Skip to main content

Why and How Knowledge Discovery Can Be Useful for Solving Problems with CBR

(Extended Abstract)

  • Conference paper
Case-Based Reasoning. Research and Development (ICCBR 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6176))

Included in the following conference series:

Abstract

In this talk, we discuss and illustrate links existing between knowledge discovery in databases (KDD), knowledge representation and reasoning (KRR), and case-based reasoning (CBR). KDD techniques especially based on Formal Concept Analysis (FCA) are well formalized and allow the design of concept lattices from binary and complex data. These concept lattices provide a realistic basis for knowledge base organization and ontology engineering. More generally, they can be used for representing knowledge and reasoning in knowledge systems and CBR systems as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast Discovery of Association Rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. AAAI Press/MIT Press (1996)

    Google Scholar 

  2. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P. (eds.): The Description Logic Handbook. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  3. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhal, L.: Mining frequent patterns with counting inference. SIGKDD Exploration Newsletter 2(2), 66–75 (2000)

    Article  Google Scholar 

  4. Bendaoud, R., Napoli, A., Toussaint, Y.: Formal concept analysis: A unified framework for building and refining ontologies. In: Gangemi, A., Euzenat, J. (eds.) EKAW 2008. LNCS (LNAI), vol. 5268, pp. 156–171. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Bendaoud, R., Toussaint, Y., Napoli, A.: Pactole: A methodology and a system for semi-automatically enriching an ontology from a collection of texts. In: Eklund, P., Haemmerlé, O. (eds.) ICCS 2008. LNCS (LNAI), vol. 5113, pp. 203–216. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  6. Brachman, R., Anand, T.: The Process of Knowledge Discovery in Databases. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy, R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 37–57. AAAI Press / MIT Press (1996)

    Google Scholar 

  7. d’Aquin, M., Badra, F., Lafrogne, S., Lieber, J., Napoli, A., Szathmary, L.: Case base mining for adaptation knowledge acquisition. In: Veloso, M. (ed.) IJCAI 2007, pp. 750–755. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  8. Diaz-Agudo, B., Gonzales-Calero, P.: Classification based retrieval using formal concept analysis. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 173–188. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  9. Diaz-Agudo, B., Gonzales-Calero, P.: Formal Concept Analysis as a support technique for CBR. Knowledge-Based Systems 14, 163–171 (2001)

    Article  Google Scholar 

  10. Dzeroski, S., Lavrac, N. (eds.): Relational Data Mining. Springer, Berlin (2001)

    MATH  Google Scholar 

  11. Ganter, B., Kuznetsov, S.: Pattern structures and their projections. In: Delugach, H.S., Stumme, G. (eds.) ICCS 2001. LNCS (LNAI), vol. 2120, pp. 129–142. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  12. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  13. Kaytoue, M., Assaghir, Z., Messai, N., Napoli, A.: Two Complementary Classication Methods for Designing a Concept Lattice from Interval Data. In: Link, S., Prade, H. (eds.) FoIKS 2010. LNCS, vol. 5956, pp. 345–362. Springer, Heidelberg (2010)

    Google Scholar 

  14. Kaytoue-Uberall, M., Duplessis, S., Kuznetsov, S., Napoli, A.: Two FCA-Based Methods for Mining Gene Expression Data. In: Ferré, S., Rudolf, S. (eds.) ICFCA 2009. LNCS (LNAI), vol. 5548, pp. 251–266. Springer, Heidelberg (2009)

    Google Scholar 

  15. Kuznetsov, S.: Pattern structures for analyzing complex data. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds.) RSFDGrC 2009. LNCS, vol. 5908, pp. 33–44. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  16. Kuznetsov, S., Obiedkov, S.: Comparing performance of algorithms for generating concept lattices. Journal of Experimental & Theoretical Artificial Intelligence 14(2/3), 189–216 (2002)

    Article  MATH  Google Scholar 

  17. Kuznetsov, S., Samokhin, M.: Learning closed sets of labeled graphs for chemical applications. In: Kramer, S., Pfahringer, B. (eds.) ILP 2005. LNCS (LNAI), vol. 3625, pp. 190–208. Springer, Heidelberg (2005)

    Google Scholar 

  18. Lieber, J., Napoli, A., Szathmary, L., Toussaint, Y.: First Elements on Knowledge Discovery guided by Domain Knowledge (KDDK). In: Yahia, S.B., Nguifo, E.M., Belohlavek, R. (eds.) CLA 2006. LNCS (LNAI), vol. 4923, pp. 22–41. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Messai, N., Devignes, M.D., Napoli, A., Smaïl-Tabbone, M.: Many-valued concept lattices for conceptual clustering and information retrieval. In: Ghallab, M., Spyropoulos, C., Fakotakis, N., Avouris, N. (eds.) 18th European Conference on Artificial Intelligence (ECAI 2008), Patras, Greece, pp. 127–131. IOS Press, Amsterdam (2008)

    Google Scholar 

  20. Messai, N., Devignes, M.D., Napoli, A., Smaïl-Tabbone, M.: Using domain knowledge to guide lattice-based complex data exploration. In: 19th European Conference on Artificial Intelligence (ECAI 2010), Lisbon, Portugal. IOS Press, Amsterdam (to appear, 2010)

    Google Scholar 

  21. Napoli, A.: A smooth introduction to symbolic methods for knowledge discovery. In: Cohen, H., Lefebvre, C. (eds.) Handbook of Categorization in Cognitive Science, pp. 913–933. Elsevier, Amsterdam (2005)

    Chapter  Google Scholar 

  22. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed itemsets for association rules. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 398–416. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  23. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Pruning closed itemset lattices for association rules. International Journal of Information Systems 24(1), 25–46 (1999)

    Google Scholar 

  24. Rouane-Hacene, M., Huchard, M., Napoli, A., Valtchev, P.: A proposal for combining formal concept analysis and description logics for mining relational data. In: Kuznetsov, S.O., Schmidt, S. (eds.) ICFCA 2007. LNCS (LNAI), vol. 4390, pp. 51–65. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  25. Rouane-Hacene, M., Napoli, A., Valtchev, P., Toussaint, Y., Bendaoud, R.: Ontology Learning from Text using Relational Concept Analysis. In: Kropf, P., Benyoucef, M., Mili, H. (eds.) International Conference on eTechnologies (MCETECH 2008), pp. 154–163. IEEE Computer Society, Los Alamitos (2008)

    Chapter  Google Scholar 

  26. Staab, S., Studer, R. (eds.): Handbook on Ontologies, 2nd edn. Springer, Berlin (2009)

    Google Scholar 

  27. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology, Engineering, Management. John Wiley & Sons, Chichester (2006)

    Google Scholar 

  28. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Constructing iceberg lattices from frequent closures using generators. In: Boulicaut, J.-F., Berthold, M.R., Horváth, T. (eds.) DS 2008. LNCS (LNAI), vol. 5255, pp. 136–147. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  29. Szathmary, L., Valtchev, P., Napoli, A., Godin, R.: Efficient Vertical Mining of Frequent Closures and Generators. In: Adams, N., Boulicaut, J.F., Robardet, C., Siebes, A. (eds.) IDA 2009. LNCS, vol. 5772, pp. 393–404. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  30. Wille, R.: Why can concept lattices support knowledge discovery in databases? Journal of Experimental & Theoretical Artificial Intelligence 14(2/3), 81–92 (2002)

    Article  MATH  Google Scholar 

  31. Zaki, M.: Efficient algorithms for mining closed itemsets and their lattice structure. IEEE Transactions on Knowledge and Data Engineering 17(4), 462–478 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Napoli, A. (2010). Why and How Knowledge Discovery Can Be Useful for Solving Problems with CBR . In: Bichindaritz, I., Montani, S. (eds) Case-Based Reasoning. Research and Development. ICCBR 2010. Lecture Notes in Computer Science(), vol 6176. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14274-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-14274-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-14273-4

  • Online ISBN: 978-3-642-14274-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics