Skip to main content

Molecular Communication Technology as a Biological ICT

  • Chapter
  • First Online:
Biological Functions for Information and Communication Technologies

Part of the book series: Studies in Computational Intelligence ((SCI,volume 320))

Abstract

This chapter provides a comprehensive overview of state-of-the art research on molecular communication—a molecule-based communication paradigm for biological machines. Unlike current telecommunications based on electric or optical signals, molecular communication exploits biological molecules as information carriers. In molecular communication, senders of communication encode information onto molecules and transmit to the environment. The information coded molecules then propagate in the environment to reach receivers of communication, which capture and biochemically react to the molecules (i.e., decode the information from the information coded molecules). Since biological molecules are compatible with biological systems, molecular communication is expected to impact medical domains such as human health monitoring where implant biological machines interact with biological cells through molecular communication. This chapter describes key concepts, architecture, potential applications of molecular communication as well as existing research on engineering molecular communication components and systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Adamatzky, B.D.L. Costello, T. Asai, Reaction-diffusion computers, Elsevier (2005)

    Google Scholar 

  2. B. Atakan, O.B. Akan, “An information theoretical approach for molecular communication,” in Proceedings of 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Dec. 2007

    Google Scholar 

  3. K. Akiyoshi, A. Itaya, S.M. Nomura, N. Ono, K. Yoshikawa (2003) Induction of neuron-like tubes and liposome networks by cooperative effect of gangliosides and phospholipids. Fed. Eur. Biochem. Soc. Lett. 534(1–3), 33–38

    Article  Google Scholar 

  4. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, and P. Walter, Molecular biology of the cell. (Garland Science, New York, 2002)

    Google Scholar 

  5. T.M. Allen, P.R. Cullis, Drug delivery systems: entering the mainstream. Science 303, 1818–1822 (2004)

    Article  Google Scholar 

  6. S. Basu, Y. Gerchman, C. Collins, F. Arnold, R. Weiss, A synthetic multicellular system for programmed pattern formation, Nature. April 21 2005, vol 434, pp. 1130–1134

    Google Scholar 

  7. J.T. Barron, L. Gu, J.E. Parrillo, Malate-aspartate shuttle, cytoplasmic NADH redox potential, and energetics in vascular smooth muscle. J. Mol. Cell Cardiol. 30, 1571–1579 (1998)

    Article  Google Scholar 

  8. K.J.L Burg, T. Boland, Minimally invasive tissue engineering composites and cell printing. IEEE Eng. Med. Biol. Mag. (2003)

    Google Scholar 

  9. J.M. Berg, J.L. Tymoczko, L. Stryer, Biochemisty. 5th edn. (Freeman, New York, 2002)

    Google Scholar 

  10. D. Bray, Protein molecules as computational elements in living cells. Nature vol. 376, 27 July 1995

    Google Scholar 

  11. A. Chakravarty, L. Howard, D.A. Compton, A mechanistic model for the organization of microtubule asters by motor and non-motor proteins in a mammalian mitotic extract. Mol. Biol. Cell 15, 2116–2132 (2004)

    Article  Google Scholar 

  12. T. Dennis, J. Lee, T. Ozdere, T.J. Lee, L. You, Engineering gene circuits: foundations and applications, in Nanotechnology in Biology and Medicine Methods, Devices and Applications, Chapter 21, ed. by T. Vo-Dinh (CRC Press, USA, 2007)

    Google Scholar 

  13. J.E. Dueber, E.A. Mirsky, W.A. Lim, Engineering synthetic signaling proteins with ultrasensitive input/output control, Nat. Biotechnol. 25, 660–662 (2007).

    Google Scholar 

  14. T.R. de Kievit, B.H. Iglewski, Bacterial quorum sensing in pathogenic relationships. Infect. Immun. 68(9), 4839–4849 (2000)

    Article  Google Scholar 

  15. A. Eckford, Nanoscale communication with Brownian motion, in Proceedings of 41st Annual Conference on Information Sciences and Systems (2007)

    Google Scholar 

  16. A. Eckford, Achievable information rates for molecular communication with distinct molecules, in Proceedings of Workshop on Computing and Communications from Biological Systems: Theory and Applications (2007)

    Google Scholar 

  17. M.B. Elowitz, S. Leibler, A synthetic oscillatory network of transcriptional regulators. Nature Jan 20, 403(6767), 335–338 (2000)

    Google Scholar 

  18. A. Enomoto, M. Moore, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A molecular communication system using a network of cytoskeletal filaments. in Technical Proceedings of the 2006 NSTI Nanotechnology Conference and Trade Show 1, 725–728 (2006)

    Google Scholar 

  19. A.C. Forster, G.M. Church, Towards synthesis of a minimal cell. Mol. Syst. Biol. (2006)

    Google Scholar 

  20. R.A. Freitas Jr., Nanomedicine, vol. I. Basic Capabilities (Landes Bioscience, USA, 1999)

    Google Scholar 

  21. T.S. Gardner, C.R. Cantor, J.J. Collins, Construction of a genetic toggle switch in Escherichia coli. Nature Jan 20, 403(6767), 339–342 (2000)

    Google Scholar 

  22. Y. Gerchman, R. Weiss, Teaching bacteria a new language.in Proceedings of the National Academy of Sciences 101(8), 2221–2222 (2004)

    Google Scholar 

  23. L.G. Griffith, G. Naughton, Tissue engineering—current challenges and expanding opportunities. Science. 295, 1009–1014 (2002)

    Article  Google Scholar 

  24. H. Hess, C.M. Matzke, R.K. Doot, J. Clemmens, G.D. Bachand, B.C. Bunker, V. Vogel, Molecular shuttles operating undercover: a new photolithographic approach for the fabrication of structured surfaces supporting directed motility. Nano Lett 3(12), 1651–1655 (2003)

    Article  Google Scholar 

  25. Y. Hiratsuka, T. Tada, K. Oiwa, T. Kanayama, T.Q.P. Uyeda, Controlling the direction of kinesin-driven microtubule movements along microlithographic tracks. Biophys. J. 81, 1555–1561 (2001)

    Article  Google Scholar 

  26. S. Hiyama, Y. Isogawa, T. Suda, Y. Moritani, K. Suto, A design of an autonomous molecule loading/transporting/unloading system using DNA hybridization and biomolecular linear motors in molecular communication (European Nano Systems, Grenoble, France, 2005)

    Google Scholar 

  27. S. Hiyama, Y. Moritani, T. Suda, R. Egashira, A. Enomoto, M. Moore, T. Nakano, Molecular Communication, in Proceedings of the 2005 NSTI Nanotechnology Conference, poster presentation, USA, May 2005

    Google Scholar 

  28. J. Howard, Mechanics of motor proteins and the cytoskeleton (Sinauer, Sunderland, 2001)

    Google Scholar 

  29. J. Kikuchi, A. Ikeda, M. Hashizume, Biomimetic Materials: Encyclopedia of Biomaterials and Biomedical Engineering (Marcel Dekker, New York, 2004)

    Google Scholar 

  30. R. Langer, Perspectives: drug delivery—drugs on target. Science 293, 58–59 (2001)

    Article  Google Scholar 

  31. J.Q. Liu, H. Sawai, A new channel coding algorithm based on photo-proteins and GTPases, in 1st International Conference on Bio-Inspired Models of Network, Information, and Computing Systems, Dec. 2006

    Google Scholar 

  32. J.Q. Liu, T. Nakano, An information theoretic model of molecular communication based on cellular signalng, in Proceedings of Workshop on Computing and Communications from Biological Systems: Theory and Applications (2007)

    Google Scholar 

  33. C. Mavroidis, A. Dubey, M.L. Yarmush, Molecular machines. Annu. Rev. Biomed. Eng. 6, 363–395 (2004)

    Article  Google Scholar 

  34. C.D. Montemagno, Nanomachines: a roadmap for realizing the vision. Biomed J Nanopart Res 3(1), 1–3 (2001)

    Article  Google Scholar 

  35. M. Moore, A. Enomoto, T. Nakano, R. Egashira, T. Suda, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, A design of a molecular communication system for nanomachines using molecular motors. in Proceedings of the Fourth Annual IEEE Conference on Pervasive Computing and Communications Workshops. (IEEE Computer Society, Washington, DC, 2006)

    Google Scholar 

  36. M. Moore, A. Enomoto, T. Nakano, A. Kayasuga, H. Kojima, H. Sakakibara, K. Oiwa, T. Suda, Molecular-motor based communication on a microtubule topology, 2nd International Workshop on Natural Computing (2007)

    Google Scholar 

  37. Y. Moritani, S. Hiyama, T. Suda, Molecular communication among nanomachines using vesicles. in NSTI Nanotechnology Conference and Trade Show (NSTI, Cambridge, 2006)

    Google Scholar 

  38. Y. Moritani, S. Hiyama, T. Suda, Molecular communication for health care applications. in Proceedings of the Fourth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (IEEE Computer Society, Washington, DC, 2006)

    Google Scholar 

  39. T. Nakagaki, H. Yamada, Á. Tóth, Maze-solving by an amoeboid organism. Nature 407, 470 (2000)

    Article  Google Scholar 

  40. T. Nakano, T. Suda, M. Moore, R. Egashira, A. Enomoto, K. Arima, Molecular communication for nanomachines using intercellular calcium signaling, in Proceedings of the 5th IEEE Conference on Nanotechnology, Nagoya, Japan, July 11–15 (2005)

    Google Scholar 

  41. T. Nakano, T. Suda, T. Koujin, T. Haraguchi, Y. Hiraoka, Molecular communication through gap junction channels: system design, experiments and modeling, in Proceedings of the 2nd International Conference on Bio-Inspired Models of Network, Information, and Computing Systems (BIONETICS 2007), Dec. 2007

    Google Scholar 

  42. T. Nakano, Y.H. Hsu, W.C. Tang, T. Suda, D. Lin, T. Koujin, T. Haraguchi, Y. Hiraoka, Microplatform for intercellular communication, in Proceedings of the Third Annual IEEE International Conference on Nano/Micro Engineered and Molecular Systems (2008)

    Google Scholar 

  43. S. Nomura, Y. Mizutani, K. Kurita, A. Watanabe, K. Akiyoshi, Changes in the morphology of cell-size liposomes in the presence of cholesterol: formation of neuron-like tubes and liposome networks. Biochim. Biophys. Acta 1669(2), 164–169 (2005)

    Article  Google Scholar 

  44. K. Oiwa, H. Sakakibara, Recent progress in dynein structure and mechanism. Curr. Opin. Cell Biol. 17, 98–103 (2005)

    Article  Google Scholar 

  45. N.A. Peppas, Y. Huang, Nanoscale technology of mucoadhesive interactions. Adv. Drug Deliv. Rev. 56, 1675–1687 (2004)

    Article  Google Scholar 

  46. T.D. Schneider, Theory of molecular machines I. Channel capacity of molecular machines. J. Theor. Biol. 148, 83–123 (1991)

    Article  Google Scholar 

  47. T. Shima, T. Kon, K. Imamula, R. Ohkura, K. Sutoh, Two modes of microtubule sliding driven by cytoplasmic dynein. Proc. Nat. Acad. Sci. 103(47), 17736–17740 (2006)

    Article  Google Scholar 

  48. J.M. Smith, The concept of information in biology. Philos. Sci. 67(2), 177–194 (2000)

    Article  MathSciNet  Google Scholar 

  49. T. Suda, M. Moore, T. Nakano, R. Egashira, A. Enomoto, Exploratory research on molecular communication between nanomachines. in 2005 Genetic and Evolutionary Computation Conference, Late-breaking Papers (ACM press, New York, 2005)

    Google Scholar 

  50. R.H. Tamarin, Principles of genetics (WCB/McGraw-Hill, New York, 1999)

    Google Scholar 

  51. S. Toba, K. Oiwa, Swing or embrace? New aspects of motility inspired by dynein structure in situ. Bioforum Eur. 10, 14–16 (2006)

    Google Scholar 

  52. K. Wakabayashi, M. Yamamura, A realization of information gate by using enterococcus faecalis pheromone system, DNA7, LNCS 2340, pp. 269–278 (2002)

    Google Scholar 

  53. R. Weiss, T.F. Knight, Engineered communications for microbial robotics. DNA computing. in 6th International Meeting on DNA Based Computers, DNA, 2000 (Springer Lecture Notes in Computer Science, 2054, New York, 2000)

    Google Scholar 

  54. R. Weiss, S. Basu, S. Hooshangi, A. Kalmbach, D. Karig, R. Mehreja, and I. Netravali, Genetic circuit building blocks for cellular computation, communications, and signal processing, Nat. Comput. vol. 2, pp. 47–84 (2003)

    Google Scholar 

  55. G.-Z. Yang, (ed.), Body sensor networks, Springer (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadashi Nakano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nakano, T., Moore, M., Enomoto, A., Suda, T. (2011). Molecular Communication Technology as a Biological ICT. In: Sawai, H. (eds) Biological Functions for Information and Communication Technologies. Studies in Computational Intelligence, vol 320. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15102-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15102-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15101-9

  • Online ISBN: 978-3-642-15102-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics