Skip to main content

Controlled Cultivation of Endogeic and Anecic Earthworms

  • Chapter
  • First Online:
Biology of Earthworms

Part of the book series: Soil Biology ((SOILBIOL,volume 24))

Abstract

Cultivation of epigeic earthworms is relatively simple as these species live within the same organic-rich substrate that they utilise as a food source. Endogeic and anecic species which require a substrate containing a high proportion of mineral soil are seemingly less easily produced. However, these species are potentially of value in a range of ecological contexts. Basic information of the life history of a given species may be collected through controlled cultivation. The natural activities of soil dwelling species can be an asset in soil restoration where earthworms are present in low numbers or totally absent for anthropogenic reasons. Production of stock to act as potential reference sources for DNA-related studies and other applied (e.g. ecotoxicological) research. In the future, mass production of endogeic and anecic earthworm species might also benefit wider ecosystem rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andre J, King RA, Stürzenbaum SR, Kille P, Hodson ME, Morgan AJ (2009) Molecular genetic differentiation in earthworms inhabiting a heterogeneous Pb-polluted landscape. Environ Pollut 158:883–890

    Article  PubMed  Google Scholar 

  • Bouché MB (1977) Statégies lombriciennes. In: Lohm U, Persson T (eds) Soil organisms as component of ecosystems. Ecol Bull (Stockholm) 25:122–132

    Google Scholar 

  • Bouché MB (1992) Earthworm species and ecotxicological studies. In: Greig-Smith PW, Becker H, Edwards PJ, Heimbach F (eds) Ecotoxicology of earthworms. Intercept, Andover, p 470

    Google Scholar 

  • Brun JJ, Cluzeau D, Trehen P, Bouché MB (1987) Biostimulation: perspectives et limites de L’amélioration biologique des sols par stimulation ou introduction d’espèces lombricienes. Rev Ecol Biol Sol 24:687–701

    Google Scholar 

  • Butt KR (1991) The effects of temperature on the intensive production of Lumbricus terrestris. Pedobiologia 35:257–264

    Google Scholar 

  • Butt KR (1997) Reproduction and growth of the earthworm Allolobophora chlorotica (Savigny, 1826) in controlled environments. Pedobiologia 41:369–374

    Google Scholar 

  • Butt KR (1998) Interactions between selected earthworm species: a preliminary, laboratory-based study. Appl Soil Ecol 9:75–79

    Article  Google Scholar 

  • Butt KR, Lowe CN (2004) Anthropic influences on earthworm distribution, Rum National Nature Reserve, Scotland. Eur J Soil Biol 40:63–72

    Article  Google Scholar 

  • Butt KR, Lowe CN (2007) A viable technique for tagging earthworms with visible implant elastomer. Appl Soil Ecol 35:454–457

    Article  Google Scholar 

  • Butt KR, Nuutinen V (2005) The dawn of the dew worm. Biologist 52:218–223

    Google Scholar 

  • Butt KR, Frederickson J, Morris RM (1992) The intensive production of Lumbricus terrestris L. for soil amelioration. Soil Biol Biochem 24:1321–1325

    Article  Google Scholar 

  • Butt KR, Frederickson J, Morris RM (1993) Investigations of an earthworm inoculation experiment, London Borough of Hillingdon. Waste Plan 7:9–12

    Google Scholar 

  • Butt KR, Frederickson J, Morris RM (1997) The Earthworm Inoculation Unit (EIU) technique, an integrated system for cultivation and soil-inoculation of earthworms. Soil Biol Biochem 29:251–257

    Article  Google Scholar 

  • Butt KR, Lowe CN, Walmsley T (2003) Development of earthworms communities in translocated grasslands at Manchester Airport, UK. Pedobiologia 47:788–791

    Google Scholar 

  • Cortet J, Gomot-De Vauflery A, Poisnot-Balaguer N, Gomot L, Texier C, Cluzeau D (1999) The use of soil fauna in monitoring pollutant effects. Eur J Soil Biol 35:115–134

    Article  CAS  Google Scholar 

  • Darwin C (1881) The formation of vegetable mould through the action of worms with observations on their habits. John Murray, London, p 298

    Google Scholar 

  • Edwards CA (1988) Breakdown of animal, vegetable and industrial organic wastes by earthworms. In: Edwards CA, Neuhauser EF (eds) Earthworms in waste and environmental management. SPB Academic Publishing, The Hague, pp 21–31

    Google Scholar 

  • Edwards CA (ed) (2010) Vermiculture technology: earthworms, organic matter and environmental management. Taylor and Francis, Boca Raton, p 338

    Google Scholar 

  • Edwards CA, Bohlen PJ (1996) Biology and ecology of earthworms, 3rd edn. Chapman and Hall, London, 426

    Google Scholar 

  • Edwards CA, Lofty JR (1980) Effects of earthworm inoculation upon the growth of direct drilled cereals. J Appl Ecol 17:533–543

    Article  Google Scholar 

  • Evans AC, Guild WJMcL (1948) Studies on the relationships between earthworms and soil fertility IV. On the life-cycles of some British Lumbricidae. Ann Appl Biol 35:471–484

    Article  Google Scholar 

  • Gonzalez G, Espinosa E, Liu Z, Zou X (2006) A fluorescent marking and re-count technique using the invasive earthworm Pontoscolex corethrurus (Annelida: Oligochaeta). Caribb J Sci 42:371–379

    Google Scholar 

  • Grigoropoulou N (2009) Aspects of Lumbricus terrestris L. dispersal, distribution and intraspecific interactions through field and laboratory investigations. Unpublished PhD Thesis, University of Central Lancashire

    Google Scholar 

  • Grigoropoulou N, Butt KR (2010) Field investigations of Lumbricus terrestris spatial distribution and dispersal through monitoring of manipulated, enclosed plots. Soil Biol Biochem 42:40–47

    Article  CAS  Google Scholar 

  • Grigoropoulou N, Butt KR, Lowe CN (2008) Effects of adult Lumbricus terrestris on cocoons and hatchlings in Evans’ boxes. Pedobiologia 51:343–349

    Article  Google Scholar 

  • Haukka JK (1987) Growth and survival of Eisenia fetida (Sav.) (Oligochaeta: Lumbricidae) in relation to temperature, moisture and presence of Enchytraeus alabidus (Henle) (Enchytraeidae). Biol Fertil Soils 3:99–102

    Article  Google Scholar 

  • Holmstrup M, Østergaard IK, Nielsin A, Hansen BT (1991) The relationship between temperature and cocoon incubation time for some lumbricid earthworm species. Pedobiologia 35:179–184

    Google Scholar 

  • King RA, Tibble AL, Symondson WOC (2008) Opening a can of worms: unprecedented sympatric cryptic diversity within British lumbricid earthworms. Mol Ecol 17:4684–4698

    Article  PubMed  Google Scholar 

  • Kretzschmar A (2004) Effects of earthworms on soil organization. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, pp 201–210

    Google Scholar 

  • Lavelle P, Bignell D, Lepage M, Wolters V, Roger P, Ineson P, Heal OW, Ghillion S (1997) Soil function in a changing world: the role of invertebrate ecosystem engineers. Eur J Soil Biol 33:159–193

    CAS  Google Scholar 

  • Löfs-Holmin A (1983) Reproduction and growth of common arable land and pasture species of earthworm (Lumbricidae) in laboratory cultures. Swedish J Agric Res 13:31–37

    Google Scholar 

  • Löfs-Holmin A (1985) Vermiculture: present knowledge of the art of earthworm farming – a summary of recent literature. Report 20, Swedish University of Agricultural Sciences, Uppsala, p 70

    Google Scholar 

  • Lowe CN (2000) Interactions within earthworm communities: a laboratory-based approach with potential applications for soil restoration. Unpublished PhD Thesis, University of Central Lancashire

    Google Scholar 

  • Lowe CN, Butt KR (2002) Growth of hatchling earthworms in the presence of adults: interactions in laboratory culture. Biol Fertil Soils 35:204–209

    Article  Google Scholar 

  • Lowe CN, Butt KR (2003) Influence of food particle size on inter- and intra-specific interactions of Allolobophora chlorotica (Savigny) and Lumbricus terrestris (L.). Pedobiologia 47:574–577

    Google Scholar 

  • Lowe CN, Butt KR (2005) Culture techniques for soil dwelling earthworms: a review. Pedobiologia 49:401–413

    Article  Google Scholar 

  • Lowe CN, Butt KR (2007a) Culture of commercially obtained Lumbricus terrestris L.: implications for sub-lethal ecotoxicological testing. Soil Biol Biochem 39:1674–1679

    Article  CAS  Google Scholar 

  • Lowe CN, Butt KR (2007b) Life cycle traits of the dimorphic earthworm species Allolobophora chlorotica (Savigny, 1826) under controlled laboratory conditions. Biol Fertil Soils 43:495–499

    Article  Google Scholar 

  • Lowe CN, Butt KR (2007c) Earthworm culture, maintenance and species selection in chronic ecotoxicological studies: a critical review. Eur J Soil Biol 43:S281–S288

    Article  CAS  Google Scholar 

  • Lowe CN, Butt KR (2008) Life cycle traits of the parthenogenetic earthworm Octolasion cyaneum (Savigny, 1826). Eur J Soil Biol 44:541–544

    Article  Google Scholar 

  • Marinissen JCM, van den Bosch F (1992) Colonisation of new habitats by earthworms. Oecologia 91:371–376

    Article  Google Scholar 

  • Marmo L (2008) EU strategies and policies on soil and waste management to offset greenhouse gas emissions. Waste Manag 28:685–689

    Article  CAS  PubMed  Google Scholar 

  • Millennium Ecosystem Assessment (MEA) (2005) Ecosystems and human well-being: synthesis. Island, Washington

    Google Scholar 

  • Morgan JE, Morgan AJ (1998) The distribution and intracellular compartmentation of metals in the endogeic Aporrectodea caliginosa sampled from an unpolluted and a metal-contaminated site. Environ Pollut 99:167–175

    Article  CAS  PubMed  Google Scholar 

  • Owen J, Hedley BA, Svendsen C, Wren J, Jonker MJ, Hankard PK, Lister LJ, Stürzenbaum SR, Morgan AJ, Spurgeon DJ, Blaxter ML, Kille P (2008) Transcriptomic profiling of development and xenobiotic responses in a keystone soil animal, the oligochaete annelid Lumbricus rubellus. BMC Genomics 9:266

    Article  PubMed  Google Scholar 

  • Pelosi C, Bertrand M, Makowski D, Roger-Estrade J (2008) WORMDYN: a model of Lumbricus terrestris population dynamics in agricultural fields. Ecol Model 218:219–234

    Article  Google Scholar 

  • Pirooznia M, Gong P, Guan X, Inouye LS, Yang K, Perkins EJ, Deng Y (2007) BMC Bioinformatics 8:S7

    Article  PubMed  Google Scholar 

  • Sanchez-Hernandez JC (2006) Earthworm biomarkers in ecological risk assessment. Rev Environ Contam Toxicol 188:85–126

    Article  CAS  PubMed  Google Scholar 

  • Shipitalo MJ, Le Bayon R-C (2004) Quantifying the effects of earthworms on soil aggregation and porosity. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC, Boca Raton, pp 183–200

    Google Scholar 

  • Sims RW, Gerard BM (1999) Earthworms. Notes for identification of British Species No 31. Linnean Society of London and the Estuarine and Coastal sciences Association, London

    Google Scholar 

  • Sizmur T, Hodson ME (2009) Do earthworms impact metal mobility and availability in soil? – a review. Environ Pollut 157:1981–1989

    Article  CAS  PubMed  Google Scholar 

  • Spurgeon DJ, Morgan AJ, Kille P (2008) Current research in soil invertebrate ecotoxicogenomics. In: Hogstrand C, Kille P (eds) Comparative toxicogenomics, 2. Elsevier, Oxford, Advances in Experimental Biology

    Google Scholar 

  • Stürzenbaum SR, Andre J, Kille P, Morgan AJ (2009) Earthworm genomes, genes and proteins: the (re)discovery of Darwin’s worms. Proc Biol Sci 276:789–797

    Article  PubMed  Google Scholar 

  • Svendsen TS, Sommer C, Holter P, Grønvold J (2002) Survival and growth of Lumbricus terrestris (Lumbricidae) fed on cattle dung from cattle given sustained-release boluses of ivermectin or fenbendazole. Eur J Soil Biol 38:319–322

    Article  CAS  Google Scholar 

  • Svendsen TS, Hansen PE, Sommer C, Martinussen T, Grønvold J, Holter P (2005) Life history characteristics of Lumbricus terrestris and effects of the veterinary antiparasitic compounds ivermectin and fenbendazole. Soil Biol Biochem 37:927–936

    Article  CAS  Google Scholar 

  • Swartjes FA, Carlon C, de Wit NHSM (2008) The possibilities for the EU-wide use of similar ecological risk-based soil contamination assessment tools. Sci Tot Env 406:523–529

    Article  CAS  Google Scholar 

  • Tomlin AD (1983) The earthworm bait market in North America. In: Satchell JE (ed) Earthworm ecology: from Darwin to vermiculture. Chapman and Hall, London, pp 331–338

    Google Scholar 

  • Tripathi G, Bhardwaj P (2004) Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Biores Technol 92:275–283

    Article  CAS  Google Scholar 

  • Uvarov AV (2009) Inter and intraspecific interactions in lumbricid earthworms: their role for earthworm performance and ecosystem functioning. Pedobiologia 53:1–27

    Article  Google Scholar 

  • Van Gestel CAM, Weeks JM (2004) Recommendations of the 3rd International Workshop on Earthworm Ecotoxicology, Aarhus, Denmark, August 2001, Ecotox Environ Safety 57:100–105

    Google Scholar 

  • Wormell P (1968) Establishing woodland on the Isle of Rhum. Scott Forest 22:207–220

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin Richard Butt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Butt, K.R., Lowe, C.N. (2011). Controlled Cultivation of Endogeic and Anecic Earthworms. In: Karaca, A. (eds) Biology of Earthworms. Soil Biology, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14636-7_7

Download citation

Publish with us

Policies and ethics