Skip to main content

Context-Enhanced Directed Model Checking

  • Conference paper
Model Checking Software (SPIN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6349))

Included in the following conference series:

Abstract

Directed model checking is a well-established technique to efficiently tackle the state explosion problem when the aim is to find error states in concurrent systems. Although directed model checking has proved to be very successful in the past, additional search techniques provide much potential to efficiently handle larger and larger systems. In this work, we propose a novel technique for traversing the state space based on interference contexts. The basic idea is to preferably explore transitions that interfere with previously applied transitions, whereas other transitions are deferred accordingly. Our approach is orthogonal to the model checking process and can be applied to a wide range of search methods. We have implemented our method and empirically evaluated its potential on a range of non-trivial case studies. Compared to standard model checking techniques, we are able to detect subtle bugs with shorter error traces, consuming less memory and time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Edelkamp, S., Schuppan, V., Bosnacki, D., Wijs, A., Fehnker, A., Aljazzar, H.: Survey on directed model checking. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 65–89. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  2. Kupferschmid, S., Hoffmann, J., Dierks, H., Behrmann, G.: Adapting an AI planning heuristic for directed model checking. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 35–52. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Dräger, K., Finkbeiner, B., Podelski, A.: Directed model checking with distance-preserving abstractions. International Journal on Software Tools for Technology Transfer 11(1), 27–37 (2009)

    Article  MATH  Google Scholar 

  4. Hoffmann, J., Smaus, J.G., Rybalchenko, A., Kupferschmid, S., Podelski, A.: Using predicate abstraction to generate heuristic functions in Uppaal. In: Edelkamp, S., Lomuscio, A. (eds.) MoChArt 2007. LNCS (LNAI), vol. 4428, pp. 51–66. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Smaus, J.G., Hoffmann, J.: Relaxation refinement: A new method to generate heuristic functions. In: Peled, D.A., Wooldridge, M.J. (eds.) MoChArt 2008. LNCS, vol. 5348, pp. 146–164. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  6. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Directed explicit-state model checking in the validation of communication protocols. International Journal on Software Tools for Technology Transfer 5(2), 247–267 (2004)

    Article  MATH  Google Scholar 

  7. Qian, K., Nymeyer, A.: Guided invariant model checking based on abstraction and symbolic pattern databases. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 497–511. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Kupferschmid, S., Hoffmann, J., Larsen, K.G.: Fast directed model checking via russian doll abstraction. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 203–217. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Wehrle, M., Helmert, M.: The causal graph revisited for directed model checking. In: Palsberg, J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 86–101. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Hoffmann, J., Nebel, B.: The FF planning system: Fast plan generation through heuristic search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

    MATH  Google Scholar 

  11. Helmert, M.: The Fast Downward planning system. Journal of Artificial Intelligence Research 26, 191–246 (2006)

    Article  MATH  Google Scholar 

  12. Wehrle, M., Kupferschmid, S., Podelski, A.: Useless actions are useful. In: Rintanen, J., Nebel, B., Beck, J.C., Hansen, E. (eds.) Proceedings of the 18th International Conference on Automated Planning and Scheduling (ICAPS 2008), pp. 388–395. AAAI Press, Menlo Park (2008)

    Google Scholar 

  13. Wehrle, M., Kupferschmid, S., Podelski, A.: Transition-based directed model checking. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 186–200. Springer, Heidelberg (2009)

    Google Scholar 

  14. Musuvathi, M., Qadeer, S.: Iterative context bounding for systematic testing of multithreaded programs. In: Ferrante, J., McKinley, K.S. (eds.) Proceedings of the ACM SIGPLAN 2007 Conference on Programming Language Design and Implementation (PLDI 2007), pp. 446–455. ACM Press, New York (2007)

    Chapter  Google Scholar 

  15. Pearl, J.: Heuristics: Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading (1984)

    Google Scholar 

  16. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems Science and Cybernetics 4(2), 100–107 (1968)

    Article  Google Scholar 

  17. Godefroid, P.: Partial-Order Methods for the Verification of Concurrent Systems — An Approach to the State-Explosion Problem. LNCS, vol. 1032. Springer, Heidelberg (1996)

    Book  MATH  Google Scholar 

  18. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press, Cambridge (2000)

    Google Scholar 

  19. Edelkamp, S., Leue, S., Lluch-Lafuente, A.: Partial-order reduction and trail improvement in directed model checking. International Journal on Software Tools for Technology Transfer 6(4), 277–301 (2004)

    Article  MATH  Google Scholar 

  20. Kupferschmid, S., Wehrle, M., Nebel, B., Podelski, A.: Faster than Uppaal? In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 552–555. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  21. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dierks, H.: Comparing model-checking and logical reasoning for real-time systems. Formal Aspects of Computing 16(2), 104–120 (2004)

    Article  MATH  Google Scholar 

  23. Krieg-Brückner, B., Peleska, J., Olderog, E.-R., Baer, A.: The UniForM workbench, a universal development environment for formal methods. In: Woodcock, J.C.P., Davies, J., Wing, J.M. (eds.) FM 1999. LNCS, vol. 1709, pp. 1186–1205. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  24. Lamport, L.: A fast mutual exclusion algorithm. ACM Transactions on Computer Systems 5(1), 1–11 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wehrle, M., Kupferschmid, S. (2010). Context-Enhanced Directed Model Checking. In: van de Pol, J., Weber, M. (eds) Model Checking Software. SPIN 2010. Lecture Notes in Computer Science, vol 6349. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-16164-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-16164-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-16163-6

  • Online ISBN: 978-3-642-16164-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics