Skip to main content

Radiography, CT and MRI

  • Chapter
  • First Online:
Nondestructive Evaluation of Food Quality

Abstract

Quality control is an important aspect of food production and processing providing foods of acceptable nutritional value, and safety of products. Several characteristics such as size, shape, density, maturity, moisture content, oil content, flavor, firmness, tenderness, color, defects, blemishes, etc., are routinely used in the quality control of agricultural and biological food products. Until recently, most analytical techniques used in quality control required isolation of the food component of interest. The original properties of the product are, therefore, destroyed during sample preparation and analysis. Oftentimes, such analyses are expensive, time consuming, and require sophisticated instrumentation, and hence are not suited for “on-line” quality control of food products. Recent progress in the development of instrumentation utilizing the some physical, optical, acoustic and electromagnetic properties of food products has provided several nondestructive techniques for quality evaluation. Many such methods are highly sensitive, rapid, and reproducible, and have been successively used in routine “on-line” quality control of a large number of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott J (1999) A quality measurements of fruits and vegetables. Postharvest Biol Technol 15:207–225

    Article  Google Scholar 

  • Arslan S, Inanc F, Gray JN et al (2000) Grain flow measurements with X-ray techniques. Comput Electron Agric 26(200):65–80

    Article  Google Scholar 

  • ASPECT AI (2010). Aspect AI: MRI applications – agriculture. http://www.aspect-ai.com/applications/agriculture.php/. Accessed 18 Jan 2010

  • Ayalew G, Holden NM, Grace PK et al (2004) Detection of glass contamination in horticultural peat with dual-energy x-ray absorptiometry (DXA). Comput Electron Agric 42:1–17

    Article  Google Scholar 

  • Barcelon EG, Tojo S, Watanabe K (1999) X-ray computed tomography for internal quality evaluation of peaches. J Agric Eng Res 73(4):323–330

    Article  Google Scholar 

  • Barcelon EG, Tojo S, Watanabe K (2000) Nondestructive ripening assessment of mango using an X-ray computed tomography. Agric Eng J 9(2):73–80

    Google Scholar 

  • Barreiro P, Ortiz C, Ruiz-Altisent M et al (2000) Mealiness assessment in apples and peaches using MRI techniques. Magn Reson Imaging 18:1175–1181

    Article  CAS  Google Scholar 

  • Brusewitz GH, Stone ML (1987) Wheat moisture by NMR. Trans ASAE 30(3):858–862

    Google Scholar 

  • Buzzell P, Pintauro S (2003) Dual energy X-ray absorptiometery. Department of Food Sciences and Nutrition, University of Vermont. http://nutrition.uvm.edu/bodycomp/dexa /. Accessed 6 Jan 2003

  • Casasent DA, Sipe MA, Schatzki TF et al (1998) Neural net classification of X-ray pistachio nut data. Lebenson Wiss Technol 31(2):122–128

    Article  CAS  Google Scholar 

  • Casasent D, Talukder A, Keagy P et al (2001) Detection and segmentation of items in X-ray imagery. Trans ASAE 44(2):337–345

    Google Scholar 

  • Chen P, McCarthy MJ, Kauten R (1989) NMR for internal quality evaluation of fruits and vegetables. Trans ASAE 32(5):1747–1753

    Google Scholar 

  • Chen P, McCarthy MJ, Kauten R et al (1993) Maturity evaluation of avocados by NMR methods. J Agr Eng Res 55:177–187

    Article  Google Scholar 

  • Cho BK, Chayaprasert W, Stroshine RL (2008) Effects of internal browning and watercore on low field (5.4 MHz) proton magnetic resonance measurements of T2 values of whole apples. Postharvest Biol Technol 47:81–89

    Article  CAS  Google Scholar 

  • Clark CJ, Hockings PD, Joyce DC et al (1997) Application of magnetic resonance imaging to pre- and post-harvest studies of fruits and vegetables. Postharvest Biol Technol 11:1–21

    Article  Google Scholar 

  • Cuningham IA, Judy PF (2000) Computed tomography. In: JD Bronzino (ed) The biomedical engineering handbook, 2nd edn. CRC Press, Boca Raton, FL. http://www.kemt.fei.tuke.sk/. Accessed 2 Nov 2009

    Google Scholar 

  • Curry TS, Dowdey JE, Murry RC (1990) Christensen’s physics of diagnostic radiology, 4th edn. Williams and Wilkins, Baltimore, MD

    Google Scholar 

  • Diener RG, Mitchell JP, Rhoten ML (1970) Using an X-ray image scan to sort bruised apples. Agric Eng 51:356–361

    Google Scholar 

  • Dogan H (2007) Nondestructive imaging of agricultural products using X-ray microtomography. Microsc Microanal 13(2):1316 CD–1317 CD

    Article  Google Scholar 

  • Fornal J, Jelinski T, Sadowska J et al (2007) Detection of granary weevil Sitophilus granarius (L.) Eggs and internal stages in wheat grain using soft X-ray and image analysis. J Stored Prod Res 43:142–148

    Article  Google Scholar 

  • Gonzalez JJ, Valle RC, Bobroff S et al (2001) Detection and monitoring of internal browning development in ‘fuji’ apples using MRI. Postharvest Biol Technol 22:179–188

    Article  Google Scholar 

  • Haff RP, Slaughter DC (2004) Real-time X-ray inspection of wheat for infestation by the granary weevil, Sitophilus granarius (L.). Trans ASAE 47(2):531–537

    Google Scholar 

  • Han YJ, Bowers SV, Dodd RB (1992) Nondestructive detection of split-pit peaches. Trans ASAE 35(6):2063–2067

    Google Scholar 

  • Haseth TT, Egelandsdal B, Bjerke F et al (2007) Computed tomography for quantitative determination of sodium chloride in ground pork and dry cured hams. J Food Sci 72(8):E–420–E427

    Article  Google Scholar 

  • Hubbell JH, Seltzer SM (1995) Tables of X-ray mass attenuation coefficients and mass energy absorption coefficients and mass energy absorption coefficients 1 keV to 20 MeV for elements Z = 1 to 92 and 48 additional substances of dosimetric interest. NISTIR 5632. National Institute of Standards and Technology, US Department of Commerce, Gaithersburg, MD, USA.

    Google Scholar 

  • Karunakaran C, Jayas DS, White NDG (2004) Identification of wheat kernels damaged by the red flour beetle using X-ray images. Biosyst Eng 87(3):267–274

    Article  Google Scholar 

  • Keagy PM, Parvin B, Schatzki TF (1996) Machine recognition of navel orange worm damage in X-ray images of pistachio nuts. Lebenson Wiss Technol 29(1&2):140–145

    Article  CAS  Google Scholar 

  • Kim SM, Chen P, McCarthy MJ et al (1999) Fruit internal quality evaluation using on-line nuclear magnetic resonance sensors. J Agric Eng Res 74:293–301

    Article  Google Scholar 

  • Kim S, Schatzki TF (2000) Apple water-core sorting system using X-ray imagery: I Algorithm development. Trans ASAE 43(6):1695–1702

    Google Scholar 

  • Kim S, Schatzki TF (2001) Detection of pinholes in almonds through X-ray imaging. Trans ASAE 44(4):997–1003

    Google Scholar 

  • Kotwaliwale N, Subbiah J, Weckler PR et al (2007a) Calibration of a soft X-ray digital imaging system for biological materials. Trans ASABE 50(2):661–666

    Google Scholar 

  • Kotwaliwale N, Weckler PR, Brusewitz GH (2006) X-ray attenuation coefficients using polychromatic X-ray imaging of pecan components. Biosyst Eng 94(2):199–206

    Article  Google Scholar 

  • Kotwaliwale N, Weckler PR, Brusewitz GH et al (2007b) Non-destructive quality determination of pecans using soft X-rays. Postharvest Biol Technol 45:372–380

    Article  CAS  Google Scholar 

  • Kroger C, Bartle CM, West JG et al (2006) Meat tenderness evaluation using dual energy X-ray absorptiometry (DEXA). Comput Electron Agric 54:93–100

    Article  Google Scholar 

  • Lammertyn J, Jancsok P, Dresselaers T et al (2003) Analysis of the time course of core breakdown in ‘conference’ pears by means of MRI and X-ray CT. Postharvest Biol Technol 29:19–28

    Article  CAS  Google Scholar 

  • Leonard A, Blacher S, Nimmol C et al (2008) Effect of far-infrared radiation assisted drying on microstructure of banana slices: an illustrative use of X-ray microtomography in microstructural evaluation of a food product. J Food Eng 85:154–162

    Article  Google Scholar 

  • Lim KS, Barigou M (2004) X-ray micro-computed tomography of cellular food products. Food Res Int 37:1001–1012

    Article  Google Scholar 

  • Marigheto N, Venturi L, Hills B (2008) Two-dimensional NMR relaxation studies of apple quality. Postharvest Biol Technol 48:331–340

    Article  CAS  Google Scholar 

  • McCarthy MJ (1994) Magnetic resonance imaging in foods. Chapman and Hall, New York

    Google Scholar 

  • Mousavi R, Miri T, Cox PW et al (2007) Imaging food freezing using X-ray microtomography. Int J Food Sci Technol 42:714–727

    Article  CAS  Google Scholar 

  • Narvankar DS, Singh CB, Jayas DS et al (2009) Assessment of soft X-ray imaging for detection of fungal infection in wheat. Biosyst Eng 103:49–56

    Article  Google Scholar 

  • Neethirajan S, Jayas DS, Karunakaran C (2007) Dual energy X-ray image analysis for classifying vitreousness in durum wheat. Postharvest Biol Technol 45:381–384

    Article  Google Scholar 

  • Neethirajan S, Karunakaran C, Jayas DS et al (2006b) X-ray computed tomography image analysis to explain the airflow resistance differences in grain bulks. Biosyst Eng 94:545–555

    Article  Google Scholar 

  • Neethirajan S, Karunakaran C, Symonsc S et al (2006a) Classification of vitreousness in durum wheat using soft X-rays and transmitted light images. Comput Electron Agric 53:71–78

    Article  Google Scholar 

  • Ogawa Y, Morita K, Tanaka S et al (1998) Application of X-ray CT for detection of physical foreign materials in foods. Trans ASAE 41(1):157–162

    Google Scholar 

  • Paiva RFD, Lynch J, Rosenberg E et al (1998) A beam hardening correction for X-ray microtomography. NDT&E Int 31(1):17–22

    Article  Google Scholar 

  • Pearce KL, Ferguson M, Gardner G et al (2009) Dual X-ray absorptiometry accurately predicts carcass composition from live sheep and chemical composition of live and dead sheep. Meat Sci 81:285–293

    Article  CAS  Google Scholar 

  • Schatzki TF, Haff RP, Young R et al (1997) Defect detection in apples by means of X-ray imaging. Trans ASAE 40(5):1407–1415

    Google Scholar 

  • Sonego L, Ben-Arie R, Raynal J et al (1995) Biochemical and physical evaluation of textural characteristics of nectarines exhibiting woolly breakdown: NMR imaging, X-ray computed tomography and pectin composition. Postharvest Biol Technol 5:187–198

    Article  Google Scholar 

  • Thomas P, Kannan A, Degwekar VH et al (1995) Non-destructive detection of seed weevil-infested mango fruits by X-ray imaging. Postharvest Biol Technol 5(1–2):161–165

    Article  Google Scholar 

  • Tollner EW, Gitaitis RD, Seebold KW et al (2005) Experiences with a food product X-ray inspection system for classifying onions. Trans ASAE 21(5):907–912

    Google Scholar 

  • Tollner EW, Hung YC, Upchurch BL et al (1992) Relating X-ray absorption to density and water content in apples. Trans ASAE 35(6):1921–1928

    Google Scholar 

  • Yacob Y, Ahmad H, Saad P et al (2005) A comparison between X-ray and MRI in postharvest non-destructive detection method. Proceedings of the International Conference on Information Technology and Multimedia at UNITEN (ICIMU ’05), Malaysia

    Google Scholar 

  • Zwiggelaar R, Bull CR, Mooney MJ (1996) X-ray simulations for imaging applications in the agricultural and food industries. J Agric Engng Res, 63, 161–170

    Article  Google Scholar 

  • Zwiggelaar R, Bull CR, Mooney MJ (1997) Detection of “soft” materials by selective energy X-ray transmission imaging and computer tomography. J Agric Eng Res 66(3):203–212

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nachiket Kotwaliwale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kotwaliwale, N., Kalne, A., Singh, K. (2010). Radiography, CT and MRI. In: Jha, S. (eds) Nondestructive Evaluation of Food Quality. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15796-7_5

Download citation

Publish with us

Policies and ethics