem 140:235–243

    Article  CAS  PubMed  Google Scholar 

  • Skorstengaard K, Thogersen HC, Vibe-Pedersen K, Petersen TE, Magnusson S (1982) Purification of twelve cyanogen bromide fragments from bovine plasma fibronectin and the amino acid sequence of eight of them. Overlap evidence aligning two plasmic fragments, internal homology in gelatin-binding region and phosphorylation site near C terminus. Eur J Biochem 128:605–623

    Article  CAS  PubMed  Google Scholar 

  • Smith JW, Vestal DJ, Irwin SV, Burke TA, Cheresh DA (1990) Purification and functional characterization of integrin alpha v beta 5. An adhesion receptor for vitronectin. J Biol Chem 265:11008–11013

    CAS  PubMed  Google Scholar 

  • Sottile J, Schwarzbauer J, Selegue J, Mosher DF (1991) Five type I modules of fibronectin form a functional unit that binds to fibroblasts and Staphylococcus aureus. J Biol Chem 266: 12840–12843

    CAS  PubMed  Google Scholar 

  • Springer TA, Zhu J, Xiao T (2008) Structural basis for distinctive recognition of fibrinogen gammaC peptide by the platelet integrin alphaIIbbeta3. J Cell Biol 182:791–800

    Article  CAS  PubMed  Google Scholar 

  • Sriramarao P, Mendler M, Bourdon MA (1993) Endothelial cell attachment and spreading on human tenascin is mediated by alpha 2 beta 1 and alpha v beta 3 integrins. J Cell Sci 105(Pt 4): 1001–1012

    CAS  PubMed  Google Scholar 

  • Stetefeld J, Mayer U, Timpl R, Huber R (1996) Crystal structure of three consecutive laminin-type epidermal growth factor-like (LE) modules of laminin gamma1 chain harboring the nidogen binding site. J Mol Biol 257:644–657

    Article  CAS  PubMed  Google Scholar 

  • Sun X, Skorstengaard K, Mosher DF (1992) Disulfides modulate RGD-inhibitable cell adhesive activity of thrombospondin. J Cell Biol 118:693–701

    Article  CAS  PubMed  Google Scholar 

  • Takahashi S, Leiss M, Moser M, Ohashi T, Kitao T, Heckmann D, Pfeifer A, Kessler H, Takagi J, Erickson HP, Fassler R (2007) The RGD motif in fibronectin is essential for development but dispensable for fibril assembly. J Cell Biol 178:167–178

    Article  CAS  PubMed  Google Scholar 

  • Thiagarajan P, Kelly K (1988) Interaction of thrombin-stimulated platelets with vitronectin (S-protein of complement) substrate: inhibition by a monoclonal antibody to glycoprotein IIb–IIIa complex. Thromb Haemost 60:514–517

    CAS  PubMed  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Brown JC (1996) Supramolecular assembly of basement membranes. Bioessays 18: 123–132

    Article  CAS  PubMed  Google Scholar 

  • Timpl R, Tisi D, Talts JF, Andac Z, Sasaki T, Hohenester E (2000) Structure and function of laminin LG modules. Matrix Biol 19:309–317

    Article  CAS  PubMed  Google Scholar 

  • Tomasini BR, Mosher DF (1991) Vitronectin. Prog Hemost Thromb 10:269–305

    CAS  PubMed  Google Scholar 

  • Tomasini-Johansson BR, Annis DS, Mosher DF (2006) The N-terminal 70-kDa fragment of fibronectin binds to cell surface fibronectin assembly sites in the absence of intact fibronectin. Matrix Biol 25:282–293

    Article  CAS  PubMed  Google Scholar 

  • Tucker RP, Chiquet-Ehrismann R (2009) Evidence for the evolution of tenascin and fibronectin early in the chordate lineage. Int J Biochem Cell Biol 41:424–434

    Article  CAS  PubMed  Google Scholar 

  • Tzu J, Marinkovich MP (2008) Bridging structure with function: structural, regulatory, and developmental role of laminins. Int J Biochem Cell Biol 40:199–214

    Article  CAS  PubMed  Google Scholar 

  • Vogel T, Guo NH, Krutzsch HC, Blake DA, Hartman J, Mendelovitz S, Panet A, Roberts DD (1993) Modulation of endothelial cell proliferation, adhesion, and motility by recombinant heparin-binding domain and synthetic peptides from the type I repeats of thrombospondin. J Cell Biochem 53:74–84

    Article  CAS  PubMed  Google Scholar 

  • Wagner TE, Frevert CW, Herzog EL, Schnapp LM (2003) Expression of the integrin subunit alpha8 in murine lung development. J Histochem Cytochem 51:1307–1315

    CAS  PubMed  Google Scholar 

  • Watt FM (2002) Role of integrins in regulating epidermal adhesion, growth and differentiation. EMBO J 21:3919–3926

    Article  CAS  PubMed  Google Scholar 

  • Wayner EA, Garcia-Pardo A, Humphries MJ, McDonald JA, Carter WG (1989) Identification and characterization of the T lymphocyte adhesion receptor for an alternative cell attachment domain (CS-1) in plasma fibronectin. J Cell Biol 109:1321–1330

    Article  CAS  PubMed  Google Scholar 

  • Weeks BS, DiSalvo J, Kleinman HK (1990) Laminin-mediated process formation in neuronal cells involves protein dephosphorylation. J Neurosci Res 27:418–426

    Article  CAS  PubMed  Google Scholar 

  • Weeks BS, Papadopoulos V, Dym M, Kleinman HK (1991) cAMP promotes branching of laminin-induced neuronal processes. J Cell Physiol 147:62–67

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Waltz DA, Rao N, Drummond RJ, Rosenberg S, Chapman HA (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269:32380–32388

    CAS  PubMed  Google Scholar 

  • Wennerberg K, Lohikangas L, Gullberg D, Pfaff M, Johansson S, Fassler R (1996) Beta 1 integrin-dependent and -independent polymerization of fibronectin. J Cell Biol 132:227–238

    Article  CAS  PubMed  Google Scholar 

  • White DP, Caswell PT, Norman JC (2007) alpha v beta3 and alpha5beta1 integrin recycling pathways dictate downstream Rho kinase signaling to regulate persistent cell migration. J Cell Biol 177:515–525

    Article  CAS  PubMed  Google Scholar 

  • Williams MJ, Phan I, Harvey TS, Rostagno A, Gold LI, Campbell ID (1994) Solution structure of a pair of fibronectin type 1 modules with fibrin binding activity. J Mol Biol 235:1302–1311

    Article  CAS  PubMed  Google Scholar 

  • Woods A, Couchman JR, Johansson S, Hook M (1986) Adhesion and cytoskeletal organisation of fibroblasts in response to fibronectin fragments. EMBO J 5:665–670

    CAS  PubMed  Google Scholar 

  • Wu C, Chung AE, McDonald JA (1995a) A novel role for alpha 3 beta 1 integrins in extracellular matrix assembly. J Cell Sci 108(Pt 6):2511–2523

    CAS  PubMed  Google Scholar 

  • Wu C, Keivens VM, O’Toole TE, McDonald JA, Ginsberg MH (1995b) Integrin activation and cytoskeletal interaction are essential for the assembly of a fibronectin matrix. Cell 83:715–724

    Article  CAS  PubMed  Google Scholar 

  • Xiong JP, Stehle T, Zhang R, Joachimiak A, Frech M, Goodman SL, Arnaout MA (2002) Crystal structure of the extracellular segment of integrin alpha Vbeta3 in complex with an Arg-Gly-Asp ligand. Science 296:151–155

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Bae E, Zhang Q, Annis DS, Erickson HP, Mosher DF (2009) Display of cell surface sites for fibronectin assembly is modulated by cell adherence to 1F3 and C-terminal modules of fibronectin. PLoS ONE 4:e4113

    Article  PubMed  CAS  Google Scholar 

  • Yamada KM, Kennedy DW, Kimata K, Pratt RM (1980) Characterization of fibronectin interactions with glycosaminoglycans and identification of active proteolytic fragments. J Biol Chem 255:6055–6063

    CAS  PubMed  Google Scholar 

  • Yang JT, Hynes RO (1996) Fibronectin receptor functions in embryonic cells deficient in alpha 5 beta 1 integrin can be replaced by alpha V integrins. Mol Biol Cell 7:1737–1748

    CAS  PubMed  Google Scholar 

  • Yi XY, Wayner EA, Kim Y, Fish AJ (1998) Adhesion of cultured human kidney mesangial cells to native entactin: role of integrin receptors. Cell Adhes Commun 5:237–248

    Article  CAS  PubMed  Google Scholar 

  • Yokosaki Y, Matsuura N, Higashiyama S, Murakami I, Obara M, Yamakido M, Shigeto N, Chen J, Sheppard D (1998) Identification of the ligand binding site for the integrin alpha9 beta1 in the third fibronectin type III repeat of tenascin-C. J Biol Chem 273:11423–11428

    Article  CAS  PubMed  Google Scholar 

  • Yurchenco PD, Schittny JC (1990) Molecular architecture of basement membranes. FASEB J 4:1577–1590

    CAS  PubMed  Google Scholar 

  • Yurchenco PD, Wadsworth WG (2004) Assembly and tissue functions of early embryonic laminins and netrins. Curr Opin Cell Biol 16:572–579

    Article  CAS  PubMed  Google Scholar 

  • Zaidel-Bar R, Itzkovitz S, Ma’ayan A, Iyengar R, Geiger B (2007) Functional atlas of the integrin adhesome. Nat Cell Biol 9:858–867

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Checovich WJ, Peters DM, Albrecht RM, Mosher DF (1994) Modulation of cell surface fibronectin assembly sites by lysophosphatidic acid. J Cell Biol 127:1447–1459

    Article  CAS  PubMed  Google Scholar 

  • Zhang Q, Magnusson MK, Mosher DF (1997) Lysophosphatidic acid and microtubule-destabilizing agents stimulate fibronectin matrix assembly through Rho-dependent actin stress fiber formation and cell contraction. Mol Biol Cell 8:1415–1425

    CAS  PubMed  Google Scholar 

  • Zhang WM, Kapyla J, Puranen JS, Knight CG, Tiger CF, Pentikainen OT, Johnson MS, Farndale RW, Heino J, Gullberg D (2003) alpha 11beta 1 integrin recognizes the GFOGER sequence in interstitial collagens. J Biol Chem 278:7270–7277

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Saunders TL, Camper SA, Samuelson LC, Ginsburg D (1995) Vitronectin is not essential for normal mammalian development and fertility. Proc Natl Acad Sci USA 92: 12426–12430

    Article  CAS  PubMed  Google Scholar 

  • Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K (1998) Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J Cell Biol 141:539–551

    Article  CAS  PubMed  Google Scholar 

  • Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ (2003) How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 10:541–544

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Rowe RG, Hiraoka N, George JP, Wirtz D, Mosher DF, Virtanen I, Chernousov MA, Weiss SJ (2008) Fibronectin fibrillogenesis regulates three-dimensional neovessel formation. Genes Dev 22:1231–1243

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deane Mosher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Xu, J., Mosher, D. (2011). Fibronectin and Other Adhesive Glycoproteins. In: Mecham, R. (eds) The Extracellular Matrix: an Overview. Biology of Extracellular Matrix. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16555-9_2

Download citation

Publish with us

Policies and ethics