Skip to main content

Linear, Constant-Rounds Bit-Decomposition

  • Conference paper
Information, Security and Cryptology – ICISC 2009 (ICISC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 5984))

Included in the following conference series:

Abstract

When performing secure multiparty computation, tasks may often be simple or difficult depending on the representation chosen. Hence, being able to switch representation efficiently may allow more efficient protocols.

We present a new protocol for bit-decomposition: converting a ring element x ∈ ℤ M to its binary representation, x (logM) − 1,...,x 0. The protocol can be based on arbitrary secure arithmetic in ℤ M ; this is achievable for Shamir shared values as well as (threshold) Paillier encrypted ones, implying solutions for both these popular MPC primitives. For additively homomorphic primitives (which is typical, and the case for both examples) the solution is constant-rounds and requires only O(logM) secure ring multiplications.

The solution is secure against active adversaries assuming the existence of additional primitives. These exist for both the Shamir sharing based approach as well as the Paillier based one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in a constant number of rounds of interaction. In: Rudnicki, P. (ed.) Proceedings of the eighth annual ACM Symposium on Principles of distributed computing, pp. 201–209. ACM Press, New York (1989)

    Chapter  Google Scholar 

  2. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for noncryptographic fault-tolerant distributed computations. In: 20th Annual ACM Symposium on Theory of Computing, pp. 1–10. ACM Press, New York (1988)

    Google Scholar 

  3. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  4. Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive, Report 2000/067 (2000), http://eprint.iacr.org/

  5. Chaum, D., Crépeau, C., Damgård, I.: Multiparty unconditionally secure protocols. In: 20th Annual ACM Symposium on Theory of Computing, pp. 11–19. ACM Press, New York (1988)

    Google Scholar 

  6. Cramer, R., Damgård, I., Nielsen, J.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Damgård, I., Fitzi, M., Kiltz, E., Nielsen, J., Toft, T.: Unconditionally secure constant-rounds multi-party computation for equality, comparison, bits and exponentiation. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 285–304. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Damgård, I., Jurik, M.: A generalisation, a simplification and some applications of paillier’s probabilistic public-key system. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 119–136. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Damgård, I.B., Jurik, M.: Client/Server tradeoffs for online elections. In: Naccache, D., Paillier, P. (eds.) PKC 2002. LNCS, vol. 2274, pp. 125–140. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  10. Damgård, I., Nielsen, J.: Universally composable efficient multiparty computation from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (2003)

    Google Scholar 

  11. Lipmaa, H.: On diophantine complexity and statistical zero-knowledge arguments. In: Laih, C.-S. (ed.) ASIACRYPT 2003. LNCS, vol. 2894, pp. 398–415. Springer, Heidelberg (2003)

    Google Scholar 

  12. Nishide, T., Ohta, K.: Multiparty computation for interval, equality, and comparison without bit-decomposition protocol. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 343–360. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Google Scholar 

  14. Reistad, T.: Multiparty comparison - an improved multiparty protocol for comparison of secret-shared values. In: Proceedings of SECRYPT 2009, pp. 325–330 (2009)

    Google Scholar 

  15. Shamir, A.: How to share a secret. Communications of the ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schoenmakers, B., Tuyls, P.: Efficient binary conversion for paillier encrypted values. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 522–537. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Thorbek, R.: Linear Integer Secret Sharing. PhD thesis, Aarhus University (2009)

    Google Scholar 

  18. Toft, T.: Constant-rounds, almost-linear bit-decomposition of secret shared values. In: Fischlin, M. (ed.) RSA Conference 2009. LNCS, vol. 5473, pp. 357–371. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Yao, A.: Protocols for secure computations (extended abstract). In: 23th Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 160–164. IEEE Computer Society Press, Los Alamitos (1982)

    Chapter  Google Scholar 

  20. Yao, A.: How to generate and exchange secrets (extended abstract). In: 27th Annual Symposium on Foundations of Computer Science, pp. 162–167. IEEE Computer Society Press, Los Alamitos (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Reistad, T., Toft, T. (2010). Linear, Constant-Rounds Bit-Decomposition. In: Lee, D., Hong, S. (eds) Information, Security and Cryptology – ICISC 2009. ICISC 2009. Lecture Notes in Computer Science, vol 5984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14423-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14423-3_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14422-6

  • Online ISBN: 978-3-642-14423-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics