Skip to main content

Time-Sensitive Feature Mining for Temporal Sequence Classification

  • Conference paper
PRICAI 2010: Trends in Artificial Intelligence (PRICAI 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6230))

Included in the following conference series:

Abstract

Behavior analysis received much attention in recent year, such as customer-relationship management, social security surveillance and e-business. Discovering high impact-driven behavior patterns is important for detecting and preventing their occurrences and reducing resulting risks and losses to our society. In data mining community, researchers pay little attention to time-stamps in temporal behavior sequences (without explicitly considering inherent temporal information) during classification. In this paper, we propose a novel Temporal Feature Extraction Method - TFEM. It extracts sequential pattern features where each transition is annotated with a typical transition time (its duration or interval). Therefore it substantially enriches temporal characteristics derived from temporal sequences, yielding improvements in performances, as demonstrated by a set of experiments performed on synthetic and real-world datasets. In addition, TFEM has the merit of simplicity in implementation and its pattern-based architecture can generate human-readable results and supply clear interpretability to users. Meanwhile, it is adjustable and adaptive to user’s different configurations, allowing a tradeoff between classification accuracy and time cost.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Foxall, C., James, V.: Behavior Analysis of Consumer Brand Choice: A Preliminary Analysis1. The Behavioral Economics of Brand Choice, p. 54 (2007)

    Google Scholar 

  2. Cao, L.: Behavior informatics and analytics: Let behavior talk. In: ICDM Workshops, pp. 87–96. IEEE Computer Society, Los Alamitos (2008)

    Google Scholar 

  3. Lesh, N., Zaki, M.J., Ogihara, M.: Mining features for sequence classification. In: KDD 1999: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 342–346. ACM, New York (1999)

    Google Scholar 

  4. Brigham, E., Yuen, C.: The fast Fourier transform. IEEE Transactions on Systems, Man and Cybernetics 8(2), 146–146 (1978)

    Article  Google Scholar 

  5. Golub, G., Reinsch, C.: Singular value decomposition and least squares solutions. Numerische Mathematik 14(5), 403–420 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  6. Eriksson, K., Estep, D., Hansbo, P., Johnson, C.: Introduction to adaptive methods for differential equations. Acta numerica 4, 105–158 (2008)

    Article  MathSciNet  Google Scholar 

  7. Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing SAX: a novel symbolic representation of time series. Data Mining and Knowledge Discovery 15(2), 107–144 (2007)

    Article  MathSciNet  Google Scholar 

  8. Lesh, N., Zaki, M., Ogihara, M.: Mining features for sequence classification. In: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 342–346. ACM, New York (1999)

    Chapter  Google Scholar 

  9. Zaki, M.: SPADE: An efficient algorithm for mining frequent sequences. Machine Learning 42(1), 31–60 (2001)

    Article  MATH  Google Scholar 

  10. Ma, Q., Wang, J., Shasha, D., Wu, C.: DNA sequence classification via an expectation maximization algorithm and neural networks: a case study. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews 31(4), 468–475 (2001)

    Article  Google Scholar 

  11. Rätsch, G., Sonnenburg, S., Schäfer, C.: Learning interpretable SVMs for biological sequence classification. BMC bioinformatics 7(Suppl. 1), S9 (2006)

    Article  Google Scholar 

  12. Ferreira, P., Azevedo, P.: Protein sequence classification through relevant sequence mining and bayes classifiers. In: Bento, C., Cardoso, A., Dias, G. (eds.) EPIA 2005. LNCS (LNAI), vol. 3808, pp. 236–247. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Mulder, N., Apweiler, R.: InterPro and InterProScan: tools for protein sequence classification and comparison. Methods in Molecular Biology (Clifton, NJ) 396, 59 (2007)

    Article  Google Scholar 

  14. Shen, L., Satta, G., Joshi, A.: Guided learning for bidirectional sequence classification. In: Annual Meeting-Association for Computational Linguistics, vol. 45, p. 760 (2007)

    Google Scholar 

  15. Spurdle, A., Lakhani, S., Healey, S., Parry, S., Da Silva, L., Brinkworth, R., Hopper, J., Brown, M., Babikyan, D., Chenevix-Trench, G., et al.: Clinical classification of BRCA1 and BRCA2 DNA sequence variants: the value of cytokeratin profiles and evolutionary analysis–a report from the kConFab Investigators. Journal of Clinical Oncology 26(10), 1657 (2008)

    Article  Google Scholar 

  16. Atalay, V., Cetin-Atalay, R.: Implicit motif distribution based hybrid computational kernel for sequence classification. Bioinformatics 21(8), 1429–1436 (2005)

    Article  Google Scholar 

  17. Quinlan, J.: Learning logical definitions from relations. Machine learning 5(3), 239–266 (1990)

    Google Scholar 

  18. Uci kdd repository, http://archive.ics.uci.edu/ml/datasets/Ionosphere:

  19. Jolliffe, I.: Principal component analysis. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  20. Gorban, A., Kgl, B., Wunsch, D., Zinovyev, A.: Principal manifolds for data visualization and dimension reduction, p. 340. Springer Publishing Company, Heidelberg (2007) (incorporated)

    Google Scholar 

  21. Rohlf, F.: Morphometric spaces, shape components and the effects of linear transformations. In: Advances in morphometrics, pp. 117–129 (1996)

    Google Scholar 

  22. Cai, D., He, X., Han, J., Zhang, H.: Orthogonal laplacianfaces for face recognition. IEEE Transactions on Image Processing 15(11), 3608–3614 (2006)

    Article  Google Scholar 

  23. Keogh, E., Pazzani, M.: Scaling up dynamic time warping for datamining applications. In: Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 285–289. ACM, New York (2000)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, Y., Cao, L., Liu, L. (2010). Time-Sensitive Feature Mining for Temporal Sequence Classification. In: Zhang, BT., Orgun, M.A. (eds) PRICAI 2010: Trends in Artificial Intelligence. PRICAI 2010. Lecture Notes in Computer Science(), vol 6230. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15246-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15246-7_30

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15245-0

  • Online ISBN: 978-3-642-15246-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics