Skip to main content

Efficient Statistical Asynchronous Verifiable Secret Sharing with Optimal Resilience

  • Conference paper
Information Theoretic Security (ICITS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5973))

Included in the following conference series:

Abstract

We present a new statistical asynchronous verifiable secret sharing (AVSS) protocol with optimal resilience; i.e. with n = 3t + 1, where n is the total number of participating parties and t is the maximum number of parties that can be under the control of a computationally unbounded active adversary \({\mathcal A}_t\). Our protocol privately communicates \({\mathcal O}((\ell n^3 + n^4 \kappa) \kappa)\) bits and A-casts \({\mathcal O}(n^3 \log(n))\) bits to simultaneously share ℓ ≥ 1 elements from a finite field \({\mathbb F}\), where κ is the error parameter.

There are only two known statistical AVSS protocols with n = 3t + 1, reported in [11] and [26]. The AVSS protocol of [11] requires a private communication of \({\mathcal O}(n^9 \kappa^4)\) bits and A-cast of \({\mathcal O}(n^9 \kappa^2 \log(n))\) bits to share a single element from \({\mathbb F}\). Thus our AVSS protocol shows a significant improvement in communication complexity over the AVSS of [11]. The AVSS protocol of [26] requires a private communication of \({\mathcal O}((\ell n^3 + n^4) \kappa)\) bits and A-cast of \({\mathcal O}((\ell n^3 + n^4) \kappa)\) bits to share ℓ ≥ 1 elements. However, the shared element(s) may be \(NULL \not \in {\mathbb F}\). Thus our AVSS is better than the AVSS of [26] due to two reasons: (a) The A-cast communication of our AVSS is independent of the number of secrets i.e. ℓ; (b) Our AVSS makes sure that the shared value(s) always belong to \({\mathbb F}\).

Using our AVSS, we design a new primitive called Asynchronous Complete Secret Sharing (ACSS) which is an essential building block of asynchronous multiparty computation (AMPC). Using our ACSS scheme, we can design a statistical AMPC with optimal resilience; i.e., with n = 3t + 1, that privately communicates \({\mathcal O}(n^5 \kappa)\) bits per multiplication gate. This will significantly improve the only known statistical AMPC of [8] with n = 3t + 1, which privately communicates Ω(n 11 κ 4) bits and A-cast Ω(n 11 κ 2 log(n)) bits per multiplication gate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abraham, I., Dolev, D., Halpern, J.Y.: An almost surely terminating polynomial protocol for asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 311–322 (2008)

    Google Scholar 

  2. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg (1992)

    Google Scholar 

  3. Beerliová-Trubíniová, Z., Hirt, M.: Efficient multi-party computation with dispute control. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 305–328. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Beerliová-Trubíniová, Z., Hirt, M.: Simple and efficient perfectly-secure asynchronous MPC. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 376–392. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  5. Beerliová-Trubíniová, Z., Hirt, M.: Perfectly-secure MPC with linear communication complexity. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 213–230. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Ben-Or, M., Canetti, R., Goldreich, O.: Asynchronous secure computation. In: STOC, pp. 52–61 (1993)

    Google Scholar 

  7. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: STOC, pp. 1–10 (1988)

    Google Scholar 

  8. BenOr, M., Kelmer, B., Rabin, T.: Asynchronous secure computations with optimal resilience. In: PODC, pp. 183–192 (1994)

    Google Scholar 

  9. Bracha, G.: An asynchronous \(\lfloor (n - 1) / 3 \rfloor\)-resilient consensus protocol. In: PODC, pp. 154–162 (1984)

    Google Scholar 

  10. Canetti, R.: Studies in Secure Multiparty Computation and Applications. PhD thesis, Weizmann Institute, Israel (1995)

    Google Scholar 

  11. Canetti, R., Rabin, T.: Fast asynchronous Byzantine Agreement with optimal resilience. In: Proc. of STOC 1993, pp. 42–51. ACM, New York (1993)

    Google Scholar 

  12. Chaum, D., Crpeau, C., Damgård, I.: Multiparty unconditionally secure protocols (extended abstract). In: STOC, pp. 11–19 (1988)

    Google Scholar 

  13. Chor, B., Goldwasser, S., Micali, S., Awerbuch, B.: Verifiable secret sharing and achieving simultaneity in the presence of faults (extended abstract). In: STOC, pp. 383–395 (1985)

    Google Scholar 

  14. Cramer, R., Damgård, I., Dziembowski, S., Hirt, M., Rabin, T.: Efficient multiparty computations secure against an adaptive adversary. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 311–326. Springer, Heidelberg (1999)

    Google Scholar 

  15. Cramer, R., Damgård, I., Maurer, U.M.: General secure multi-party computation from any linear secret-sharing scheme. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 316–334. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Dolev, D., Dwork, C., Waarts, O., Yung, M.: Perfectly secure message transmission. JACM 40(1), 17–47 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. Feldman, P., Micali, S.: An optimal algorithm for synchronous Byzantine Agreemet. In: Proc. of STOC 1988, pp. 639–648. ACM, New York (1988)

    Google Scholar 

  18. Fitzi, M., Garay, J., Gollakota, S., Pandu Rangan, C., Srinathan, K.: Round-optimal and efficient verifiable secret sharing. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 329–342. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  19. Gennaro, R., Ishai, Y., Kushilevitz, E., Rabin, T.: The round complexity of verifiable secret sharing and secure multicast. In: STOC, pp. 580–589 (2001)

    Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  21. Hirt, M., Maurer, U., Przydatek, B.: Efficient secure multiparty computation. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 143–161. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  22. Katz, J., Koo, C., Kumaresan, R.: Improving the round complexity of VSS in point-to-point networks. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp. 499–510. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Katz, J., Koo, C.Y.: On expected constant round protocols for Byzantine Agreement. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 445–462. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  24. Patra, A., Choudhary, A., Rabin, T., Pandu Rangan, C.: The round complexity of verifiable secret sharing re-visited. In: Halevi, S. (ed.) Advances in Cryptology - CRYPTO 2009. LNCS, vol. 5677, pp. 487–504. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  25. Patra, A., Choudhary, A., Pandu Rangan, C.: Efficient statistical asynchronous verifiable secret sharing and multiparty computation with optimal resilience. Cryptology ePrint Archive (2009)

    Google Scholar 

  26. Patra, A., Choudhary, A., Pandu Rangan, C.: Simple and efficient asynchronous Byzantine Agreement with optimal resilience. In: PODC, pp. 92–101 (2009)

    Google Scholar 

  27. Rabin, T.: Robust sharing of secrets when the dealer is honest or cheating. J. ACM 41(6), 1089–1109 (1994)

    Article  MathSciNet  Google Scholar 

  28. Rabin, T., Ben-Or, M.: Verifiable secret sharing and multiparty protocols with honest majority (extended abstract). In: STOC, pp. 73–85 (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Patra, A., Choudhary, A., Rangan, C.P. (2010). Efficient Statistical Asynchronous Verifiable Secret Sharing with Optimal Resilience. In: Kurosawa, K. (eds) Information Theoretic Security. ICITS 2009. Lecture Notes in Computer Science, vol 5973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14496-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14496-7_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14495-0

  • Online ISBN: 978-3-642-14496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics