Skip to main content

Abstract

The genus Zoysia is one of the most salt and cold tolerant C4 grass species among the family Poaceae. In the natural habitats, the Zoysia species (except Z. japonica) have strong salt tolerance. Because they have a low canopy but moderate to weak shade tolerance, in the humid Pacific Rim zoysia grasses prefer costal habitats, where no other plant can survive. Also, two species, Z. japonica and Z. machrostachya, are scattered in the some parts of subarctic climate Hokkaido. Genetic and molecular analyses have been partially done using their crossing compatibility, and some of the QTLs and the responsible genes have been found for the strong salt and cold tolerance. The genus Zoysia is low canopy turf grass, however its genes and functions responsible for strong tolerance have a potential to lead revolutionary improvement of major crops belonging to the family of Poaceae.

Shin-ichi Tsuruta and Makoto Kobayashi contributed equally and should be viewed as first authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akamine H, Kawamoto Y, Ishimine Y, Kuramoti H, Ichizen N (2005) Morphological characteristics of Zoysia tenuifolia Willd. J Jpn Soc Turfgrass Sci 33:122–126 (In Japanese with English summary)

    Google Scholar 

  • Akiyoshi M, Yaneshita M, Nagasawa R, Endo N (1998) Sea water tolerance of zoysiagrass in relation to morphological and genetic classification. Grassl Sci 44:7–13

    CAS  Google Scholar 

  • Arumuganathan K, Tallury SP, Fraser ML, Bruneau AH, Qu R (1999) Nuclear DNA content of thirteen turfgrass species by flow cytometry. Crop Sci 39:1518–1521

    Google Scholar 

  • Asano Y (1989) Somatic embryogenesis and protoplast culture in Japanese lawngrass (Zoysia japonica). Plant Cell Rep 8:141–143

    Article  Google Scholar 

  • Asano Y, Aoki K (eds) (1998) Turfgrasses and the cultivars. Soft Science, Tokyo (in Japanese)

    Google Scholar 

  • Bae CH, Toyama K, Lee SC, Lim YP, Kim HI, Song PS, Lee HY (2001) Efficient plant regeneration using mature seed-derived callus in zoysiagrass (Zoysia japonica Steud.). Kor J Plant Tissue Cult 28:61–67

    Google Scholar 

  • Bae TW, Vanjildorj E, Song SY, Nishiguchi S, Yang SS, Song IJ, Chandrasekhar T, Kang TW, Kim JI, Koh YJ, Park SY, Lee J, Lee YE, Ryu KH, Riu KZ, Song PS, Lee HY (2008) Environmental risk assessment of genetically engineered herbicide-tolerant Zoysia japonica. J Environ Qual 37:207–218

    Article  CAS  PubMed  Google Scholar 

  • Busey P (1982) Cultural management of weeds in turfgrass: a review. Crop Sci 43:1899–1911

    Article  Google Scholar 

  • Cai H, Inoue M, Yuyama N, Nakayama S (2004) An AFLP-based linkage map of zoysiagrass (Zoysia japonica). Plant Breed 123:543–548

    Article  CAS  Google Scholar 

  • Cai H, Inoue M, Yuyama N, Takahashi W, Hirata M, Sasaki T (2005) Isolation, characterization and mapping of simple sequence repeat markers in zoysiagrass (Zoysia spp.). Theor Appl Genet 112:158–166

    Article  CAS  PubMed  Google Scholar 

  • Clayton WD, Renvoize SA (1986) Genera Graminum, Grasses of the World. Her Majesty’s Stationary Office and Royal Botanic Gardens, Kew, London

    Google Scholar 

  • Ebina M, Kobayashi M, Kasuga S, Araya H, Nakagawa H (1999) An AFLP-based genome map of zoysiagrass. In: Plant animal genome VII conference, San Diego, CA, USA, pp 17–21

    Google Scholar 

  • Ebina M, Abe A, Kobayashi M, Kasuga S, Araya H, Nakagawa H (2000a) Phylogenetic analysis of genus Zoysia for improvement of indigenous grazing grassland. In: Proceedings of the international workshop integration of biodiversity and genome technology for crop improvement, Tsukuba, Japan, pp 133–134

    Google Scholar 

  • Ebina M, Kobayashi M, Muraki M, Kikawada T, Araya H, Nakagawa H (2000b) Molecular mapping of zoysiagrass for some QTL analysis. In: Plant animal genome VIII conference, San Diego, CA, USA, pp 204

    Google Scholar 

  • Engelke MC, Anderson S (2003) Zoysiagrass (Zoysia spp.). In: Casler MD, Duncan RR (eds) Turfgrass biology and breeding. Wiley, Hoboken, NJ, pp 271–285

    Google Scholar 

  • Esler AE (1991) Changes in the native plant cover of urban Auckland, New Zealand. NZ J Bot 29:177–196

    Google Scholar 

  • Forbs IJ (1952) Chromosome numbers and hybrids in Zoysia. Agron J 44:147–151

    Google Scholar 

  • Forbs IJ (1962) Registration of emerald zoysiagrass. Crop Sci 2:533–534

    Article  Google Scholar 

  • Fukuoka H (2000) Breeding of zoysia grass. 1. Collection of genetic resources and general view of their characteristics. J Jpn Soc Turfgrass Sci 29:11–21 (in Japanese with English summary)

    Google Scholar 

  • Fukuoka H, Murata T, Shibata K, Shinodad K, Takahashi Y (2009) Breeding of zoysia grass. 2. A breeding method for seeded type variety. J Jpn Soc Turfgrass Sci 37:91–97 (in Japanese with English summary)

    Google Scholar 

  • Ge Y, Norton T, Wang ZY (2006) Transgenic Zoysia (Zoysia japonica) plants obtained by Agrobacterium-mediated transformation. Plant Cell Rep 25:792–798

    Article  CAS  PubMed  Google Scholar 

  • Grau FV, Radko AM (1951) Meyer (Z-52) zoysia. USGA J Turf Manag 4:30–31

    Google Scholar 

  • Hashiguchi M, Tsuruta S, Matsuo T, Ebina M, Kobayashi M, Akamine H, Akashi R (2007) Analysis of genetic resources in Zoysia spp. 2. Evaluation of genetic diversity in zoysiagrass indigenous to southwest islands of Japan based on simple sequence repeat markers. Jpn J Grassl Sci 53:133–137 (in Japanese with English summary)

    Google Scholar 

  • Hatch SL, White RH (2004) Additional C4 turf and forage grasses. In: Moser LE, Burson BL, Sollenberger LE (eds) Warm-season (C4) grasses, vol 45, Agronomy. American Society of Agronomy, Madison, WI, USA, pp 1081–1119

    Google Scholar 

  • Honda H, Kono M (1963) Morphological and anatomical studies of the lawn grasses with special reference to the Japanese lawn grass, Zoysia japonica Steud. Tech Bull Fac Hort Chiba Univ 11:1–22 (in Japanese with English summary)

    Google Scholar 

  • Hong J, Liebao H, Zhang Y (2008) AFLP analysis on genetic diversity of Zoysia japonica. Acta Hort 783:265–272

    CAS  Google Scholar 

  • Inokuma C, Sugiura K, Cho C, Okawara R, Kaneko S (1996) Plant regeneration from protoplasts of Japanese lawngrass. Plant Cell Rep 15:737–741

    Article  CAS  Google Scholar 

  • Inokuma C, Sugiura K, Imaizumi N, Cho C (1998) Transgenic Japanese lawngrass (Zoysia japonica Steud.) plants regenerated from protoplasts. Plant Cell Rep 17:334–338

    Article  CAS  Google Scholar 

  • Ishida R (1990) General remarks on the research works of Japanese lawn grass (Zoysia japonica Steud.) and zoysia type grasslands in Japan. J Jpn Grassl Sci 36:210–217 (in Japanese with English summary)

    Google Scholar 

  • Johnson BJ (1996a) Reduced rates of preemergence and postemergence herbicides for large crabgrass (Digitaria sanguinalis) and goosegrass (Eleusine indica) control in bermudagrass (Cynodon dactylon). Weed Sci 44:585–590

    CAS  Google Scholar 

  • Johnson BJ (1996b) Effect of reduced dithiopyr and prodiamine rates on large crabgrass (Digitaria sanguinalis) control in common bermudagrass (Cynodon dactylon) and tall fescue (Festuca arundinacea) turf. Weed Technol 10:322–326

    CAS  Google Scholar 

  • Khayri JM, Huang FH, Thompson LF, King JW (1989) Plant regeneration of zoysiagrass from embryo-derived callus. Crop Sci 29:1324–1325

    Article  Google Scholar 

  • Kitamura F (1970) Studies on the horticultural classification and development of Japanese lawn grasses. Bull Kemigawa Arboretum Fac Agric Univ Tokyo 3:1–60 (in Japanese)

    Google Scholar 

  • Li RF, Wei JH, Wang HZ, He J, Sun ZY (2006) Development of highly regenerable callus lines and Agrobacterium-mediated transformation of Chinese lawngrass (Zoysia sinica Hance) with a cold inducible transcription factor, CBF1. Plant Cell Tissue Org Cult 85:297–305

    Article  CAS  Google Scholar 

  • Ma KH, Jang DH, Dixit A, Chung JW, Lee SY, Lee JR, Kang HK, Kim SM, Park YJ (2007) Characterization of 30 new microsatellite markers, developed from enriched genomic DNA library of zoysiagrass, Zoysia japonica Steud. Mol Ecol Notes 7:1323–1325

    Article  CAS  Google Scholar 

  • Mano Y, Takeda K (1997) Mapping quantitative trait loci for salt tolerance at germination and the seeding stage in barley (Hordeum vulgare L.). Euphytica 94:263–272

    Article  Google Scholar 

  • Marcum KB, Anderson SJ, Engelke MC (1998) Salt gland ion secretion: a salinity tolerance mechanism among five zoysiagrass species. Crop Sci 38:806–810

    Article  Google Scholar 

  • Marth PC, Mitchell JW (1944) 2, 4-dichlorophenoxyacetic acid as a differential herbicide. Bot Gaz 106:224–232

    Article  CAS  Google Scholar 

  • Meyer WA, Funk CR (1989) Progress and benefits to humanity from breeding cool-season grasses for turf. In: Sleeper DA, Asay KA (eds) Contribution from breeding forage and turf grasses. Crop Science Society of America, Madison, WI, USA, pp 31–48

    Google Scholar 

  • Nagatomi S, Mitsui K, Miyahara K (1993) Selection of evergreen mutant variety in Manila grass (Zoysia matrella Merr.). Institute of Radiation Breeding Technique News, No 44

    Google Scholar 

  • Nagatomi S, Mitsui K, Miyahara K, Nakagawa K, Yamagishi T (1998) A new variety of Manila grass, ‘winter field’: frost-resistant and dwarf mutant. Institute of Radiation Breeding Technique News, No 63

    Google Scholar 

  • Nuccio ML, Rhodes D, McNeil SD, Hanson AD (1999) Metabolic engineering of plants for osmotic stress resistance. Curr Opin Plant Biol 2:128–134

    Article  CAS  PubMed  Google Scholar 

  • Ogura S, Kosako T, Hayashi Y, Dohi H (2001) In sacco ruminal degradation characteristics of chemical components in fresh Zoysia japonica and Miscanthus sinensis growing in Japanese native pasture. Asian-Australas J Anim Sci 14:41–47

    Google Scholar 

  • Oishi H, Ebina M (2005) Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. J Plant Physiol 162:1077–1086

    Article  CAS  PubMed  Google Scholar 

  • Osada T (1993) Illustrated grasses of Japan. Heibonsha, Tokyo, Japan

    Google Scholar 

  • Otani I, Yamamoto N, Entsu S (1999) Effect of spring-sowing of herbage species on the establishment of Zoysia japonica Steud. in the coast of the Japan Sea in Chugoku districts. Grassl Sci 45:257–263

    Google Scholar 

  • Rahman SML, Mackay WA, Ebina M, Nakagawa H, Mesbahuddin ASM, Quebedeaux B (2003) Transient gene expression in Zoysia japonica using Agrobacterium tumefaciens. Subtropic Plant Sci 55:11–17

    Google Scholar 

  • Takahashi T, Saito S, Otani I, Hagino K (1995) Spreading of the zoysiagrass seeds by manure of ruminant animals in zoysia type grazing field. J Jpn Grassl Sci 41(suppl):15–16 (in Japanese)

    Google Scholar 

  • Tamate HB, Tatsuzawa S, Suda K, Izawa M, Doi T, Sunagawa K, Miyahira F, Tado H (1998) Mitocondrial DNA variations in local populations of the Japanese Sika Deer, Cervus nippon. J Mammal 79:1396–1403

    Google Scholar 

  • Toyama K, Bae C-H, Kang J-G, Lim Y-P, Adachi T, Rui K-Z, Song P-S, Lee H-Y (2003) Production of herbicide-tolerant zoysiagrass by Agrobacterium-mediated transformation. Mol Cell 16:19–27

    CAS  Google Scholar 

  • Trossat C, Rathinasabapathi B, Hanson AD (1997) Transgenically expressed betaine aldehyde dehydrogenase efficiently catalyzes oxidation of dimethylsulfoniopropinaldehyde and omega-aminoaldehydes. Plant Physiol 113:1457–1461

    CAS  PubMed  Google Scholar 

  • Tsuruta S, Hashiguchi M, Ebina M, Matsuo T, Yamamoto T, Kobayashi M, Takahara M, Nakagawa H, Akashi R (2005) Development and characterization of simple sequence repeat markers in Zoysia japonica Steud. Grassl Sci 51:249–257

    Article  CAS  Google Scholar 

  • Tsuruta S, Hosaka F, Otabara T, Hashiguchi M, Yamamoto T, Akashi R (2008) Genetic diversity of chloroplast DNA in Zoysia and other warm-season turfgrasses. Grassl Sci 54:151–159

    Article  CAS  Google Scholar 

  • Turgeon AJ (1996) Turfgrass management, 4th edn. Prentice-Hall, Upper Saddle River, NJ, USA

    Google Scholar 

  • Weng JH (2002) Genetic variation of Zoysia in Taiwan as analysed by isozyme patterns and salinity tolerance. Plant Prod Sci 5:236–241

    Article  CAS  Google Scholar 

  • Weng JH, Fan MJ, Lin CY, Liu YH, Huang SY (2007) Genetic variation of Zoysia as revealed by random amplified polymorphic DNA (RAPD) and isozyme pattern. Plant Prod Sci 10:80–85

    Article  CAS  Google Scholar 

  • Yamada T, Fukuoka H (1984) Variations in peroxidase isozyme of Japanese lawn grass (Zoysia japonica Steud.) population in Japan. Jpn J Breed 34:431–438

    CAS  Google Scholar 

  • Yamamoto Y, Yagi T, Saito Y, Kirita H (1988) Changes in the species diversity, H’, of Miscanthus-type grassland in relation to vegetation change by grazing. Grassl Sci 44:122–126

    Google Scholar 

  • Yaneshita M, Ohmura T, Sasakuma T, Ogihara Y (1993) Phylogenetic relationships of turfgrasses as revealed by restriction fragment analysis of chloroplast DNA. Theor Appl Genet 87:129–135

    Article  CAS  Google Scholar 

  • Yaneshita M, Nagasawa R, Engelke MC, Sasakuma T (1997) Genetic variation and interspecific hybridization among natural populations of zoysiagrasses detected by RFLP analyses of chloroplast and nuclear DNA. Genes Genet Syst 72:173–179

    Article  CAS  PubMed  Google Scholar 

  • Yaneshita M, Kaneko S, Sasakuma T (1999) Allotetraploidy of Zoysia species with 2n=40 based on RFLP genetic map. Theor Appl Genet 98:751–756

    Article  CAS  Google Scholar 

  • Zhang L, Wu D, Zhang L, Yoyang C (2007) Agrobacterium-mediated transformation of Japanese lawngrass (Zoysia japonica Steud.) containing a synthetic cryIA(b) gene from Bacillus thuringiensis. Plant Breed 126:428–432

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Ebina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tsuruta, Si., Kobayashi, M., Ebina, M. (2011). Zoysia . In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14255-0_16

Download citation

Publish with us

Policies and ethics