Skip to main content

Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies

  • Conference paper
Brain, Body and Machine

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 83))

Abstract

This paper introduces a novel family of robots that consist of cablesuspended bodies whose motion is not fully constrained. The robots are underactuated and exhibit a pendulum-like behavior. Based on the dynamicmodel, a technique is proposed to allow the planning of point-to-point trajectories with zero-velocity landing by making the robot swing itself similarly to children on playground swings. A three-degree-of-freedom planar robot is studied as an example and a prototype of the robot and its controller are presented. Experimental results clearly demonstrate the effectiveness of the proposed control technique. Underactuated cable-suspended robots have the potential to lead to low-cost solutions in applications that require the performance of point-to-point trajectories in a large workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cone, L.L.: Skycam: An aerial robotic camera system. Byte, 122–132 (1985)

    Google Scholar 

  2. Albus, J., Bostelman, R., Dagalakis, N.: The NIST ROBOCRANE. J. Res. Natl. Inst. Stand. Technol. 97, 373 (1992)

    Google Scholar 

  3. Bosscher, P.R., Tummino, M.: A concept for rapidly deployable cable robot search and rescue systems. In: Proceedings of the ASME IDETC/CIE, Long Beach CA, USA, pp. 1–10 (2005)

    Google Scholar 

  4. Fantoni, I., Lozano, R.: Non-linear control for underactuated mechanical systems. Springer, Heidelberg (2001)

    Google Scholar 

  5. Haddadin, S., Albu-Schaffer, A., Frommberger, M., Hirzinger, G.: The role of the robot mass and velocity in physical human-robot interaction-Part II: Constrained blunt impacts. In: Proc. of the IEEE ICRA, Pasadena CA, USA, 1339–1345 (2008)

    Google Scholar 

  6. Cunningham, D., Asada, H.: The Winch-Bot: A Cable-Suspended, Under-Actuated Robot Utilizing Parametric Self-Excitation. In: Proc. of the IEEE ICRA, Kobe, Japan, pp. 1844–1850 (2009)

    Google Scholar 

  7. Case, W.: The pumping of a swing from the standing position. American Journal of Physics 64, 215 (1996)

    Article  Google Scholar 

  8. Case, W., Swanson, M.: The pumping of a swing from the seated position. American Journal of Physics 58, 463 (1990)

    Article  Google Scholar 

  9. Tortopidis, I., Papadopoulos, E.: On point-to-point motion planning for underactuated space manipulator systems. Robotics and Autonomous Systems 55(2), 122–131 (2007)

    Article  Google Scholar 

  10. Curry, S.: How children swing. American Journal of Physics 44, 924 (1976)

    Article  Google Scholar 

  11. Pinsky, M., Zevin, A.: Oscillations of a pendulum with a periodically varying length and a model of swing. International Journal of Non Linear Mechanics 34(1), 105–110 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sanmartin Losada, J.: La physique de l’encensoir. Pour la science 155, 96–104 (1990)

    Google Scholar 

  13. Burns, J.: More on pumping a swing. American Journal of Physics 38, 920 (1970)

    Article  Google Scholar 

  14. Piccoli, B., Kulkarni, J.: Pumping a swing by standing and squatting: do children pump time optimally? IEEE Control Systems Magazine 25(4), 48–56 (2005)

    Article  Google Scholar 

  15. Lefrançois, S., Gosselin, C.: Point-to-point motion control of a pendulum-like 3-dof underactuated cable-driven robot. In: Proc. of the IEEE ICRA, Anchorage (2010)

    Google Scholar 

  16. Spong, M.: The swing up control problem for the acrobot. IEEE Control Systems Magazine 15(1), 49–55 (1995)

    Article  Google Scholar 

  17. Brown, S., Passino, K.: Intelligent control for an acrobot. Journal of Intelligent and Robotic Systems 18(3), 209–248 (1997)

    Article  MATH  Google Scholar 

  18. Boone, G.: Minimum-time control of the acrobot. In: In Proc. of the IEEE ICRA, Albuquerque NM, USA, pp. 111–111 (1997)

    Google Scholar 

  19. Nakanishi, J., Fukuda, T., Koditschek, D.: A brachiating robot controller. IEEE Transactions on Robotics and Automation 16(2), 109–123 (2000)

    Article  Google Scholar 

  20. Scheid, F.: Schaum’s outline of theory and problems of numerical analysis. Schaum’s Outline Series (1989)

    Google Scholar 

  21. Gore, B.: Starting a swing from rest. American Journal of Physics 39, 347 (1971)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gosselin, C., Lefrançois, S., Zoso, N. (2010). Underactuated Cable-Driven Robots: Machine, Control and Suspended Bodies. In: Angeles, J., Boulet, B., Clark, J.J., Kövecses, J., Siddiqi, K. (eds) Brain, Body and Machine. Advances in Intelligent and Soft Computing, vol 83. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16259-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16259-6_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16258-9

  • Online ISBN: 978-3-642-16259-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics