Skip to main content

In Situ Synthesis of Rubber Nanocomposites

  • Chapter
  • First Online:
Recent Advances in Elastomeric Nanocomposites

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 9))

Abstract

The preparation and characterization of rubber based nanocomposites prepared by in situ generation of inorganic oxides by means of the hydrolytic sol–gel process are reviewed in the present chapter. The sol–gel approach has been applied to several rubber matrices to prepare reinforced vulcanized and unvulcanized rubbers. Several synthetic procedures are presented while the most investigated filler is silica obtained by hydrolysis and condensation of tetraethoxysilane. The effects of the different preparation conditions and of the filler content are generally discussed in terms of morphology (investigated by electron microscopy and small angle X-ray scattering) and mechanical properties (modulus, strength and extensibility). The mechanical properties of the in situ filled nanocomposites are generally better than those of the corresponding materials prepared with the conventional mechanical mixing of preformed particulates and elastomers. This enhancement is generally attributed to a lower tendency to filler–filler aggregation due to a lower particle surface interaction resulting from the ‘bottom-up approach’ of the sol–gel process applied to the preparation of organic–inorganic hybrid materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Donnet, J.-B., Custodero, E.: Reinforcement of elastomers by particulate fillers. In: James, E.M., Burak, E., Frederick, R.E. (eds.) Science and Technology of Rubber, 3rd edn. Academic Press, Burlington (2005)

    Google Scholar 

  2. Klein, L.C., Wojcik, A.B.: Polymer-ceramic nanocomposites: polymer overview. In: Buschow Jr, K.H., Robert, W.C., Merton, C.F., et al. (eds.) Encyclopedia of Materials: Science and Technology. Elsevier, Oxford (2001)

    Google Scholar 

  3. Hewitt, N.: Silica as a reinforcing filler. In: Compounding Precipitated Silica in Elastomers. William Andrew Publishing, Norwich, NY (2007)

    Google Scholar 

  4. Brinker, C., Scherer, G.: Sol–Gel Science: the Physics and Chemistry of Sol–Gel Processing. Academic Press, Boston (1990)

    Google Scholar 

  5. Sanchez, C., Julian, B., Belleville, P., et al.: Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)

    Article  CAS  Google Scholar 

  6. Novak, B.M.: Hybrid nanocomposite materials—between inorganic glasses and organic polymers. Adv. Mater. 5, 422–433 (1993)

    Article  CAS  Google Scholar 

  7. Mark, J.E.: The sol–gel route to inorganic–organic composites. Heterogeneous Chem. Rev. 3, 307–326 (1996)

    Article  CAS  Google Scholar 

  8. Mark, J.E.: Ceramic-reinforced polymers and polymer-modified ceramics. Polym. Eng. Sci. 36, 2905–2920 (1996)

    Article  CAS  Google Scholar 

  9. Mark, J.E.: Some novel polymeric nanocomposites. Acc. Chem. Res. 39, 881–888 (2006)

    Article  CAS  Google Scholar 

  10. Mark, J.E.: Ceramic-modified elastomers. Curr. Opin. Solid State Mater. Sci. 4, 565–570 (1999)

    Article  CAS  Google Scholar 

  11. Rajan, G.S., Sur, G.S., Mark, J.E., et al.: Preparation and characterization of some unusually transparent poly(dimethylsiloxane) nanocomposites. J. Polym. Sci. Polym. Phys. 41, 1897–1901 (2003)

    Article  CAS  Google Scholar 

  12. Breiner, J.M., Mark, J.E., Beaucage, G.: Dependence of silica particle sizes on network chain lengths, silica contents, and catalyst concentrations in in situ-reinforced polysiloxane elastomers. J. Polym. Sci. Polym. Phys. 37, 1421–1427 (1999)

    Article  CAS  Google Scholar 

  13. Li, Z.L., Han, W., Kozodaev, D., et al.: Surface properties of poly(dimethylsiloxane)-based inorganic/organic hybrid materials. Polymer 47, 1150–1158 (2006)

    Article  CAS  Google Scholar 

  14. Dewimille, L., Bresson, B., Bokobza, L.: Synthesis, structure and morphology of poly(dimethylsiloxane) networks filled with in situ generated silica particles. Polymer 46, 4135–4143 (2005)

    Article  CAS  Google Scholar 

  15. Bokobza, L.: New developments in rubber reinforcement. Kgk-Kaut Gummi Kunst 62, 23–27 (2009)

    Google Scholar 

  16. Bokobza, L.: Elastomeric composites. I. Silicone composites. J. Appl. Polym. Sci. 93, 2095–2104 (2004)

    Article  CAS  Google Scholar 

  17. Murugesan, S., Mark, J.E., Beaucage, G.: Structure-property relationships for poly(dimethylsiloxane) networks in situ filled using titanium 2-ethylhexoxide and zirconium n-butoxide. ACS Symp. Ser. 838, 163–169 (2003)

    Article  CAS  Google Scholar 

  18. Murugesan, S., Sur, G.S., Mark, J.E., et al.: In situ catalyst generation and controlled hydrolysis in the sol–gel precipitation of zirconia and titania particles in poly(dimethylsiloxane). J. Inorg. Organomet. P 14, 239–252 (2004)

    Article  Google Scholar 

  19. Wen, J., Mark, J.E.: Precipitation of silica–titania mixed-oxide fillers into poly(dimethylsiloxane) networks. Rubber Chem. Technol. 67, 806–819 (1994)

    CAS  Google Scholar 

  20. Kraus, G.: Swelling of filler-reinforced vulcanizates. J. Appl. Polym. Sci. 7, 861 (1963)

    Article  CAS  Google Scholar 

  21. Mark, J.E.: The constants 2C 1 and 2C 2 in phenomenological elasticity theory and their dependence on experimental variables. Rubber Chem. Technol. 48, 495 (1975)

    CAS  Google Scholar 

  22. Mark, J.E., Flory, P.J.: Stress–strain isotherms for poly-(dimethylsiloxane) networks. J. Appl. Phys. 37, 4635–4639 (1966)

    Article  CAS  Google Scholar 

  23. Wen, J.Y., Mark, J.E.: Sol–gel preparation of composites of poly(dimethylsiloxane) with SiO2 and SiO2/TiO2 and their mechanical properties. Polym. J. 27, 492–502 (1995)

    Article  CAS  Google Scholar 

  24. Breiner, J.M., Mark, J.E.: Preparation, structure, growth mechanisms and properties of siloxane composites containing silica, titania or mixed silica–titania phases. Polymer 39, 5483–5493 (1998)

    Article  CAS  Google Scholar 

  25. Wen, J.A., Mark, J.E.: Synthesis, structure, and properties of poly(dimethylsiloxane) networks reinforced by in situ-precipitated silica–titania, silica–zirconia, and silica–alumina mixed oxides. J. Appl. Polym. Sci. 58, 1135–1145 (1995)

    Article  CAS  Google Scholar 

  26. Bokobza, L., Chauvin, J.P.: Reinforcement of natural rubber: use of in situ generated silicas and nanofibres of sepiolite. Polymer 46, 4144–4151 (2005)

    Article  CAS  Google Scholar 

  27. Bokobza, L.: Some new developments in rubber reinforcement. Compos. Interface 13, 345–354 (2006)

    Article  CAS  Google Scholar 

  28. Guth, O., Gold, E.: On the hydrodynamical theory of the viscosity of suspensions. Phys. Rev. 53, 322 (1938)

    CAS  Google Scholar 

  29. Guth, O.: Theory of filler reinforcement. J. Appl. Phys. 16, 20 (1945)

    Article  CAS  Google Scholar 

  30. Fragiadakis, D., Pissis, P., Bokobza, L.: Modified chain dynamics in poly(dimethylsiloxane)/silica nanocomposites. J. Non-Cryst. Solids 352, 4969–4972 (2006)

    Article  CAS  Google Scholar 

  31. Fragiadakis, D., Pissis, P., Bokobza, L.: Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46, 6001–6008 (2005)

    Article  CAS  Google Scholar 

  32. Poompradub, S., Chaichua, B., Kanchanaamporn, C., et al.: Synthesis of silica in natural rubber solution via sol–gel reaction. Kgk-Kaut Gummi Kunst 61, 152–155 (2008)

    CAS  Google Scholar 

  33. Chaichua, B., Prasassarakich, P., Poompradub, S.: In situ silica reinforcement of natural rubber by sol–gel process via rubber solution. J. Sol-Gel Sci. Technol. 52, 219–227 (2009)

    Article  CAS  Google Scholar 

  34. Ikeda, Y., Poompradub, S., Morita, Y., et al.: Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber. J. Sol-Gel Sci. Technol. 45, 299–306 (2008)

    Article  CAS  Google Scholar 

  35. Ikeda, Y., Kameda, Y.: Preparation of “green” composites by the sol–gel process: in situ silica filled natural rubber. J. Sol-Gel Sci. Technol. 31, 137–142 (2004)

    Article  CAS  Google Scholar 

  36. Poompradub, S., Kohjiya, S., Ikeda, Y.: Natural rubber/in situ silica nanocomposite of a high silica content. Chem. Lett. 34, 672–673 (2005)

    Article  CAS  Google Scholar 

  37. Kohjiya, S., Murakami, K., Iio, S., et al.: In situ filling of silica onto “green” natural rubber by the sol–gel process. Rubber Chem. Technol. 74, 16–27 (2001)

    CAS  Google Scholar 

  38. Murakami, K., Iio, S., Tanahashi, T., et al.: Reinforcement of NR by silica generated in situ: comparison with carbon black stock. Kaut Gummi Kunstst 54, 668–672 (2001)

    CAS  Google Scholar 

  39. Murakami, K., Iio, S., Ikeda, Y., et al.: Effect of silane-coupling agent on natural rubber filled with silica generated in situ. J. Mater. Sci. 38, 1447–1455 (2003)

    Article  CAS  Google Scholar 

  40. Kohjiya, S., Ikeda, Y.: In situ formation of particulate silica in natural rubber matrix by the sol–gel reaction. J. Sol-Gel Sci. Technol. 26, 495–498 (2003)

    Article  CAS  Google Scholar 

  41. Kohjiya, S., Kato, A., Ikeda, Y.: Visualization of nanostructure of soft matter by 3D-TEM: nanoparticles in a natural rubber matrix. Prog. Polym. Sci. 33, 979–997 (2008)

    Article  CAS  Google Scholar 

  42. Kohjiya, S., Katoh, A., Shimanuki, J., et al.: Three-dimensional nano-structure of in situ silica in natural rubber as revealed by 3D-TEM/electron tomography. Polymer 46, 4440–4446 (2005)

    Article  CAS  Google Scholar 

  43. Tangpasuthadol, V., Intasiri, A., Nuntivanich, D., et al.: Silica-reinforced natural rubber prepared by the sol–gel process of ethoxysilanes in rubber latex. J. Appl. Polym. Sci. 109, 424–433 (2008)

    Article  CAS  Google Scholar 

  44. Siramanont, J., Tangpasuthadol, V., Intasiri, A., et al.: Sol–gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber. Polym. Eng. Sci. 49, 1099–1106 (2009)

    Article  CAS  Google Scholar 

  45. Bandyopadhyay, A., De Sarkar, M., Bhowmick, A.K.: Epoxidized natural rubber/silica nanoscale organic–inorganic hybrid composites prepared by sol–gel technique. Rubber Chem. Technol. 77, 830–846 (2004)

    CAS  Google Scholar 

  46. Bandyopadhyay, A., Maiti, M., Bhowmick, A.K.: Synthesis, characterisation and properties of clay and silica based rubber nanocomposites. Mater. Sci. Tech.-Lond. 22, 818–828 (2006)

    Article  CAS  Google Scholar 

  47. Bandyopadhyay, A., De Sarkar, M., Bhowmick, A.K.: Polymer-filler interactions in sol–gel derived polymer/silica hybrid nanocomposites. J. Polym. Sci. Polym. Phys. 43, 2399–2412 (2005)

    Article  CAS  Google Scholar 

  48. Bandyopadhyay, A., De Sarkar, M., Bhowmick, A.K.: Structure–property relationship in sol–gel derived polymer/silica hybrid nanocomposites prepared at various pH. J. Mater. Sci. 41, 5981–5993 (2006)

    Article  CAS  Google Scholar 

  49. Hashim, A.S., Kohjiya, S., Ikeda, Y.: Moisture cure and in situ silica reinforcement of epoxidized natural-rubber. Polym. Int. 38, 111–117 (1995)

    Article  CAS  Google Scholar 

  50. Hashim, A.S., Kawabata, N., Kohjiya, S.: Silica reinforcement of epoxidized natural rubber by the sol–gel method. J. Sol-Gel Sci. Technol. 5, 211–218 (1995)

    Article  CAS  Google Scholar 

  51. Messori, M., Bignotti, F., De Santis, R., et al.: Modification of isoprene rubber by in situ silica generation. Polym. Int. 58, 880–887 (2009)

    Article  CAS  Google Scholar 

  52. Huber, G., Vilgis, T.A.: Universal properties of filled rubbers: mechanisms for reinforcement on different length scales. Kaut Gummi Kunstst 52, 102–107 (1999)

    CAS  Google Scholar 

  53. Messori, M., Fiorini, M.: In situ formation of silica particles in isoprene rubber by the sol–gel method. J. Appl. Polym. Sci. (2010, in press)

    Google Scholar 

  54. Ikeda, Y., Tanaka, A., Kohjiya, S.: Reinforcement of styrene-butadiene rubber vulcanizate by in situ silica prepared by the sol–gel reaction of tetraethoxysilane. J. Mater. Chem. 7, 1497–1503 (1997)

    Article  CAS  Google Scholar 

  55. Ikeda, Y., Tanaka, A., Kohjiya, S.: Effect of catalyst on in situ silica reinforcement of styrene-butadiene rubber vulcanizate by the sol–gel reaction of tetraethoxysilane. J. Mater. Chem. 7, 455–458 (1997)

    Article  CAS  Google Scholar 

  56. Hashim, A.S., Azahari, B., Ikeda, Y., et al.: The effect of bis(3-triethoxysilylpropyl)tetrasulfide on silica reinforcement of styrene-butadiene rubber. Rubber Chem. Technol. 71, 289–299 (1998)

    CAS  Google Scholar 

  57. de Luca, M.A., Jacobi, M.M., Orlandini, L.F.: Synthesis and characterisation of elastomeric composites prepared from epoxidised styrene butadiene rubber, 3-aminopropyltriethoxysilane and tetraethoxysilane. J. Sol-Gel Sci. Technol. 49, 150–158 (2009)

    Article  Google Scholar 

  58. de Luca, M.A., Machado, T.E., Notti, R.B., et al.: Synthesis and characterization of epoxidized styrene-butadiene rubber/silicon dioxide hybrid materials. J. Appl. Polym. Sci. 92, 798–803 (2004)

    Article  Google Scholar 

  59. De, D., Das, A., Panda, P.K., et al.: Reinforcing effect of silica on the properties of styrene butadiene rubber-reclaim rubber blend system. J. Appl. Polym. Sci. 99, 957–968 (2006)

    Article  CAS  Google Scholar 

  60. Tanahashi, H., Osanai, S., Shigekuni, M., et al.: Reinforcement of acrylonitrile-butadiene rubber by silica generated in situ. Rubber Chem. Technol. 71, 38–52 (1998)

    CAS  Google Scholar 

  61. Murakami, K., Osanai, S., Shigekuni, M., et al.: Silica and silane coupling agent for irt situ reinforcement of acrylonitrile-butadiene rubber. Rubber Chem. Technol. 72, 119–129 (1999)

    CAS  Google Scholar 

  62. Ikeda, Y., Kohjiya, S.: In situ formed silica particles in rubber vulcanizate by the sol–gel method. Polymer 38, 4417–4423 (1997)

    Article  CAS  Google Scholar 

  63. Zhou, D.H., Mark, J.E.: Preparation and characterization of trans-1,4-polybutadiene nanocomposites containing in situ generated silica. J. Macromol. Sci. Pure A41, 1221–1232 (2004)

    Article  CAS  Google Scholar 

  64. Bandyopadhyay, A., Bhowmick, A.K., De Sarkar, M.: Synthesis and characterization of acrylic rubber/silica hybrid composites prepared by sol–gel technique. J. Appl. Polym. Sci. 93, 2579–2589 (2004)

    Article  CAS  Google Scholar 

  65. Patel, S., Bandyopadhyay, A., Vijayabaskar, V., et al.: Effect of acrylic copolymer and terpolymer composition on the properties of in situ polymer/silica hybrid nanocomposites. J. Mater. Sci. 41, 927–936 (2006)

    Article  CAS  Google Scholar 

  66. Patel, S., Bandyopadhyay, A., Vijayabaskar, V., et al.: Effect of microstructure of acrylic copolymer/terpolymer on the properties of silica based nanocomposites prepared by sol–gel technique. Polymer 46, 8079–8090 (2005)

    Article  CAS  Google Scholar 

  67. Das, A., Jurk, R., Stockelhuber, K.W., et al.: Silica-ethylene propylene diene monomer rubber networking by in situ sol–gel method. J. Macromol. Sci. Part A-Pure Appl. Chem. 45, 101–106 (2008)

    Article  Google Scholar 

  68. Matêjka, L., Dukh, O., Kolarik, J.: Reinforcement of crosslinked rubbery epoxies by in situ formed silica. Polymer 41, 1449–1459 (2000)

    Article  Google Scholar 

  69. Matêjka, L., Dusek, K., Plestil, J., et al.: Formation and structure of the epoxy-silica hybrids. Polymer 40, 171–181 (1999)

    Article  Google Scholar 

  70. Sunada, K., Takenaka, K., Shiomi, T.: Synthesis of polychloroprene-silica composites by sol–gel method in the presence of modified polychloroprene containing triethoxysilyl group. J. Appl. Polym. Sci. 97, 1545–1552 (2005)

    Article  CAS  Google Scholar 

  71. Wu, C.S., Liao, H.T.: Modification of polyethylene-octene elastomer by silica through a sol–gel process. J. Appl. Polym. Sci. 88, 966–972 (2003)

    Article  CAS  Google Scholar 

  72. Wu, C.S.: Synthesis of polyethylene-octene elastomer/SiO2–TiO2 nanocomposites via in situ polymerization: properties and characterization of the hybrid. J. Polym. Sci. Polym. Chem. 43, 1690–1701 (2005)

    Article  CAS  Google Scholar 

  73. Lai, S.M., Wang, C.K., Shen, H.F.: Properties and preparation of thermoplastic polyurethane/silica hybrid using sol–gel process. J. Appl. Polym. Sci. 97, 1316–1325 (2005)

    Article  CAS  Google Scholar 

  74. Lai, S.M., Liu, S.D.: Properties and preparation of thermoplastic polyurethane/silica hybrids using a modified sol–gel process. Polym. Eng. Sci. 47, 77–86 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Messori .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Messori, M. (2011). In Situ Synthesis of Rubber Nanocomposites. In: Mittal, V., Kim, J., Pal, K. (eds) Recent Advances in Elastomeric Nanocomposites. Advanced Structured Materials, vol 9. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15787-5_2

Download citation

Publish with us

Policies and ethics