Skip to main content

Einsatz von Stoßwellen in der Medizin

  • Chapter
Medizintechnik

Zusammenfassung

Am 26.2.1980 wurde der erste Nierensteinpatient mit einer »extrakorporalen Stoßwellenlithotripsie (ESWL)« minimal invasiv von seinem Steinleiden befreit. Seit der Idee zu dieser revolutionären Behandlungsmethode waren ca. 10 Jahre Forschung und Entwicklung notwendig gewesen (Wess 2009).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Bergsdorf, Chaussy, Thüroff (2008) Energy coupling in extracorporeal shock wave lithotripsy - the impact of coupling quality on disintegration efficacy. J Endourol 22: A161 (Suppl)

    Google Scholar 

  • Bergsdorf, Thüroff, Chaussy (2005) The isolated perfused kidney: an in vitro test system for evaluation of renal tissue by high-energy shockwave sources. J Endourol 19:883–888

    Article  Google Scholar 

  • Berlinicke, Schenneten (1951) Vorläufige Mitteilung d.l.Med.Univ.Klin.d.Charite Berlin. Klin. Wschi. 21/22, p 390

    Google Scholar 

  • Bohris, Bayer, Lechner (2003) Hit/Miss Monitoring of ESWL by Spectral Doppler Ultrasound, Ultrasound Med Biol Vol 29(5): 705–712

    Article  Google Scholar 

  • Bohris, Jensen, Bayer, Liong (2006) A New Integrated Ultrasound System for Shockwave Lithotripsy. J Endourol 20(11)

    Google Scholar 

  • Bohris, Bayer, Gumpinger (2010) Ultrasound Monitoring of Kidney Stone Extracorporeal Shockwave Lithotripsy with an External Transducer: Does Fatty Tissue Cause Image Distortions That Affect Stone Comminution? JOURNAL OF ENDOUROLOGY Volume 24, Number 1, January 2010

    Google Scholar 

  • Carlson, Boysen, Banner, Gravenstein (1986) Stone Movement During ESWL. In: Gravenstein, P (ed) Extracorporeal shock-wave lithotripsy for renal stone disease, Butterworths: ESWL for Renal Stone Disease. Boston, pp 77–85

    Google Scholar 

  • Cathignol, Chapelon, Mestas et al. (1989) Minimization of the negative pressure in piezoelectric shock wave. Ultrasonics Int. Conf. Proc, pp 1142ff

    Google Scholar 

  • Cathignol, Tavakkoli, Arefiev (1998) Influence of the pressure time waveform on the transient cavitation effect. 135th ASA conf. Proc, pp 2799f, Seattle (WA)

    Google Scholar 

  • Cathignol, Mestas, Gomez, Lenz (1991) Influence of Water Conductivity on the Efficiency and the Reproducibility of Electrohydraulic Shock Wave Generation. Ultrasound Med Biol Vol.17(8): pp 8, 19–828

    Google Scholar 

  • Chapelon, Cathignol, Cain et al. (2000) New Piezoelectric Transducers for Therapeutic Ultrasound. Ultrasound Med Biol 26(1): 153–159

    Article  Google Scholar 

  • Chaussy (1980) Berührungsfreie Nierensteinzertrümmerung durch extrakorporal erzeugte, fokussierte Stoßwellen. S. Karger Verlag, Basel

    Google Scholar 

  • Chuong, Zhong, Preminger (1992) A comparison of stone damage caused by different modes of shock wave delivery. J.Urol. 148: 200

    Google Scholar 

  • Church (1999 On Nucleation Theory. DKE 821.3 Document 55/99, VDE, Frankfurt

    Google Scholar 

  • Cleveland, Bailey, Crum et al. (1998) Effect of Overpressure on Dissolution and Cavitation of Bubbles Stabilized on a Metal Surface, 135th ASA Conf. Proc, 2499–2500

    Google Scholar 

  • Coats (1956) The J.Of Urology 75(5): B65–876

    Google Scholar 

  • Coleman, Saunders (1990) A comparison of PVDF Hydrophone Measurements in the Acoustic Field of a Shock Wave Source. In: Extra und Intrakorporale Lithotripsie bei Harn-, Gallen-, Pankreas und Speichelsteinen, Thieme, Stuttgart, pp 15–22

    Google Scholar 

  • Coleman, Codama, Choi et al. (1995) The cavitation threshold of human tissue exposed to 0,2 M Hz pulsed ultrasound: Preliminary measurements based on a study of clinical lithotripsy«. UMB 21:405–417

    Google Scholar 

  • Coleman, Choi, Saunders (1996) Detection of acoustic emission from cavitation in tissue during clinical extracorporeal lithotripsy. Ultrasound Med. Biol. Vol. 22(8): 1079–1087

    Article  Google Scholar 

  • Coleman, Draguioti,Tiptaf et al. (1998) Acoustic Performance and Clinical Use of a Fiberoptic Hydrophone. UMB Vol. 24(1): 143–151

    Google Scholar 

  • Coussios, Roy (2008) Applications of Acoustics and Cavitation to Noninvasive Therapy and Drug Delivery. Annual Review of Fluid Mechanics 40: 395–420

    Article  MathSciNet  Google Scholar 

  • Crum, Bailey, Kaczkowski et al. (1998) Therapeutic Ultrasound: A Promising Future in Clinical Medicine. 135th ASA conf. Proc, pp 7, 19f, Seattle (WA)

    Google Scholar 

  • Dahmen, Meiss, Nam Skruodies (1992) Extrakorporale Stoßwellentherapie (ESWT) im knochennahen Weichteilbereich der Schulter. Extr Orthop 11: 25

    Google Scholar 

  • Delhaye, Vandermeeren, Baize, Cremer (1992) Extracorporeal shock wave lithotripsy of pancratic calculi. Gastroenterology 102:610–620

    Google Scholar 

  • Delius, Enders, Heine et al. (1987) Biological Effects of Shock Waves: Lung Hemorrhage by Shock Waves in Dogs – Pressure Dependence. UMB 13: 61–67

    Google Scholar 

  • Delius, Jordan, Eizenhöfer et al. (1988)BiologicaI Effects of Shock Waves: Kidney Haemorrhage by Shockwaves in Dogs – Administration Rate Dependence. Ultrasound Med Biol 14: 689–694

    Article  Google Scholar 

  • Delius, Denk, Berding et al. (1990) Biological Effects of Shock Waves: Cavitation by Shock Waves in Piglet Liver. Ultrasound Med Biol 16: 467–472

    Article  Google Scholar 

  • Delius M, Gambihler (1992) Sonographic imaging of extracorporeal Shockwave effects in the liver and gallbladder of dogs. Digestion, 52–60

    Google Scholar 

  • Delius, Ueberle, Gambihler (1994) The destruction of gall stones and model plaster stones by extracorporeal shock waves. Ultrasound in Med. & Biol. Vol. 20(3), pp 251–258

    Article  Google Scholar 

  • Delius, Hofschneider PH, Lauer U, Messmer K (1995) Extracorporeal shock waves for gene therapy? Lancet 345:1377

    Article  Google Scholar 

  • Delius, Draenert et al. (1995) Biological effects of shock waves: in vivo effect of high energy pulses on rabbit bone. Ultrasound in Med. and Biol. Vol. 21 (9): 12,19–1225

    Google Scholar 

  • Delius (1997 »Minimal static excess pressure minimizes the effect of extracorporeal shock waves on cells and reduces it on gallstones. UMB 23:611–617

    Google Scholar 

  • Delius (1998) Ueberle, Eisenmenger: »Extracorporeal Shock Waves Act by Shock Wave - Gas Bubble Interaction. Ultrasound Med. Biol. Vol. 24(7): 1055–1059

    Article  Google Scholar 

  • Delius (1999) Adams: Shock Wave Permeabilization with Ribosome Inactivationg Proteins: A New Approach to Tumor Therapy. Cancer Research 59:5227–5232

    Google Scholar 

  • DIGEST: www.digest-ev.de

  • DGSL (1995 Deutsche Gesellschaft für Stoßwellenlithotripsie: Konsensus-Workshop 4 der deutschen Gesellschaft für Stoßwellenlithotripsie. Die Stoßwelle. Attempto-Verlag, Tübingen

    Google Scholar 

  • DGSL (1999 Deutsche Gesellschaft für Stoßwellenlithotripsie, Mitgliederversammlung 1999: Anmerkung zum rechtzeitigen Absetzen von blutverdünnenden Mitteln vor ESWL

    Google Scholar 

  • Drach, Dretler, Fair et al. (1986) Report of the United States cooperative study of extracorporeal shock wave lithotripsy. J. Urol. Vol. 135:1127–1133

    Google Scholar 

  • Dreyer, Riedlinger, Steiger (1998) Experiments on the relation of shock wave parameters to stone disintegration. 135th ASA Conf. Proc, 2811–2812

    Google Scholar 

  • Dreyer, Krauss, Bauer, Riedlinger (2000) Investigations of Compact Self Focusing Transducers using Stacked Piezoelectric Elements for Strong Sound Pulses in Therapy, IEEE Ultrasonics Symposium Proc, 1239–1242

    Google Scholar 

  • Dreyer, Riedlinger (2001) Modeling of Piezoceramic Composite Transducer Structures Generating Strong Sound Pulses in Therapy. IEEE Ultrasonics Symposium Proc, 1027–1030

    Google Scholar 

  • Dreyer (2006) Systemmodellierung piezoelektrischer Sender zur Erzeugung hochintensiver Ultraschallimpulse für die medizinische Therapie, Forschungsberichte aus dem Institut für Höchstfrequenztechnik und Elektronik, Karlsruhe Band 49 ISSN 0942–2935

    Google Scholar 

  • Eisenmenger (1962) Elektromagnetische Erzeugung von ebenen Druckstössen in Flüssigkeiten. Akustische Beihefte, Acustica Heft 1:185–202

    Google Scholar 

  • Eisenmenger (2001) The Mechanisms of Stone Fragmentation in ESWL. Ultrasound Med Biol 27(5): 683–693

    Article  Google Scholar 

  • Eisenmenger (2003) Die Physik der akustischen Nierensteinzertrümmerung und neue klinische Resultate. Vortrag anläßlich der Verleihung der Hermann von Helmholtzmedaille bei der DAGA Tagung Aachen, Proceedings, DPG Verlag, Bad Honnef

    Google Scholar 

  • Evan, Willis, Connors et al. (1998) Separation of cavitation and renal injury induced by ahock wave lithotripsy (SWL) from SWL-induced impairment of renal hemodynamics. 135th ASA conf. Proc, pp 2487f, Seattle (WA)

    Google Scholar 

  • Evan, McAteer, Connors, Pishchalnikov, Handa, Blomgren, Willis, Williams, Lingeman, Gao (2007) Independent assessment of a wide-focus, low-pressure electromagnetic lithotripter: absence of renal bioeffects in the pig. BJU Int 101:382–388

    Article  Google Scholar 

  • Evan, McAteer, Connors, Blomgren, Lingeman (2007) Renal injury is significantly reduced by slowing the rate of shock wave delivery, BJU Int. 100,624–627

    Article  Google Scholar 

  • FDA (1991) Draft of suggested information for reporting extracorporeal Shockwave lithotripsy device Shockwave measurements, FDA, Rockville, USA

    Google Scholar 

  • FDA (2002-1) www.accessdata.fda.gov/cdrh_docs/pdf/P000048b.pdf

  • FDA (2002-2) www.accessdata.fda.gov/cdrh_docs/pdf/P010039b.pdf

  • Fedele, Coleman, Leighton, White, Hurrell (2004) A New Sensor for Detecting and Characterising Acoustic Cavitation in Vivo During ESWL. Proceedings of the Institute of Acoustics, vol. 26 Pt2: 422–432

    Google Scholar 

  • Fedele, Coleman, Leighton, White, Hurrell (2004) A New Sensor for Detecting and Characterising Acoustic Cavitation in vivo During ESWL. Proceedings of the Institute of Acoustics 26:422–432

    Google Scholar 

  • Feigl, Waldfahrer et al. (1995) Destruction of normal and malignant human cells by high-energy pulsed ultrasound. Proc World congress on Ultrasonics, pp 1087–1090

    Google Scholar 

  • Filipiczinsky (1990) Capacitance Hydrophone for Pressure Determination in Lithotripsy. Ultrasound Med Biol Vol. 16:157–165

    Article  Google Scholar 

  • Fink (1999) Time-reversed acoustics. Scientific American 281: 91 -97

    Article  Google Scholar 

  • Folbert, Hassler (1990) Die Wertigkeit von Inline-und Outline Ultraschall-Lokalisation in der extrakorporalen Stoßwellen-Lithotripsie. Z Urologie Poster I, p 46

    Google Scholar 

  • Forssmann, Ueberle, Bohris (2002) Towards a New EMSE Generation. J Endourol 16 (Suppl 2): 18–21

    Google Scholar 

  • Gambihler, Delius (1992) Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro. Ultrasound in Med. and Biol. Vol 18. No 6/7: 617–621

    Article  Google Scholar 

  • Gerber, Studer, Danuser (2005): Is Newer Always Better? A comparative Study of 3 Lithotriptor Generations. J Urol 2005 Jun; 173(6): 2013–6

    Google Scholar 

  • Granz, Köhler (1992) What makes a Shockwave efficient in lithotripsy?. J.Stone Dis, Vol. 4, No.2, April 1992, pp 123–125

    Google Scholar 

  • Granz, Nanke, Fehre, Pfister, Engelbrecht (2004) Light Spot Hydrophone, Innovation in Lithotripsy. Medical Solutions, June 2004, 86–87

    Google Scholar 

  • Haake, Boddecker, Decker et al. (2002) Side-effects od Extracorporeal Shock Wave Therapy (ESWT) in the Treatment of Tennis Elbow. Arch Orthop Trauma Surg 2002, may; 122(4): 222–8

    Google Scholar 

  • Harris (1989) Lithotripsy pulse measurement errors due to non-ideal hydrophone and amplifier frequency response. FDA, Rockville

    Google Scholar 

  • Haupt et al. (1992) Influence of shock waves on fracture healing. Urology 39, 6:529–532

    Article  Google Scholar 

  • Heimbach, Munver, Zhong et al. (2000) Acoustic and mechanical properties of artificial stones in comparison to natural stones« J. Urol. Vol. 164: 537–544

    Article  Google Scholar 

  • Hepp (1984) Überblick über die Entwicklung der Stoßwellenlithotripsie, September 1984. Dornier Medizintechnik, Friedrichshafen

    Google Scholar 

  • Hepp (1989) Work bond index values (persönliche Mitteilung)

    Google Scholar 

  • Herbertz (1993) Physikalische Grenzwerte für die sichere medizinische Anwendung des Ultraschalls am Menschen. DAGA, Fortschritte der Akustik, DPG-Verlag

    Google Scholar 

  • Herbertz (1988) Spontaneous Cavitation in Liquids Free of Nuclei. Fortschritte der Akustik DAGA 88, DPG Verlag, Bad Honnef, pp 439–442

    Google Scholar 

  • Hirata, Kushida, Ohguri et al. (1999) Hepatic subcapsular hematoma after extracorporeal shock wave lithotripsy (ESWL) for pancreatic stones« J Gastroenterol 1999 Dec; 34 (6): 713–6

    Google Scholar 

  • Holtum (1993) Eigenschaften und Desintegration von menschlichen Gallensteinen unter Stoßwelleneinwirkung. Dissertation, Stuttgart 1993

    Google Scholar 

  • HPA (2010) Report of the Health Protection Agency: Safety of Ultrasound and Infrasound 1265028759369.pdf, UK 2010, p 36

    Google Scholar 

  • IEC (1998) Norm 61846 Pressure Pulse Lithotripters, International Electrotechnical Commission, Genf 1998

    Google Scholar 

  • Iloreta, Zhou, Sankin, Zhong, Szeri (2007) Assessment of shock wave lithotripters via cavitation potential. Physics of Fluids 19: 86103

    Article  Google Scholar 

  • Iro, Nitsche, Schneider, Ell (1989) Extracorporeal shock wave lithotripsy of salivary gland stones. Lancet II:115

    Article  Google Scholar 

  • Jocham (1998) Report at the meeting of the German Society for Shockwave Lithotripsy

    Google Scholar 

  • Joechle (1996) Kavitationsdosimetrie in hochenergetischen Ultraschallfeldern« Dissertation, Heidelberg 1996

    Google Scholar 

  • Jordan, Bailey, Cleveland, Crum (1998) Detection of Lithotripsy Induced Cavitation in Blood. 135th ASA conf. Proc. pp 2809f, Seattle (WA)

    Google Scholar 

  • Kauleskar, Sukul et al. (1993) The effect of high energy shock waves focused on cortical bone. J. Surg. Res. 54:46–51

    Article  Google Scholar 

  • Kedrinskii (1998) On a mechanism of target disintegration at shock wave focusing in ESWL. 135th ASA Conf. Proc: 2803–2804

    Google Scholar 

  • Keller, Riedlinger (1990) Vergleich der Kavitation bei verschiedenen Stoßwellengeneratoren. Biomed. Tech. Ergänzungsband 35: 233–234

    Google Scholar 

  • Koch, Grünewald (1989) Disintegration mechanisms of weak acoustic shock waves. Ultras. Int. Conf. Proc 1136–1141

    Google Scholar 

  • Koch, Molkenstruck, Reibold (1997) Shock-Wave Measurement using a Calibrated Interferometric Fiber-tip Sensor. UMB Vol. 23, no. 8, pp 1259–1266

    Google Scholar 

  • Köhrmann, Kahmann, Weber et al. (1993) Vergleich verschiedener Lithotripter anhand der Desintegrativen Effektivität (DE) un Desintegrativen Bandbreite (DB) am In-vitro-Steinmodell. Akt. Urol. 24: 320–325

    Article  Google Scholar 

  • Köhrmann, Michel, Braun et al. (1999) New Interactive Navigation System for Integration of Fluoroscopic and Ultrasound Imaging«, J Endourol, Vol.13 Suppl 1, FP3–5 and 3–6, p A32

    Google Scholar 

  • Köhrmann (2005) Comparison of Lithotripters. Business Briefing European Pharmacotherapy, 90–93

    Google Scholar 

  • Kuttruff (1988) Physik und Technik des Ultraschalls. Hirzel, Stuttgart

    Google Scholar 

  • Kuwahara, Kambe,Taguchi etal. (1991) Initial Experience Using a New Extracorporeal Lithotripter With an Anti-Misshot Control Device. J. Lithotr. Stone Disease 3:141–146

    Google Scholar 

  • Lamport, Newman, Eichorn (1950) Federation Proc: 9 mar. 1950, pp 73–74

    Google Scholar 

  • Lewin, Shafer (1991) Shockwave sensors: I. Requirements and Design. J. Lithotripsy and Stone Disease Vol. 3, no 1:3–17

    Google Scholar 

  • Lingeman, McAteer, Gnessin, Evan (2009) Shock wave lithotripsy: advances in technology and technique. Nature Reviews Urology 6: 660–670

    Article  Google Scholar 

  • Lobentanzer (1991) The concept of acoustic energy in lithotripsy. Dornier User Letter 7: 22–26

    Google Scholar 

  • Loew (1993) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter – eine prospektive Studie. In: Chaussy et al. (Hrsg) Die Stoßwelle, Forschung und Klinik. Attempto Tübingen, pp 153–156

    Google Scholar 

  • Loew (1994) Die Wirkung extrakorporal erzeugter hochenergetischer Stoßwellen auf den klinischen, röntgenologischen und histologischen Verlauf der Tendinosis calcarea der Schulter. Habilitationsschrift Heidelberg, 1994

    Google Scholar 

  • Logarakis, Jewett, Luymes, Honey (2000) »Variation in clinical outcome following shockwave lithotripsy. J.Urol. Vol. 163, 2000, 721–725

    Article  Google Scholar 

  • Lohse-Busch, Kraemer, Reime (1997) The Use of Extracorporeal Shock Wave Fronts for Treatment of Muscle Dysfunction of Various Etiologies: An Overview of First Results. In: Siebert, Buch (Eds) Extracorporeal Shock Waves in Orthopedics, chapt 14. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Lovasz, Palfi, Romics (1999) Temperature elevation of stones during extracorporeal shock wave lithotripsy (ESWL) a hypothesis for possible cause of complications. Abstracts Tagung der Deutschen Urologischen Gesellschaft DGU, Abstract Session V2.5

    Google Scholar 

  • Maheshwari, Andankwar, Saple, Oswal (2002) Extracorporeal Shock Wave Lithotripsy: Complications and Their Prevention. www.bhj.org/journal/2002_4402_apr/endo_181.htm

  • McAteer, Evan, Williams, Lingeman (2009) Treatment protocols to reduce renal injury during shockwave lithotripsy. Curr Opin Urol 19:192–195

    Article  Google Scholar 

  • Meier, Ueberle, Rupprecht (1998) Physikalische Parameter extrakorporaler Stoßwellen. Biomed Tech 43: 269–274

    Article  Google Scholar 

  • Michel, Ptaschnyk, Musial et al. (2003) Objective and subjective changes in patients with Peyronie's Disease after Management with Shockwave Therapy. J.Endourology, 17(1): 41 -44

    Article  Google Scholar 

  • Michel, Erben, Köhrmann, Siegsmund, Alken (2002), Gentherapie des Prostatakarzinoms durch extrakorporale akustische Energie: Erste In-vitro- und In-vivo-Ergebnisse. Aktuel Urol 33(3): 213–218

    Article  Google Scholar 

  • Miller (1995) Thresholds for hemorrhages in mouse skin and intestine induced by lithotripter shock waves. UMB vol. 21 (2): 249–257

    Google Scholar 

  • Mishriki, Cohen, Baker et al. (1993) Choosing a powerful lithotripter. Brit. J.Urol 71: 653–660

    Article  Google Scholar 

  • Müller, Platte (1985) Einsatz einer breitbandigen Piezodrucksonde auf PVDF-Basis zur Untersuchung konvergierender Stoßwellen in Wasser. Acustica 58

    Google Scholar 

  • Müller (1990) Dornier-Lithotripter im Vergleich: Vermessung der Stoßwellenfelder und Fragmentationswirkungen. Biomed. Technik 35(11): 250–262

    Article  Google Scholar 

  • Mulvaney (1953) The J. of Urology 70(5): 704–707

    Google Scholar 

  • Niersteenverbrijzeling-eng (2005) www.urologiena.com/sub-specialisaties/niersteenverbrijzeling-eng.htm#Results

  • Nishida, Shimokawa, Oi et al. (2004) Extracorporeal Cardiac Shock Wave Therapy Markedly Ameliorates Ischemia-Induced Myocardial Dysfunction in Pigs in Vivo. Circulation 110: 2977

    Article  Google Scholar 

  • Nitsche (1994) Ameisberg, Berg, Fölsch: Extracorporeal shock wave lithotripsy of gallstones in different biles and water in vitro. Digestion 55:175–178

    Article  Google Scholar 

  • Ogden JA, Alvarez R, Levitt R, Cross GL, Marlow M (2001) Extracorporeal shock wave therapy for chronic plantar fasciitis. Clin Orthop 387: 47–59

    Article  Google Scholar 

  • Pace, Ghiculete, Harju, Honey (2005) Shock wave lithotripsy at 60 or 120 shocks per minute: a randomized, double-blind trial. J Urol. 174(2): 595–9

    Article  Google Scholar 

  • Parr, Pye, Ritchie, Tolley (1992) Mechanisms responsible for diminished fragmentation of uretreal calculi. J.Urol. 148:1079–1083

    Google Scholar 

  • Parsons, Cain, Abrams (2006) Pulsed cavitational ultrasound therapy for controlled tissue homogenization. Ultrasound in Medicine and Biology 32(1): 115–129

    Article  Google Scholar 

  • Pettrone F. Randomized clinical Study to evaluate the safety and efficiacy of the Siemens Sonocur ESWT System in treating patients with lateral epicondylitis (chronic tennis elbow); www.fda.gov/cdrh/pdf/P010039b.pdf

  • Philipp, Delius, Scheffcyk et al. (1993) Interaction of lithotripter-generated Shockwaves with air bubbles. JASA 5: 2496–2509

    Google Scholar 

  • Pishchalnikov, McAteer, Williams, Pishchalnikova, von Der Haar (2006) Why stones break better at slow shock wave rate than at fast rate: In vitro study with a research electrohydraulic lithotripter. J Endourol 20:537–541

    Article  Google Scholar 

  • Pishchalnikov, Neucks,Von der Haar, Pishchalnikova, Williams, McAteer (2006) Air pockets trapped during routine coupling in dry head lithotripsy can significantly decrease the delivery of shock wave energy. J Urol 176: 2706–2710

    Article  Google Scholar 

  • Pye (1991) Parr, Munro, Anderson, McDicken: »Robust Electromagnetic Probe for the Monitoring of Lithotripter Output. UMB Vol. 17(9): 931 -939

    Google Scholar 

  • Rassweiler, Bergsdorf, Bohris, Burkhardt, Burnes, Forssmann, Meinert, Partheymüller, Vallo, Wess, Williger, Chaussy (2010) Shock wave technology and application - state of the art in 2009, Konsensus-Meeting der Deutschen Gesellschaft für Stoßwellenlithotripsie (in print)

    Google Scholar 

  • Rassweiler, Henkel, Köhrmann et al. (1992) Lithotriptor Technology: present and future. J. Endourology 6(1): 1 -15

    Article  Google Scholar 

  • Rassweiler, Bergsdorf, Ginter et al. (2005) Progress in Lithotripter Technology. In Chaussy, Haupt, Jocham et al. (eds) Therapeutic Energy Applications in Urology. Thieme, Stuttgart New York

    Google Scholar 

  • Rassweiler, Tailly, Chaussy (2005) Progress in Lithotriptor Technology, EAU Update Series 3:17–36

    Article  Google Scholar 

  • Rieber (1951) Shock Wave Generator. US Patent 2:559 227

    Google Scholar 

  • Riedlinger, Weiß, Ueberle (1987) Nichtlinearitäten des transienten Schallfeldes eines piezoelektrischen Hochenergie-Pulssenders. Fortschritte der Akustik DAGA: 489–493

    Google Scholar 

  • Riedlinger, Ueberle, Wurster et al. (1986) Die Zertrümmerung von Nierensteinen durch piezoelektrisch erzeugte Hochenergie-Schallpulse. Urologe A 25:188–192

    Google Scholar 

  • Rompe, Hopf, Küllmer et al. (1996) Analgesic effect of extracorporeal shock wave therapy on chronic tennis elbow. J. Bone Joint Surgery (Br) 78 B: 233–237

    Google Scholar 

  • Sass, Steffen, Matura et al. (1992) Experiences with Lithotripters: Measurement of Standardized Fragmentation. J.Stone Disease Vol.4(2)

    Google Scholar 

  • Sapozhnikov, Maxwell, MacConaghy, Bailey (2007) A mechanisrtic analysis of stone fracture in lithotripsy. J Acoust Soc 121:1190–1202

    Article  Google Scholar 

  • Sauerbruch, Delius, Paumgartner et al. (1986) Fragmentation of gallstones by extracorporeal Shockwaves. New England J. Med 314:818–822

    Article  Google Scholar 

  • Sauerbruch, Holl, Sackmann et al. (1987) Disintegration of a pancreatic duct stone with extracorporeal shock waves in a patient with cronic pancreatitis. Endoscopy 19: 207–208

    Article  Google Scholar 

  • Sauerbruch, Stern (1989) Fragmentation of bile duct stones by extracorporeal Shockwaves. Gastroenterology 96:146–152

    Google Scholar 

  • Schätzle (1992) Spezielle Fokusdruck-Sensoren für die Lithotripsie und deren Kalibration. Fortschritte der Akustik DAGA 1992

    Google Scholar 

  • Schafer (1993) Cost effective shock wave hydrophones. J. Stone Disease Vol. 5: 73–76

    Google Scholar 

  • Schelling, Delius et al. (1994) Extracorporeal shock waves stimulate frog sciatic nerves indirectly via a cavitation-mediated mechanism. Biophysical Journal 6:133–140

    Article  Google Scholar 

  • Schneider, Feigl, Löhr et al. (1994) In vitro effects of high energy pulsed ultrasound on human tumor cells. Eur J Gastroenterol & Hepatol 6: 257–262

    Article  Google Scholar 

  • Seidl, Steinbach, Wöhrle, Hofstädter (1994) Induction of stress fibres and intercellular gaps in human vascular endothelium by shock-waves. Ultrasonics Vol. 32(5): 397ff

    Article  Google Scholar 

  • Singh, Agarwal (1990) Mechanical and Ultrasonic Parameters of Kidney Stones. J. Lithotripsy and Stone Disease, Vol. 2(2): 117–123

    Google Scholar 

  • Staples, Forbes, Ptasznik, Gordon, Buchbinder (2008) A Randomized Controlled Trial of Extracorporeal Shock Wave Therapy for Lateral Epicondylitis (Tennis Elbow). J Rheumatol 35: 2038–46

    Google Scholar 

  • Smith, Simmons, Sankin, Nanke, Fehre, Zhong (2010) A Comparison of Fiber Optic Probe Hydrophone and Light Spot Hydrophone for Lithotripter Field Characterization. Ultrasound in Medicine and Biology (to be submitted)

    Google Scholar 

  • Staudenraus (1991) Erzeugung und Ausbreitung freifeldfokussierter Hochenergiedruckpulse in Wasser. PhD Thesis, University of Stuttgart

    Google Scholar 

  • Staudenraus (1993) Eisenmenger: Fibre-Optic Probe Hydrophone for Ultrasonic and Shock Wave Measurements in Water. Ultrasonics 31:267–273

    Article  Google Scholar 

  • Steiger (1987) Extracorporal Laser Induced Shock Wave Lithotripsy (ESWL). Laser, pp 201–206, MZV-EBM Verlag

    Google Scholar 

  • Steiger (1998) Modellierung der Ausbreitung in extrakorporalen Therapien eingesetzter Ultraschallpulse hoher Intensität, Forschungsberichte aus dem Institut für Höchstfrequenztechnik und Elektronik, Karlsruhe Band 19, ISSN 0942–2935

    Google Scholar 

  • Steinbach et al. (1993) Effekte hochenergetischer Ultraschallstoßwellen auf Tumorzellen in vitro und humane Endothelzellen in situ. In: Chaussy et al. (Hrsg) Die Stoßwelle. Attempto-Verlag,Tübingen, SS 104–109

    Google Scholar 

  • Steinbach, Hofstaedter, Roessler, Wieland (1993) Determination of energy-dependent extent of vascular damage caused by high-energy shock waves in an umbilical cord model. Urological Research 21: 279–282

    Article  Google Scholar 

  • Stranne, Cocks, Gettliffe (1990) Mechanical property studies of human gallstones Journal of Biomedical Materials Research, Vol. 24:1049–1057

    Article  Google Scholar 

  • Suhr, Brummer, Hülser (1991) Cavitation-generated free radicals during shock wave exposure: Investigations with cell-free solutions and suspended cells. Ultrasound Med. Biol. 17: 761–768

    Article  Google Scholar 

  • Sunka, Babicky, Clupek et al. (2004) Localized damage of tissues induced by focused shock waves. IEEE Trans. Plasma Sciences, Vol. 32(4): 1609–1613

    Article  Google Scholar 

  • Tailly (1999) Consecutive Experience with Four Dornier Lithotripters: HM4, MPL 9000, Compact and U/50. J. Endourology Vol. 13(5)

    Google Scholar 

  • Teichmann, Portis, Parker et al. (2000) In vitro Shock Wave Lithotripsy Comparison. J Urol 164:1259–1264

    Article  Google Scholar 

  • Tschoep, Hartmann, Jox et al. (2001) Shockwaves: A Novel Method for Cytoplasmic Delivery of Antisense öligonudeotides. J Mol Med 79:306–313

    Article  Google Scholar 

  • Ueberle (1987) Piezoelektrisch erzeugte Hochenergiepulse und ihre Eignung zur Eignung zur Lithotripsie. in: Ziegler (ed.) die extracorporale und laserinduzierte Stoßwellenlithotripsie bei Harn- und Gallensteinen, Springer, Berlin Heidelberg New York

    Google Scholar 

  • Ueberle (1988) Ein Konzept zur Ortung und Erkennung von Zielen für Schallpulse hoher Energie. Dissertation, Karlsruhe 1988

    Google Scholar 

  • Ueberle (1997) Acoustic Parameters of Pressure Pulse Sources Used in Lithotripsy and Pain Therapy, in: Chaussy et al (eds) High Energy Shockwaves in Medicine, pp 76–85, Thieme Stuttgart, New York 1997

    Google Scholar 

  • Ueberle (1997) Shock Wave Technology, in Siebert, Buch Extracorporeal Shock Waves in Orthopedics, Springer, Berlin Heidelberg New York, pp 59–87

    Google Scholar 

  • Ueberle (2000) Cell transfection by pulsed sound wave effects. Proceedings Microtec. VDI-Verlag Hannover

    Google Scholar 

  • Ueberle (2003) Pressure Pulses in Medicine. In: Srivastava, Leutloff, Takayama, Groenig (eds) Shock Focussing Effects in Medical Science and Sonoluminescence. Springer, Heidelberg New York

    Google Scholar 

  • Ueberle (2006) Shockwave Measurements Using an Optical Light Spot Hydrophone, Jahrestagung der DGBMT, Zürich August 2006

    Google Scholar 

  • Vakil, Gracewski, Everbach (1991) Relationship of Model Stone Properties to Fragmentation Mechanisms during Lithotripsy. J. Lithotripsy and Stone Disease Vol. 3(4): 304–310

    Google Scholar 

  • Valchanou, Michailow (1991) High energy Shockwaves in the treatment of delayed and nonunion fractures. Internat. Orthopedics (SICOT) 15:181–184

    Google Scholar 

  • Vergunst, Onno, Terpestra et al. (1990) In vivo assessment of shock-wave pressures, Gastroenterology, SS 1467–1474

    Google Scholar 

  • Vergunst, Onno, Terpestra et al. (1989) Assessment of Shock Wave Pressure Profiles In Vitro: Clinical Implications. J. Lithotripsy and Stone Disease, Vol. 1(4)

    Google Scholar 

  • Wess, Marlinghaus, Katona (1989) Lars, eine großaperturige leistungsschallquelle für medizinische Anwendungen. Fortschritte der Akustik DAGA 295ff, DPG Verlag, Bad Honnef

    Google Scholar 

  • Wess, Ueberle, Dührßen, Hilcken, Reuner, Schultheiß, Staudenraus, Rattner, Haaks, Granz (1997) Working Group Technical Developments - Consensus Report, in Chaussy et al (eds) High Energy Shock Waves in Medicine. Thieme, Stuttgart New York, pp 59–71

    Google Scholar 

  • Wess (2009) Der schwebende Patient. In: Zimmermann R (Red) Dornier erlebt, S 303–310. Verlag Senn, Tettnang

    Google Scholar 

  • Wiksell, Kinn (1995) Implications of cavitation phenomena for shot intervals in extracorporeal shock wave lithotripsy. British Journal of Urology, 75: 720–723

    Article  Google Scholar 

  • Wolfrum (2004) Cavitation and shock wave effects on biological systems. Dissertation, Göttingen: S 14

    Google Scholar 

  • Zhong, Preminger (1994) Mechanisms of differing stone fragility in extracorporeal Shockwave lithotripsy. J Endourol 8:163–168

    Article  Google Scholar 

  • Zhong, Cioanta, Cocks, Preminger (1998) Effects of Tissue Constraint on Shock Wave-Induced Bubble Oscillation in vivo. 135th ASA conf. Proc, pp 2495f, Seattle (WA)

    Google Scholar 

  • Zhong, Zhou, Zhu (2001) Dynamics of Bubble Oscillation in Constrained Media and Mechanisms of Vessel Rupture in ESWL Ultrasound Med. Biol. 2001, 27(1): 119–134

    Google Scholar 

  • Zhu, Zhong (2002) The role of stress waves and cavitation in stone comminution in shock wave lithotripsy. Ultrasound Med Biol 28:661–671; found in: www.duke.edu/~slzhu/research/fv/sf/researchIg.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ueberle, F. (2011). Einsatz von Stoßwellen in der Medizin. In: Kramme, R. (eds) Medizintechnik. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16187-2_31

Download citation

Publish with us

Policies and ethics