Skip to main content

Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils

  • Chapter
  • First Online:
Phosphorus in Action

Part of the book series: Soil Biology ((SOILBIOL,volume 26))

Abstract

Phosphorus (P) is an essential element for living cells, and to some extent the abundance and activity of all organisms are regulated by P availability. However, the importance of P in terrestrial ecosystems may be most profound in tropical rain forests, where P supply is often very low. Thus, soil P availability could strongly limit various aspects of ecosystem function in tropical forests, as well as regulate tropical forest responses to anthropogenic perturbation. In this chapter, we describe P cycling in tropical forests growing on highly weathered soil (e.g., Ultisols and Oxisols). We focus on P inputs, transformations, and losses, and highlight aspects of the P cycle that are somewhat unique to this biome. In addition, we consider the implications of tropical P limitation at present and in the context of global change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achat DL, Bakker MR, Augusto L, Saur E, Sousseron L, Morel C (2009) Evaluation of the phosphorus status of P-deficient podzols in temperate pine stands: combining isotopic dilution and extraction methods. Biogeochemistry 92:183–200

    CAS  Google Scholar 

  • Acosta-Martinez V, Cruz L, Sotomayor-Ramirez D, Perez-Alegria L (2007) Enzyme activities as affected by soil properties and land use in a tropical watershed. Appl Soil Ecol 35:35–45

    Google Scholar 

  • Aldrich-Wolfe L (2007) Distinct mycorrhizal communities on new and established hosts in a transitional tropical plant community. Ecology 88:559–566

    PubMed  Google Scholar 

  • Al-Ghazi Y, Muller B, Pinloche S, Tranbarger T, Nacry P, Rossignol M, Tardieu F, Doumas P (2003) Temporal responses of Arabidopsis root architecture to phosphate starvation: evidence for the involvement of auxin signaling. Plant Cell Environ 26:1053–1066

    CAS  Google Scholar 

  • Allison S, Vitousek P (2005) Responses of extracellular enzymes to simple and complex nutrient inputs. Soil Biol Biochem 37:937–944

    CAS  Google Scholar 

  • Anderson G (1967) Nucleic acids, derivatives and organic phosphates. In: McLaren A, Peterson G (eds) Soil biochemistry, vol 1. Marcel Dekker, New York, NY

    Google Scholar 

  • Artaxo P, Martins J, Yamasoe M, Procopio A, Pauliquevis T, Andreae M, Guyon P, Gatti L, Leal A (2002) Physical and chemical properties of aerosols in the wet and dry seasons in Rondonia, Amazonia. J Geophys Res 107:D20

    Google Scholar 

  • Asawalam DO, Johnson S (2007) Physical and chemical characteristics of soils modified by earthworms and termites. Commun Soil Sci Plant Anal 38:513–521

    CAS  Google Scholar 

  • Asner GP, Seastedt TR, Townsend AR (1997) The decoupling of terrestrial carbon and nitrogen cycles. Bioscience 47:226–234

    Google Scholar 

  • Asner GP, Knapp DE, Broadbent EN, Oliveira PJC, Keller M, Silva JN (2005) Selective logging in the Brazilian Amazon. Science 310:480–482

    CAS  PubMed  Google Scholar 

  • Baldwin D, Mitchell A (2000) The effects of drying and re-flooding on the sediment and soil nutrient and river-floodplain systems: a synthesis. Regul River 16:457–467

    Google Scholar 

  • Baldwin D, Howitt J, Beattie J (2003) Abiotic degradation of organic phosphorus compounds in the environment. In: Turner B, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI, Wallingford, UK

    Google Scholar 

  • Barber S (1984) Soil nutrient bioavailability. Wiley, New York, NY

    Google Scholar 

  • Benner JW, Conroy S, Lunch CK, Toyoda N, Vitousek PM (2007) Phosphorus fertilization increases the abundance and nitrogenase activity of the cyanolichen Pseudocyphellaria crocata in Hawaiian montane forests. Biotropica 39:400–405

    Google Scholar 

  • Berg AS, Joern BC (2006) Sorption dynamics of organic and inorganic phosphorus compounds in soil. J Environ Qual 35:1855–1862

    CAS  PubMed  Google Scholar 

  • Bern CR, Townsend AR, Farmer GL (2005) Unexpected dominance of parent-material strontium in a tropical forest on highly weathered soils. Ecology 86:626–632

    Google Scholar 

  • Biggs TW, Dunne T, Domingues TF, Martinelli LA (2002) Relative influence of natural watershed properties and human disturbance on stream solute concentrations in the southwestern Brazilian Amazon Basin. Water Resour Res 38:1150

    Google Scholar 

  • Bormann F, Likens G (1979) Catastrophic disturbance and the steady-state in northern hardwood forests. Am Sci 67:660–669

    Google Scholar 

  • Bünemann E, Smithson PC, Jama B, Frossard E, Oberson A (2004) Maize productivity and nutrient dynamics in maize-fallow rotations in western Kenya. Plant Soil 264:195–208

    Google Scholar 

  • Caradus J, Snaydon R (1987) Aspects of the phosphorus nutrition of white clover populations. II. Root exocellular acid phosphatase activity. J Plant Nutr 10:287–301

    CAS  Google Scholar 

  • Chadwick OA, Derry LA, Vitousek PM, Huebert BJ, Hedin LO (1999) Changing sources of nutrients during four million years of ecosystem development. Nature 397:491–497

    CAS  Google Scholar 

  • Chen Z, Hsieh C, Jian F, Hsieh T, Sun I (1997) Relations of soil properties to topography and vegetation in a subtropical rain forest in southern Taiwan. Plant Ecol 132:229–241

    Google Scholar 

  • Chen C, Condon L, Davis M, Sherlock R (2002) Phosphorus dynamics in the rhizosphere of perennial ryegrass (Lolium perenne L.) and radiata pine (Pinus radiata D. Don.). Soil Biol Biochem 34:487–499

    CAS  Google Scholar 

  • Clark DA (2004) Tropical forests and global warming: slowing it down or speeding it up? Front Ecol Environ 2:73–80

    Google Scholar 

  • Cleveland CC, Townsend AR (2006) Nutrient additions to a tropical rain forest drive substantial soil carbon dioxide losses to the atmosphere. Proc Natl Acad of Sci USA 103:10316–10321

    CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schimel DS, Fisher H, Howarth RW, Hedin LO, Perakis SS, Latty EF, Von Fischer JC, Elseroad A, Wasson MF (1999) Global patterns of terrestrial biological nitrogen (N2) fixation in natural ecosystems. Global Biogeochem Cycles 13:623–645

    CAS  Google Scholar 

  • Cleveland CC, Townsend AR, Schmidt SK, Constance BC (2003) Soil microbial dynamics and biogeochemistry in tropical forests and pastures, southwestern Costa Rica. Ecol Appl 13:314–326

    Google Scholar 

  • Cleveland CC, Reed SC, Townsend AR (2006) Nutrient regulation of organic matter decomposition in a tropical rain forest. Ecology 87:492–503

    PubMed  Google Scholar 

  • Condron L, Moir J, Tiessen H, Stewart J (1990) Critical evaluation of methods for determining total organic phosphorus in tropical soils. Soil Sci Soc Am J 54:126–1266

    Google Scholar 

  • Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, Vitousek PM (1995) Changes in soil phosphorus fractions an ecosystem dynamics across a long chronosequence in Hawaii. Ecology 76:1407–1424

    Google Scholar 

  • Cross AF, Schlesinger WH (1995) A literature review and evaluation of the Hedley fractionation: applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 64:197–214

    CAS  Google Scholar 

  • Cuevas E, Medina E (1986) Nutrient dynamics within Amazonian forest ecosystems. I. Nutrient flux in fine litter fall and efficiency of nutrient utilization. Oecologia 68:466–472

    Google Scholar 

  • Cuevas E, Medina E (1988) Nutrient dynamics with Amazonian forests. Oecologia 76:222–235

    Google Scholar 

  • Davidson EA, de Carvalho C, Figueira A, Ishida F, Ometto J, Nardoto G, Saba R, Hayashi S, Leal E, Vieira I, Martinelli L (2007) Recuperation of nitrogen cycling in Amazonian forests following agricultural abandonment. Nature 447:995–999

    CAS  PubMed  Google Scholar 

  • Denef K, Six J, Merckx R, Paustian K (2002) Short-term effects of biological and physical forces on aggregate formation in soils with different clay mineralogy. Plant Soil 246:185–200

    CAS  Google Scholar 

  • Duff S, Sarath G, Plaxton W (1994) The role of acid-phosphatases in plant phosphorus metabolism. Physiol Plant 90:791–800

    CAS  Google Scholar 

  • Elser J, Bracken M, Cleland E, Gruner D, Harpole W, Hillebrand H, Ngai J, Seabloom E, Shurin J, Smith J (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142

    PubMed  Google Scholar 

  • Fohse D, Claassen N, Jungk A (1991) Phosphorus efficiency of plants II. Significance of root radius, root hairs and cation-anion balance for phosphorus influx in seven plant species. Plant Soil 132:261–272

    Google Scholar 

  • Friedlingstein P, Cadule P, Piao SL, Ciais P, Sitch S (2010) The African contribution to the global climate-carbon cycle feedback of the 21st century. Biogeosciences 7:513–519

    CAS  Google Scholar 

  • Frossard E, Brossard M, Hedley M, Metherell A (1995) Reactions controlling the cycling of P in soils. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, UK

    Google Scholar 

  • Gehring C, Vlek PL, Souza LA, Denich M (2005) Biological nitrogen fixation in secondary regrowth and mature rainforest of central Amazonia. Agric Ecosyst Environ 111:237–252

    CAS  Google Scholar 

  • George T, Richardson A, Hadobas P, Simpson R (2004) Characterization of transgenic Trifolium subterraneum L. which expresses phyA and releases extracellular phytase: growth and P nutrition in laboratory media and soil. Plant Cell Environ 27:1351–1361

    CAS  Google Scholar 

  • George TS, Fransson A-M, Hammond JP, White PJ (2011) Phosphorus nutrition: rhizosphere processes, plant response and adaptations. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_10

  • Gholz H, Wedin D, Smitherman S, Harmon M, Parton W (2000) Long-term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob Change Biol 6:751–765

    Google Scholar 

  • Gillman G (1984) Using variable charge characteristics to understand the exchangeable cation status of oxic soils. Aust J Agric Res 22:71–80

    CAS  Google Scholar 

  • Grace J, Malhi Y, Higuchi N, Meir P (2001) Productivity of tropical rain forests. In: Roy J, Saugier B, Mooney H (eds) Terrestrial global productivity: past, present and future. Academic, London, pp 401–428

    Google Scholar 

  • Hall SJ, Matson PA (1999) Nitrogen oxide emissions after nitrogen additions in tropical forests. Nature 400:1997–2000

    Google Scholar 

  • Haran S, Ogendra S, Seska M, Bratanova M, Raskin I (2000) Characterization of Arabidopsis acid phosphatase promoter and regulation of acid phosphatase expression. Plant Physiol 124:615–626

    CAS  PubMed Central  PubMed  Google Scholar 

  • Harrington RA, Fownes JH, Vitousek PM (2001) Production and resource use efficiencies in N- and P-limited tropical forests: a comparison of responses to long-term fertilzation. Ecosystems 4:646–657

    CAS  Google Scholar 

  • Harrison A (1987) Soil organic phosphorus: a review of world literature. CABI, Wallingford, UK

    Google Scholar 

  • Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77–87

    CAS  Google Scholar 

  • Hayes J, Richardson A, Simpson R (2000) Components of organic phosphorus in soil extracts that are hydrolysed by phytase and acid phosphatase. Biol Fertil Soils 32:279–286

    CAS  Google Scholar 

  • Hedin L, Armesto J, Johnson A (1995) Patterns of nutrient loss from unpolluted, old growth temperate forests-evaluation of biogeochemical theory. Ecology 76:493–509

    Google Scholar 

  • Hedin LO, Vitousek PM, Matson PA (2003) Nutrient losses over four million years of tropical forest development. Ecology 84:2231–2255

    Google Scholar 

  • Herbert DA, Fownes JH (1995) Phosphorus limitation of forest leaf area and net primary production on a highly weathered soil. Biogeochemistry 29:223–235

    CAS  Google Scholar 

  • Herrera R, Merida T, Stark N, Jordan C (1978) Direct phosphorus transfer from leaf litter to roots. Naturwissenschaften 65:208–209

    CAS  Google Scholar 

  • Hobbie S, Vitousek PM (2000) Nutrient limitation of decomposition in Hawaiian forests. Ecology 81:1867–1877

    Google Scholar 

  • Hooper DU, Johnson L (1999) Nitrogen limitation in dryland ecosystems: responses to geographical and temporal variation in precipitation. Biogeochemistry 46:247–293

    CAS  Google Scholar 

  • Horst W, Kamh M, Jibrin J, Chude V (2001) Agronomic measures for increasing P availability to crops. Plant Soil 237:211–223

    CAS  Google Scholar 

  • Houlton BZ, Wang YP, Vitousek PM, Field CB (2008) A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature 454:327–330

    CAS  PubMed  Google Scholar 

  • Husband R, Herre E, Turner S, Gallery R, Young J (2002) Molecular diversity of arbuscular mycorrhizal fungi and patterns of host association over time and space in a tropical forest. Mol Ecol 11:2669–2678

    CAS  PubMed  Google Scholar 

  • Janos DP (1980) Vesicular-arbuscular mycorrhizae affect lowland tropical rain forest plant growth. Ecology 61:151–162

    Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_6

  • Jenny H (1941) Factors of soil formation. McGraw-Hill, New York, NY

    Google Scholar 

  • Jobbagy E, Jackson R (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • Johnson RA, Frizano J, Vann DR (2003) Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure. Oecologia 135:487–499

    PubMed  Google Scholar 

  • Keller M, Kaplan W, Wofsy S (1986) Emissions of N2O, CH4, and CO2 from tropical soils. J Geophys Res 91:11791–11801

    Google Scholar 

  • Kitayama K, Aiba S (2002) Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo. J Ecol 90:37–51

    Google Scholar 

  • Kitayama K, Majalap-Lee N, Aiba S (2000) Soil phosphorus fractionation and phosphorus-use efficiencies of tropical rainforests along altitudinal gradients of Mount Kinabalu, Borneo. Oecologia 123:342–349

    Google Scholar 

  • Kitayama K, Aiba S, Takyu M, Majalap N, Wagai R (2004) Soil phosphorus fractionation and phosphorus-use efficiency of a Bornean tropical montane rain forest during soil aging with podzolization. Ecosystems 7:259–274

    CAS  Google Scholar 

  • Kroehler C, Linkins A (1988) The root surface phosphatases of Eriophorum vaginatum – effects of temperature, pH, substrate concentration and inorganic phosphorus. Plant Soil 105:3–10

    CAS  Google Scholar 

  • Kroehler C, Linkins A (1991) The absorption of inorganic-phosphate from 32P-labeled inositol hexaphosphate by Eriophorum vaginatum. Oecologia 85:424–428

    Google Scholar 

  • Lajtha K, Harrison A (1995) Strategies of phosphorus acquisition and conservation by plant species and communities. In: Tiessen H (ed) Phosphorus in the global environment. Wiley, Chichester, UK

    Google Scholar 

  • Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103

    PubMed  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    PubMed  Google Scholar 

  • Lewis WM Jr, Saunders JF III, Levine SN, Weibezahn FH (1986) Organic carbon in the Caura River, Venezuela. Limnol Oceanogr 31:653–656

    Google Scholar 

  • Lewis SL, Lopez-Gonzalez G, Sonke B, Affum-Baffoe K, Baker TR, Ojo LO, Phillips OL, Reitsma JM, White L, Comiskey JA, Djuikouo M-N, Ewango CEN, Feldpausch TR, Hamilton AC, Gloor M, Hart T, Hladik A, Lloyd J, Lovett JC, Makana J-R, Malhi Y, Mbago FM, Ndangalasi HJ, Peacock J, Peh KS-H, Sheil D, Sunderland T, Swaine MD, Taplin J, Taylor D, Thomas SC, Votere R, Wöll H (2009) Increasing carbon storage in intact African tropical forests. Nature 457:1003–1006

    CAS  PubMed  Google Scholar 

  • Likens G, Bormann F (1995) Biogeochemistry of a forested ecosystem. Springer, New York, NY

    Google Scholar 

  • Linquist B, Singleton P, Yost R, Cassman K (1997) Aggregate size effects on the sorption and release of phosphorus in an ultisol. Soil Sci Soc Am J 61:160–166

    CAS  Google Scholar 

  • Liptzin D, Silver WL (2009) Effects of carbon additions on iron reduction and phosphorus availability in a humid tropical forest soil. Soil Biol Biochem 41:1696–1702

    CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey R, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Environ Stress Adapt 137:681–691

    CAS  Google Scholar 

  • Ma Z, Bielenberg G, Brown K, Lynch J (2001) Regulation of root hair density by phosphorus availability in Arabidopsis thaliana. Plant Cell Environ 24:459–467

    CAS  Google Scholar 

  • Maheswaran J, Gunatilleke I (1990) Nitrogenase activity in soil and litter of a tropical lowland rain forest and an adjacent fernland in Sri Lanka. J Trop Ecol 6:281–289

    Google Scholar 

  • Mahowald NM, Artaxo P, Baker AR, Jickells TD, Okin GS, Randerson JT, Townsend AR (2005) Impacts of biomass burning emissions and land use change on Amazonian atmospheric phosphorus cycling and deposition. Global Biogeochem Cycles 19:GB4030

    Google Scholar 

  • Malhi Y, Aragao LEOC, Galbraith D, Huntingford C, Fisher R, Zelazowski P, Sitch S, McSweeney C, Meir P (2009) Exploring the likelihood of a climate-change-induced dieback of the Amazon rainforest. Proc Natl Acad Sci USA 106:20610–20615

    CAS  PubMed  Google Scholar 

  • Markewitz D, Davidson E, Moutinho P, Nepstad D (2004) Nutrient loss and redistribution after forest clearing on a highly weathered soil in Amazonia. Ecol Appl 14:S177–S199

    Google Scholar 

  • Markewitz D, Resende JCF, Parron L, Bustamante M, Klink CA, RdO F, Davidson EA (2006) Dissolved rainfall inputs and streamwater outputs in an undisturbed watershed on highly weathered soils in the Brazilian cerrado. Hydrol Process 20:2615–2639

    CAS  Google Scholar 

  • Martinelli L, Piccolo M, Townsend A, Vitousek P, Cuevas E, McDowell W, Robertson G, Santos O, Treseder K (1999) Nitrogen stable isotopic composition of leaves and soil: Tropical versus temperate forests. Biogeochemistry 46:45–65

    CAS  Google Scholar 

  • Matson PA, Vitousek PM (1990) Ecosystem approach to a global nitrous oxide budget. Bioscience 40:667–672

    Google Scholar 

  • Matson P, Vitousek P, Ewel J, Mazzarino M, Robertson G (1987) Nitrogen transformation following tropical forest felling and burning on a volcanic soil. Ecology 68:491–502

    Google Scholar 

  • McDowell WH, Lugo AE, James A (1995) Export of nutrients and major ions from Caribbean catchments. J N Am Benthol Soc 14:12–20

    Google Scholar 

  • McGill WB, Cole CV (1981) Comparative aspects of cycling of organic C, N, S, and P through soil organic matter. Geoderma 26:267–286

    CAS  Google Scholar 

  • McGrath DA, Smith CK, Gholz HL, Oliveira FD (2001) Effects of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 4:625–645

    CAS  Google Scholar 

  • McGroddy M, Daufresne T, Hedin L (2004) Scaling of C:N:P stoichiometry in forests worldwide: implications of terrestrial Redfield-type ratios. Ecology 85:2390–2401

    Google Scholar 

  • McKane R, Johnson L, Shaver G, Nadelhoffer K, Rastetter E, Fry B, Giblin A, Kielland K, Kwiatkowski B, Laundre J, Murray G, Turner B, Condron L, Richardson S, Peltzer D, Allison V (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415:68–71

    CAS  PubMed  Google Scholar 

  • McLachlan K (1980) Acid phosphatase activity of intact roots and phosphorus nutrition in plants.1. Assay conditions and phosphatase activity. Aust J Agric Res 3:429–440

    Google Scholar 

  • Merckx R, Den Hartog A, van Veen J (1985) Turnover of root-derived material and related microbial biomass formation in soils of different texture. Soil Biol Biochem 17:565–569

    Google Scholar 

  • Miller S, Liu J, Allan D, Menzhuber C, Fedorova M, Vance C (2001) Molecular control of acid phosphatase secretion into the rhizosphere of proteoid roots from phosphorus-stressed white lupin. Plant Physiol 127:594–606

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moorhead D, Kroehler C, Linkins A, Reynolds J (1993) Extracellular acid phosphatase activities in Eriophorum vaginatum tussocks – a modeling synthesis. Arctic Alpine Res 25:50–55

    Google Scholar 

  • Moulin C, Chiapello I (2006) Impact of human-induced desertification on the intensification of Sahel dust emission and export over the last decades. Geophys Res Lett 33:L18808

    Google Scholar 

  • Nannipieri P, Giagnoni L, Landi L, Renella G (2011) Role of phosphatase enzymes in soil. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_9

  • Neff JC, Reynolds R, Fernandez D, Lamothe P (2006) Controls of bedrock geochemistry on soil and plant nutrients in southeastern Utah. Ecosystems 9:879–893

    CAS  Google Scholar 

  • Neill C, Piccolo MC, Steudler PA, Cerrf CC (1995) Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon basin. Soil Biol Biochem 27:1167–1175

    CAS  Google Scholar 

  • Neill C, Deegan LA, Thomas SM, Cerri CC (2001) Deforestation for pasture alters nitrogen and phosphorus in small Amazonian streams. Ecol Appl 11:1817–1828

    Google Scholar 

  • Newberry D, Alexander L, Rother J (1997) Phosphorus dynamics in a lowland African rain forest: the influence of ectomycorrhizal trees. Ecol Monogr 67:367–409

    Google Scholar 

  • Oades J, Waters A (1991) Aggregate hierarchy in soils. Aust J Agric Res 29:815–828

    Google Scholar 

  • Oberson A, Friesen DK, Morel C, Tiessen H (1997) Determination of phosphorus released by chloroform fumigation from microbial biomass in high P sorbing tropical soils. Soil Biol Biochem 29:1579–1583

    CAS  Google Scholar 

  • Oberson A, Friesen DK, Rao IM, Bühler S, Frossard E (2001) Phosphorus transformations in an Oxisol under contrasting land-use systems: the role of soil microbial biomass. Plant Soil 237:197–210

    CAS  Google Scholar 

  • Oehl F, Oberson A, Sinaj S, Frossard E (2001) Organic phosphorus mineralization studies using isotopic dilution techniques. Soil Sci Soc Am J 65:780–787

    CAS  Google Scholar 

  • Okin GS, Mahowald N, Chadwick OA, Artaxo P (2004) Impact of desert dust on the biogeochemistry of phosphorus in terrestrial ecosystems. Glob Biogeochem Cycles 18:GB2005

    Google Scholar 

  • Olander L, Vitousek P (2000) Regulation of soil phosphatase and chitinase activity by N and P availability. Biogeochemistry 49:175–190

    CAS  Google Scholar 

  • Olander L, Vitousek PM (2004) Biological and geochemical sinks for phosphorus in soil from a wet tropical forest. Ecosystems 7:404–419

    CAS  Google Scholar 

  • Palm C, Sanchez P, Ahamed S, Awiti A (2007) Soils: a contemporary perspective. Annu Rev Environ Resour 32:99–129

    Google Scholar 

  • Pant H, Edwards A, Vaughan D (1994) Extraction, molecular fractionation and enzyme degradation of organically associated phosphorus in soil solutions. Biol Fertil Soils 17:196–200

    CAS  Google Scholar 

  • Paoli GD, Curran LM, Slik JWF (2008) Soil nutrients affect spatial patterns of aboveground biomass an emergent tree density in southwestern Borneo. Oecologia 155:287–299

    PubMed  Google Scholar 

  • Parton W, Neff J, Vitousek P (2005) Modeling phosphorus, carbon, and nitrogen dynamics in terrestrial ecosystems. In: Turner B, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI, Wallingford, UK

    Google Scholar 

  • Paul E, Clark F (1989) Soil microbiology and biochemistry. Academic, San Diego, CA

    Google Scholar 

  • Pearson HL, Vitousek PM (2002) Soil phosphorus fractions and symbiotic nitrogen fixation across a substrate-age gradient in Hawaii. Ecosystems 5:587–596

    CAS  Google Scholar 

  • Phillips OL, Malhi Y, Higuchi N, Laurance WF, Nu PV, Va RM, Laurance SG, Ferreira LV, Stern M, Brown S, Grace J (1998) Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282:439–442

    CAS  PubMed  Google Scholar 

  • Phillips OL, Lewis SL, Baker TR, Chao K-J, Higuchi N (2008) The changing Amazon forest. Philos Trans R Soc B 363:1819–1827

    Google Scholar 

  • Raghothama K (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50:665–693

    CAS  PubMed  Google Scholar 

  • Raich J, Schlesinger W (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    CAS  Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2007) Controls over leaf litter and soil nitrogen fixation in two lowland tropical rain forests. Biotropica 39:585–592

    Google Scholar 

  • Reed SC, Cleveland CC, Townsend AR (2008) Tree species control rates of free-living nitrogen fixation in a tropical rain forest. Ecology 89:2924–2934

    PubMed  Google Scholar 

  • Reich PB, Oleksyn J (2004) Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci USA 101:11001–11006

    CAS  PubMed  Google Scholar 

  • Richter DD, Allen L, Li J, Markewitz D, Raikes J (2006) Bioavailability of slowly cycling soil phosphorus: major restructuring of soil P fractions over four decades in an aggrading forest. Oecologia 150:259–271

    PubMed  Google Scholar 

  • Sanchez P (1976) Properties and management of soils in the tropics. Wiley, New York, NY

    Google Scholar 

  • Sanchez PA, Bandy DE, Villachica JH, Nicholaides JJ (1982) Amazon basin soils: management for continuous crop production. Science 216:821–827

    CAS  PubMed  Google Scholar 

  • Saunders T, McClain M, Llerena C (2006) The biogeochemistry of dissolved nitrogen, phosphorus, and organic carbon along terrestrial-aquatic flowpaths of a montane headwater catchment in the Peruvian Amazon. Hydrol Process 20:2549–2562

    CAS  Google Scholar 

  • Schachtman D, Reid R, Ayling S (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 116:447–453

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlesinger W (1997) Biogeochemistry: an analysis of global change. Academic, San Diego, CA

    Google Scholar 

  • Schuur EAG, Matson PA (2001) Net primary productivity an nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest. Oecologia 128:431–442

    Google Scholar 

  • Silver W, Scatena F, Johnson A, Siccama T, Sanchez M (1994) Nutrient availability in a montane wet tropical forest: Spatial patterns and methodological considerations. Plant Soil 164:129–145

    CAS  Google Scholar 

  • Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301–328

    Google Scholar 

  • Six J, Conant RT, Paul EA, Paustian K (2002) Stabilization mechanisms of soil organic matter: Implications for C-saturation of soils. Plant Soil 241:155–176

    CAS  Google Scholar 

  • Skene KR (1998) Cluster roots: some ecological considerations. J Ecol 86:1060–1064

    Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy. Natural Resources Conservation Service, US Department of Agriculture, Washington, DC

    Google Scholar 

  • Sollins P, Robertson GP, Uehara G (1988) Nutrient mobility in variable- and permanent-charge soils. Biogeochemistry 6:181–199

    Google Scholar 

  • Stallard RF, Edmond JM (1983) Geochemistry of the Amazon. 2. The influence of geology and weathering environment on the dissolved load. J Geophys Res 88(C14):9671–9688

    Google Scholar 

  • Stark NM, Jordan CF (1978) Nutrient retention by the root mat of an Amazonian rain forest. Ecology 59:434–437

    CAS  Google Scholar 

  • Stephens BB, Gurney KR, Tans PP, Sweeney C, Peters W, Bruhwiler L, Ciais P, Ramonet M, Bousquet P, Nakazawa T, Aoki S, Michida T, Inoue G, Vinnichenko N, Lloyd J, Jordan A, Heimann M, Shibistova O, Langenfelds R, Steele LP, Francey RJ, Denning AS (2007) Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316:1732–1735

    Google Scholar 

  • Swap R, Garstang M, Greco S, Talbot R, Kallberg P (1992) Saharan dust in the Amazon basin. Tellus B Chem Phys Meteorol 44:133–1149

    Google Scholar 

  • Swift M, Heal O, Anderson J (1979) Decomposition in terrestrial ecosystems. Studies in ecology, vol 5. University of California Press, Berkeley, CA

    Google Scholar 

  • Tanner E, Kapos V, Franco W (1992) Nitrogen and phosphorus fertilization effects on Venezuelan montane forest trunk growth and litterfall. Ecology 73:78–86

    Google Scholar 

  • Tarafdar J, Jungk A (1987) Phosphatase activity in the rhizosphere and its relation to the depletion of soil organic phosphorus. Biol Fertil Soils 3:199–204

    CAS  Google Scholar 

  • Tarnocai C, Canadell J, Schuur E, Kuhry P, Mazhitova G, Zimov S (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:GB2023

    Google Scholar 

  • ter Steege H, Pitman NC, Phillips OL, Chave J, Sabatier D, Duque A, Spichiger R, Va R (2006) Continental-scale patterns of canopy tree composition and function across Amazonia. Nature 443:444–447

    PubMed  Google Scholar 

  • Theodorou ME, Plaxton WC (1996) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    Google Scholar 

  • Thornton P, Doney S, Lindsay K, Moore J, Mahowald N, Randerson J, Fung I, Lamarque J, Feddema J, Lee Y (2009) Carbon-nitrogen interactions regulate climate-carbon feedbacks: results from an atmosphere-ocean general circulation model. Biogeosciences 6:2099–2120

    CAS  Google Scholar 

  • Tiessen H, Moir JO (1993) Characterization of available P by sequential extraction. In: Carter M (ed) Soil sampling and methods of analysis. Lewis, Ann Arbor, MI

    Google Scholar 

  • Tiessen H, Stewart J, Cole C (1984) Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Sci Soc Am J 48:853–858

    CAS  Google Scholar 

  • Townsend AR, Cleveland CC, Asner GP, Bustamante MM (2007) Controls over foliar N:P ratios in tropical rain forests. Ecology 88:107–118

    PubMed  Google Scholar 

  • Townsend AR, Asner GP, Cleveland CC (2008) The biogeochemical heterogeneity of tropical forests. Trends Ecol Evol 23:424–431

    PubMed  Google Scholar 

  • Toy ADF (1973) The chemistry of phosphorus. Pergamon, Oxford

    Google Scholar 

  • Treseder K, Vitousek P (2001) Effects of soil nutrient availability on investment in acquisition of N and P in Hawaiian rain forests. Ecology 82:946–954

    Google Scholar 

  • Turner BL (2008) Resource partitioning for soil phosphorus: a hypothesis. J Ecol 96:698–702

    CAS  Google Scholar 

  • Uehara G, Gillman G (1980) Charge characteristics of soils with variable and permanent charge minerals. 1. Theory. Soil Sci Soc Am J 44:250–252

    CAS  Google Scholar 

  • Uhde-Stone C, Gilbert G, Johnson J, Litjens R, Zinn K, Temple S, Vance C, Allan D (2004) Acclimation of white lupin to phosphorus deficiency involves enhanced expression of genes related to organic acid metabolism. Plant Soil 248:99–116

    Google Scholar 

  • Vance C, Uhde-Stone C, Allan D (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    CAS  Google Scholar 

  • Vitousek PM (1982) Nutrient cycling and nutrient use efficiency. Am Nat 119:553–572

    Google Scholar 

  • Vitousek PM (1984) Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65:285–298

    CAS  Google Scholar 

  • Vitousek PM (2004) Nutrient cycling and limitation: Hawai’i as a model system. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Vitousek PM, Farrington H (1997) Nutrient limitation and soil development: Experimental test of a biogeochemical theory. Biogeochemistry 37:63–75

    CAS  Google Scholar 

  • Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13:87–115

    Google Scholar 

  • Vitousek PM, Reiners W (1975) Ecosystem succession and nutrient retention hypothesis. Bioscience 25:376–381

    CAS  Google Scholar 

  • Vitousek PM, Sanford RL (1986) Nutrient cycling in moist tropical forest. Annu Rev Ecol Syst 17:137–167

    Google Scholar 

  • Vitousek P, Chadwick O, Matson P, Allison S, Derry L, Kettley L, Luers A, Mecking E, Monastra V, Porder S (2003) Erosion and the rejuvenation of weathering-derived nutrient supply in an old tropical landscape. Ecosystems 6:762–772

    CAS  Google Scholar 

  • Wada K (1985) The distinctive properties of andisols. Adv Soil Sci 2:174–229

    Google Scholar 

  • Walker T, Syers J (1976) The fate of phosphorus during pedogenesis. Geoderma 15:1–19

    CAS  Google Scholar 

  • Wardle D, Walker L, Bardgett R (2004) Ecosystem properties and forest decline in contrasting long-term chronosequences. Science 305:509–513

    CAS  PubMed  Google Scholar 

  • Wasaki J, Maruyama H (2011) Molecular approaches to the study of biological phosphorus cycling. In: Bünemann E, Oberson A, Frossard E (eds) Phosphorus in action: biological processes in soil phosphorus cycling. Soil biology, vol 26. Springer, Heidelberg. doi: 10.1007/978-3-642-15271-9_4

  • Wasaki J, Omura M, Ando M, Dateki H, Shinano T, Osaka M, Ito H, Matsui H, Tadano T (2000) Molecular cloning and root specific expression of secretory acid phosphatases form phosphate-deficient lupin (Lipinus albus L.). Soil Sci Plant Nutr 46:427–437

    CAS  Google Scholar 

  • White G, Zelazny L (1986) Charge properties of soil colloids. In: Sparks D (ed) Soil physical chemistry. CRC, Boca Raton, FL, pp 39–81

    Google Scholar 

  • Whitton B, Al-Shehri A, Ellwood N, Turner B (2005) Ecological aspects of phosphatase activity in cyanobacteria, eukaryotic algae and bryophytes. In: Turner BL, Frossard E, Baldwin D (eds) Organic phosphorus in the environment. CABI, Wallingford, UK, pp 205–241

    Google Scholar 

  • Wieder W, Cleveland CC, Townsend AR (2009) Controls over leaf litter decomposition in wet tropical forests. Ecology 90:3333–3341

    PubMed  Google Scholar 

  • Wilcke W, Yasin S, Valarezo C, Zech W (2001) Change in water quality during the passage through a tropical montane rain forest in Ecuador. Biogeochemistry 55:45–72

    CAS  Google Scholar 

  • Williams MR, Melack JM (1997) Solute export from forested and partially deforested catchments in the central Amazon. Biogeochemistry 38:67–102

    CAS  Google Scholar 

  • Xuluc-Talosa F, Vester H, Ramirez-Marcial N, Castellanos-Albores J, Lawrence D (2003) Leaf litter decomposition of tree species in three successional phases of tropical dry secondary forest in Campeche, Mexico. For Ecol Manag 174:401–412

    Google Scholar 

  • Yuan ZY, Chen HY (2009) Global-scale patterns of nutrient resorption associated with latitude, temperature and precipitation. Glob Ecol Biogeogr 18:11–18

    Google Scholar 

  • Zou X, Binkley D, Doxtader K (1992) A new method for estimating gross phosphorus mineralization and immobilization rates in soils. Plant Soil 147:243–250

    CAS  Google Scholar 

  • Zou X, Binkley D, Caldwell B (1995) Effects of dinitrogen-fixing trees on phosphorus biogeochemical cycling in contrasting forests. Soil Sci Soc Am J 59:1452–1458

    CAS  Google Scholar 

Download references

Acknowledgments

Projects supported by the National Science Foundation’s Division of Environmental Biology and the Andrew Mellon Foundation contributed to the thoughts and ideas discussed in this chapter. We are grateful to Astrid Oberson and an anonymous reviewer for their insightful suggestions and to Natalie Mahowald and Gregory Okin for providing a high resolution version of Figure 14.3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasha C. Reed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Reed, S.C., Townsend, A.R., Taylor, P.G., Cleveland, C.C. (2011). Phosphorus Cycling in Tropical Forests Growing on Highly Weathered Soils. In: Bünemann, E., Oberson, A., Frossard, E. (eds) Phosphorus in Action. Soil Biology, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15271-9_14

Download citation

Publish with us

Policies and ethics