Skip to main content

Abstract

The chapter presents the taxonomic position of species of the Avena genus. The geographical locations of genetic diversity and morphology of wild oat species are given in detail. Karyological and cytological problems related to the Avena genome structure are considered. Wild species of oat are characterized from the economic point of view. Various aspects of in situ and ex situ conservation of oat species diversity are discussed. It is stated that genetic erosion may reveal itself during germplasm conservation in a genebank and due to the shrinkage of this species habitat in the wild. Specific features of activities of the largest holders of wild Avena species and the work of international organizations coordinating said activities are presented. The role of wild species in elucidation of origin and evolution of various cultivated oat species is demonstrated and brief descriptions of the former provided. In this chapter, the problems of Avena species systematization using morphological characters are considered, various taxonomic systems presented, and different approaches to the creation of such systems discussed. The results of wild oat species study and analysis applying different biochemical and molecular markers are offered. Various aspects of oat genetic collections’ utilization are also discussed in this chapter. Much attention is paid to the potential of Avena wild species and their challenges, approaches, and successes in oat breeding.

Devoted to Ken Frey – Oat Breeder

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aase HC, Powers R (1926) Chromosome numbers in crop plants. Am J Bot 13:367–372

    Google Scholar 

  • Abbo S, Lev-Yadun S, Ladizinsky G (2001) Tracing the wild genetic stocks of crop plants. Genome 44:309–310

    PubMed  CAS  Google Scholar 

  • Alekperov UK (1982) Anti-mutagenez and conservation of genetic resources. Priroda 12:24–28

    Google Scholar 

  • Alekperov UK, Sinitsina ED (1982) Genetic evaluation of resistance of species genus Avena. Dokl AN Azerbajan SSR 38(1):55–57

    CAS  Google Scholar 

  • Alexander DE (1975) The identification of high-quality protein variants and their use in crop plant improvement. In: Frankel OH, Hawkes JG (eds) Crop genetic resources for today and tomorrow. Cambridge University Press, London, UK, pp 223–230

    Google Scholar 

  • Alicchio R, Aranci L, Conte L (1995) Restriction fragment length polymorphism-based phylogenetic analysis of Avena L. Genome 38:1279–1284

    PubMed  CAS  Google Scholar 

  • Allard RW (1997) Genetic basis of the evolution of adaptedness in plants. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer Academic, Amsterdam, Netherland, pp 1–11

    Google Scholar 

  • Arias J, Frey KJ (1973) Selection for seed set crosses of Avena sativa L. × A. abyssinica Hochst. Euphytica 22:413–422

    Google Scholar 

  • Aujas C, Darmency H (1983) Genetic variability in flowering time within a population of Avena fatua. Aspects Appl Biol 4:117–123

    Google Scholar 

  • Aujas C, Darmency H (1984) Le concept d'espece chez les folles avoines: Avena fatua L. et A. sterilis L. Comptes rendu du 7 eme colloque international sur l'ecologie, la boil et la systematique des mauvaises herbes 1:219–227

    Google Scholar 

  • Aung T, Thomas H (1978) The structure and breeding behaviour of a translocation involving the transfer of mildew resistance from Avena barbata Pott. into the cultivated oat. Euphytica 27:731–739

    Google Scholar 

  • Aung T, Thomas H, Jones IT (1977) The transfer of the gene for mildew resistance from Avena barbata (4x) into the cultivated oat A. sativa by an induced translocation. Euphytica 26:623–632

    Google Scholar 

  • Aung T, Chong J, Leggett JM (1996) The transfer of crown rust resistance gene Pc94 from a wild diploid to cultivated hexaploid oat. In: Proceedings of the 9th European and Mediterranean cereal rusts and powdery mildews conference, 2–6 Sept 1996, Lunteren, Netherlands, p 3

    Google Scholar 

  • Avdulov NP (1931) Karyosystematic research of cereals family. Works of Applied Botany and Plant Breeding. Supplement No. 44, Leningrad

    Google Scholar 

  • Axtell JD (1981) Breeding for improvement nutritional quality. In: Frey KJ (ed) Plant breeding II. Iowa State University, Ames, Iowa, USA, pp 365–432

    Google Scholar 

  • Bacon RK (1991) Registration of ‘Ozark’ oat. Crop Sci 31:1383–1384

    Google Scholar 

  • Badaeva ED, Loskutov IG, Shelukhina OYu, Pukhalsky VA (2005) Cytogenetic analysis of diploid species of Avena L. containing As genome. Russ J Genet 41:1718–1724

    CAS  Google Scholar 

  • Balansa B (1854) Bull de la Soc Bot de Fr 1:14

    Google Scholar 

  • Balansa B, Durieu de Maisonneuve MC (1854) Bull de la Soc Bot de Fr 1:318

    Google Scholar 

  • Baum BR (1969) Pedigrees and other basis data of cultivars oats. In: World wide material that is needed for identification and registration. Research Branch, Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Baum BR (1971) Avena occidentalis, a hitherto overlooked species of oats. Can J Bot 49:1055–1057

    Google Scholar 

  • Baum BR (1972) Avena septentrionalis, and the semispecies concept. Can J Bot 50:2063–2066

    Google Scholar 

  • Baum BR (1974) Classification of the oat species (Avena, Poaceae) using various taximetric methods and an information-theoretic model. Can J Bot 52:2241–2262

    Google Scholar 

  • Baum BR (1977) Oats: wild and cultivated. A monograph of the genus Avena L. (Poaceae). Monograph No. 14. Research Branch, Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Baum BR, Fedak G (1985a) Avena atlantica, a new diploid species of the oat genus from Morocco. Can J Bot 63:1057–1060

    Google Scholar 

  • Baum BR, Fedak G (1985b) A new tetraploid species of Avena discovered in Morocco. Can J Bot 63:1379–1385

    Google Scholar 

  • Baum BR, Rajhathy T (1976) A study of Avena macrostachya. Can J Bot 54:2434–2439

    Google Scholar 

  • Baum BR, Fleischmann G, Martens JW, Rajhathy T, Thomas H (1972a) Notes on the habitat and distribution of Avena species in the Mediterranean and Middle East. Can J Bot 50:1385–1397

    Google Scholar 

  • Baum BR, Rajhathy T, Fleischmann G, Martens JW, Thomas H (1972b) Wild oat gene pool: a collection maintained by the Canada Department of Agriculture. Publication No: 1475, Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Baum BR, Rajhathy T, Sampson DR (1973) An important new diploid Avena species discovered on the Canary Islands. Can J Bot 51:759–762

    Google Scholar 

  • Baum BR, Rajhathy T, Martens JW, Thomas H (1975) Wild oat gene pool, edn 2. Publication No: 1475. Canada Department of Agriculture, Ottawa

    Google Scholar 

  • Beavis WD, Frey KJ (1987) Expression of nuclear-cytoplasmic interactions and heterosis in quantitative traits of oats (Avena spp.). Euphytica 36:877–886

    Google Scholar 

  • Beer SC, Goffreda J, Phillips TD, Murphy JP, Sorrels ME (1993) Assessment of genetic variation in Avena sterilis using morphological traits, isozymes and RFLPs. Crop Sci 33:1386–1393

    CAS  Google Scholar 

  • Bloethe-Helsel D, Frey KJ (1978) Grain yield variations in oats associated with differences in leaf area duration among oat lines. Crop Sci 18:765–769

    Google Scholar 

  • Bor NL (1968) The flora of Iraq. In: The Gramineae, vol 9. Ministry of Agriculture, Baghdad

    Google Scholar 

  • Branson CV, Frey KJ (1989a) Recurrent selection for groat oil content in oat. Crop Sci 29:1382–1387

    Google Scholar 

  • Branson CV, Frey KJ (1989b) Correlated response to recurrent selection for groat-oil content in oats. Euphytica 43:21–28

    Google Scholar 

  • Brezhnev DD, Korovina ON (1981) Wild relatives of cultivated plants of flora of the USSR. Kolos, Moscow

    Google Scholar 

  • Briggle LW, Smith RT, Pomeranz Y, Robbins GS (1975) Protein concentration and amino acid composition of Avena sterilis L. groats. Crop Sci 15:547–549

    CAS  Google Scholar 

  • Brinkman MA, Frey KJ (1977) Growth analysis of isoline-recurrent parent grain yield differences in oats. Crop Sci 17:426–430

    Google Scholar 

  • Brodny U, Briggle LW, Wahl I (1976) Reaction of U.S. crown rust resistant oat selections and Israeli Avena sterilis selections to Puccinia coronata var. Avenae. Plant Dis Rep 60:902–906

    Google Scholar 

  • Brown PD (1985) The transfer of oat stem rust resistance gene Pg-16 from tetraploid Avena barbata Pott. to hexaploid Avena sativa L. Dissert Abstr Int B Sci Eng 45:2036B

    Google Scholar 

  • Brown CM, Kolb F (1989a) Registration of ‘Don’ oat. Crop Sci 29:1572–1573

    Google Scholar 

  • Brown CM, Kolb F (1989b) Registration of ‘Hazel’ oat. Crop Sci 29:1573

    Google Scholar 

  • Brown CM, Shands HL (1954) Behavior of the interspecific hybrid and amphiploid of Avena abyssinica × A. strigosa. Agron J 46:557–559

    Google Scholar 

  • Brown PD, Duguid SD, Haber S, Chong J, Harder DE, Menzies J, Noll JS, McKenzie RIH (2001) AC Assiniboia oat. Can J Plant Sci 81:77–79

    Google Scholar 

  • Browning JA, Frey KJ (1969) Multiline cultivars as a means of disease control. Annu Rev Phytopathol 7:355–382

    Google Scholar 

  • Browning JA, Frey KJ (1972) Inheritance of groat-protein in interspecific oat crosses. Can J Plant Sci 52:203–207

    Google Scholar 

  • Burdon JJ, Muller WJ (1987) Measuring the cost of resistance to Puccinia coronata CDA in Avena fatua. J Appl Ecol 24:191–200

    Google Scholar 

  • Burdon JJ, Oates JD, Marshall DR (1983) Interactions between Avena and Puccinia species. I. The wild hosts: Avena barbata Pott ex Link, A. fatua L. and A. ludoviciana Durieu. J Appl Ecol 20:571–584

    Google Scholar 

  • Burdon JJ, Marshall DR, Oates JD (1992) Interaction between wild and cultivated oats in Australia. In: Proceedings of the 4th international oat conference, vol 2. 19–23 Oct 1992, Adelaide, SA, Australia, pp 82–87

    Google Scholar 

  • Burrows VD (1970) Yield and disease-escape potential of fall-sown oats possessing seed dormancy. Can J Plant Sci 50:371–378

    Google Scholar 

  • Burrows VD (1986) Breeding oats for food and feed: conventional and new techniques and materials. In: Webster FH (ed) Oats: chemistry and technology. American Association of Cereal Chemists, St. Paul, MN, USA, pp 13–46

    Google Scholar 

  • Butler-Stoney TR, Valentine J (1991) Exploitation of the genetic potential of oats for use in feed and human nutrition. HGCA-Project-Report 32, London, UK

    Google Scholar 

  • Cadahia E, Garcia-Baudin JM (1978) Differenciacion de la Avena sterilis L. por electroforesis de proteinas de grano. Weeds and herbicides in the Mediterranean Basin. In: Proceedings of the mediterranean herbicide symposium, Madrid, Spain, vol 1, pp 60–67

    Google Scholar 

  • Campbell AR, Frey KJ (1972) Association between groat-protein percentage and certain plant and seed traits in interspecific oat crosses. Euphytica 21:352–362

    Google Scholar 

  • Campbell AR, Frey KJ (1974) Inheritance of straw-protein content and its association with other traits in interspecific oat crosses. Euphytica 23:369–377

    Google Scholar 

  • Carrigan LL, Frey KJ (1980) Root volumes of Avena species. Crop Sci 20:407–408

    Google Scholar 

  • Carson ML (2008) Virulence frequencies in oat crown rust in the United States from 2001 through 2005. Plant Dis 92:379–384

    Google Scholar 

  • Chew BH, Cook R, Thomas H (1981) Investigations on resistance of oats to Heterodera avenae: location of resistance genes. Euphytica 30:669–673

    Google Scholar 

  • Cho KC, White PJ (1993) Enzymatic analysis of beta-glucan content in different oat genotypes. Cereal Chem 70:539–542

    CAS  Google Scholar 

  • Chong J, Aung T (1996) Interaction of the crown rust resistance gene Pc94 with several Pc genes. In: Kema GHJ, Niks RE, Daamen RA (ed) Proceedings of the 9th European and Mediterranean cereal rusts and powdery mildews conference, 2–6 Sept 1996, Lunteren, The Netherlands. European and Mediterranean Cereal Rust Foundation, Wageningen, The Netherlands, pp 172–175

    Google Scholar 

  • Chong J, Seaman WL (1991) Distribution and virulence of Puccinia coronata in Canada in 1990. Can J Plant Pathol 13:365–370

    Google Scholar 

  • Chong J, Leonard KJ, Salmeron JJ (2000) A North American system of nomenclature for Puccinia coronata F. sp. avenae. Plant Dis 84:580–585

    Google Scholar 

  • Chong J, Reimer E, Somers D, Aung T, Penner GA (2004) Development of sequence-characterized amplified region (SCAR) markers for resistance gene Pc94 to crown rust in oat. Can J Plant Pathol 26:89–96

    CAS  Google Scholar 

  • Chong J, Gruenke J, Dueck R, Mayert W, Woods S (2008) Virulence of oat crown rust [Puccinia coronata f. sp. avenae] in Canada during 2002–2006. Can J Plant Pathol 30:115–123

    CAS  Google Scholar 

  • Choube RN, Gupta SK, Premachandran MN (1985) Utilization of wild Avena species for gene introgression. Oat Newsl 36:22–23

    Google Scholar 

  • Clamot G (1969) L'amelioration de la resitance de l'avoine l'oidium. Etudes preliminares Bull Rech Agron Gembloux 1:134–137

    Google Scholar 

  • Clamot G (1984) Prospects for improving the grain protein content of oats by intra- and interspecific hybridization. Vor Pflanzenzucht 6:224–238

    Google Scholar 

  • Clark RV, Zillinsky FJ (1960) Varietal reaction of oats to the Septoria disease under field and green house conditions. Can Plant Dis Surv 40:72–91

    Google Scholar 

  • Clifford BC (1995) Diseases, pests and disorders of oats. In: Welch RW (ed) The oat crop: production and utilization. Chapman & Hall, London, UK, pp 252–278

    Google Scholar 

  • Coffman FA (1961) Oat and oat improvement. American Society of Agronomy, Madison, WI, USA

    Google Scholar 

  • Coffman FA, Stevens H, Stanton TR (1970) Culture of oats in the Western States. US Department of Agriculture, Texas, USA, p 2134

    Google Scholar 

  • Comeau A (1982) Geographic distribution of resistance to barley yellow dwarf virus in Avena sterilis. Can J Plant Pathol 4:147–151

    Google Scholar 

  • Comeau A (1984) Barley Yellow Dwarf Virus resistance in the genus Avena. Euphytica 33:49–55

    Google Scholar 

  • Comeau A (1988) Tolerance of oats to barley yellow dwarf. In: Proceedings of the 3rd interntaional oat conference, 4–8 July 1988, Lund, Sweden, pp 279–286

    Google Scholar 

  • Cook R (1974) Nature and inheritance of nematode resistance in cereals. J Nematol 6:165–174

    PubMed  CAS  Google Scholar 

  • Cosson ME (1854) Classification desespeces du genre Avena du groupe de L’Avena sativa. Bull Soc Bot France 1:11–18

    Google Scholar 

  • Cosson ME, Durie de Maisonneuve MC (1855) Sur quelques especes nouvelles d’Algerie. Bull Soc Bot France 2:364–368

    Google Scholar 

  • Cosson ME, Durieu de Maisonneuve MC (1854) Notes sur quelques graminees d’Algerie. Bull Soc Bot France 1:313–319

    Google Scholar 

  • Costa JC (1988) Types morphologiques des folles avoines au Portugal. VIIIe Colloque International sur la Biologie, l'Ecologie et la Systematique des Mauvaises Herbes. vol 2, pp 315–323

    Google Scholar 

  • Cotten J, Hayes JD (1972) Genetic studies of resistance to the cereal cyst nematode (Heterodera avenae) in oats (Avena spp.). Euphytica 21:538–542

    Google Scholar 

  • Cox DJ, Frey KJ (1984a) Improving cultivated oats (Avena sativa L.) with alleles for vegetative growth index from A. sterilis L. Theor Appl Genet 68:239–245

    Google Scholar 

  • Cox DJ, Frey KJ (1984b) Combining ability and the selection of parents for interspecific oat matings. Crop Sci 24:963–967

    Google Scholar 

  • Cox TS, Frey KJ (1985) Complementarity of genes for high groat-protein percentage from Avena sativa L. and A. sterilis L. Crop Sci 25:106–109

    Google Scholar 

  • Craig IL, Murray BE, Rajhathy T (1972) Leaf esterase isozymes in Avena and their relationship to the genomes. Can J Genet Cytol 14:581–589

    CAS  Google Scholar 

  • Craig IL, Murray BE, Rajhathy T (1974) Avena canariensis: morphological and electrophoretic polymorphism and relationship to the A. magna-A. murphyi complex and A. sterilis. Can J Genet Cytol 16:677–689

    Google Scholar 

  • Darmency H, Aujas C (1986) Polymorphism for vernalization requirement in a population of Avena fatua. Can J Bot 64:730–733

    Google Scholar 

  • Durieu de Maisonneuve MC (1845) Duch Rev Bot 1:360

    Google Scholar 

  • Dielz SM (1928) Inheritance of resistance in oats to Puccinia graminis avenae. J Agric Res 37:1–23

    Google Scholar 

  • Dillenburg CR (1984) Identificacao das especies do genero Avena (Gramineae) coletadas no estado do Rio Grande do Sul (Brasil). Anuario Tecnico Instituto Pesquisas Zootecnicas, Francisco Osorio 11:65–102

    Google Scholar 

  • Dinoor A, Wahl I (1963) Reaction of non-cultivated oats from Israel to Canada races of crown rust. Can J Plant Sci 43:263–270

    Google Scholar 

  • Drossou A, Katsiotis A, Leggett JM, Loukas M, Tsakas S (2004) Genome and species relationships in genus Avena based on RAPD and AFLP molecular markers. Theor Appl Genet 109:48–54

    PubMed  CAS  Google Scholar 

  • Duguid SD, Brown PD, Chong J, Harder DE, Haber S, Menzies J, Nell JS (2001) AC medallion oat. Can J Plant Sci 81:81–83

    Google Scholar 

  • Dyck PL, Zillinsky FL (1963) Inheritance of crown rust resistance transferred from diploid to hexaploid oats. Can J Genet Cytol 5:398–407

    Google Scholar 

  • Eagles HA, Haslemore RM, Stewart CA (1978) Nitrogen utilisation in Libyan strains of Avena sterilis L. with high groat protein and high straw nitrogen content. N Z J Agric Res 21:65–72

    CAS  Google Scholar 

  • ECPGR (2008) A strategic framework for the implementation of European genebank integrated system (AEGIS), Discussion paper. ECPGR, Bioversity International, Rome, Italy

    Google Scholar 

  • Elliott AL, Thro AM, Frey KJ (1985) Inheritance of groat-oil content and several other traits in inter- and intra-specific oat matings. Iowa State Univ Res 60:13–24

    Google Scholar 

  • Emme EK (1932) Karyosystematic research of oat of section Euavena Griseb. Works Appl Bot Plant Breed Seria II 1:147–168

    Google Scholar 

  • Emme EK (1938) Evolution cultivated and wild oat. Bot J 7:91–122

    Google Scholar 

  • Ephrat J (1962) Etude sur la comportement thermophasique de l'avoine (Avena ssp.) en Israel. Bull Econ Nat Super Agron 4:89–95

    Google Scholar 

  • Fabijanski S, Fedak G, Armstrong K, Altosaar I (1990) A repeated sequence probe for the C genome in Avena (oats). Theor Appl Genet 79:1–7

    CAS  Google Scholar 

  • Fawcett JA, Frey KJ (1982) Nitrogen harvest index variation in Avena sativa and A. sterilis. Proc Iowa Acad Sci 89:155–159

    Google Scholar 

  • Fetch TG, Jin Y (2007) Letter code system of nomenclature for Puccinia graminis f.sp. avenae. Plant Dis 91:763–766

    CAS  Google Scholar 

  • Fleischman G, Baker RJ (1971) Oat crown rust race differentation: replacement of the standard differential varieties with a new set of single resistance gene lines derived from Avena sterilis. Can J Bot 49:1433–1437

    Google Scholar 

  • Fleischmann G, McKenzie RIH (1968) Inheritance of crown rust resistance in Avena sterilis. Crop Sci 8:710–713

    Google Scholar 

  • Fleischmann G, McKenzie RIH, Shipton WA (1971a) Inheritance of crown rust resistance in Avena sterilis L. from Israel. Crop Sci 11:451–453

    Google Scholar 

  • Fleischmann G, McKenzie RIH, Shipton WA (1971b) Inheritance of crown rust resistance genes in Avena sterilis collections from Israel, Portugal, and Tunisia. Can J Genet Cytol 13:251–255

    Google Scholar 

  • Forsberg RA (1990) The use of monosomic alien substitution lines in interploidy gene transfer in Avena. Bulg J Biotechnol 4:27–30

    Google Scholar 

  • Forsberg RA, Shands HL (1969a) Breeding behavior of two Avena abyssinica × A. strigosa amphiploids. Crop Sci 9:64–67

    Google Scholar 

  • Forsberg RA, Shands HL (1969b) Breeding behavior of 6x amphiploid × A. strigosa F1 hybrids. Crop Sci 9:67–69

    Google Scholar 

  • Forsberg RA, Shands HL (1989) 5: Oat breeding. In: Janick J (ed) Plant breeding reviews, vol 6. Timber, Oregon, OR, USA, pp 167–207

    Google Scholar 

  • Frey KJ (1975) Inheritability of groat-protein percentage of hexaploid oats. Crop Sci 15:277–279

    Google Scholar 

  • Frey KJ (ed) (1981) Plant breeding II. Iowa State University, Ames, Iowa, USA

    Google Scholar 

  • Frey KJ (1983) Genes from wild relatives for improving plants. Crop Improv Res 1–20

    Google Scholar 

  • Frey KJ (1985) Genetic resources and their use in oats breeding. In: Proceedings of the 2nd international oats conference, 15–18 July 1985, Aberystwyth, UK, pp 7–15

    Google Scholar 

  • Frey KJ (1988) Growth rate of oats. In: Proceedings of the 3rd international oats conference, 4–8 July 1988, Lund, Sweden, pp 330–339

    Google Scholar 

  • Frey KJ (1991) Genetic resources of oats. In: Use of plant introductions in cultivar development. CSSA Special Publication, Part 1, No 17, Madison, WI, USA, pp 15–24

    Google Scholar 

  • Frey KJ (1992) Oat improvement with genes from Avena species. In: Barr AR, Medd RW (eds) Proceedings of the 4th international oat conference, vol 2: wild oats in agriculture. 19–23 Oct 1992, Adelaide, SA, Australia, pp 61–64

    Google Scholar 

  • Frey KJ (1994) Remaking a crop gene pool: the case history of Avena. Proceedings of SABRAO 7th international congress and WSAA symposium, Academia Sinica, vol 1, Special Publication, Taichung District Agricultural Improvement Station 35:1–14

    Google Scholar 

  • Frey KJ, Browning JA (1971) Association between genetic factors for crown rust resistance and yield in oats. Crop Sci 11:757–760

    Google Scholar 

  • Frey KJ, Holland JB (1999) Nine cycles of recurrent selection for increased groat-oil content in oat. Crop Sci 39:1636–1641

    Google Scholar 

  • Frey KJ, Hammond EG, Lawrence PK (1975a) Inheritance of oil percentage in interspecific crosses of hexaploid oats. Crop Sci 15:94–95

    Google Scholar 

  • Frey KJ, McCarty T, Rosielle A (1975b) Straw-protein percentages in Avena sterilis L. Crop Sci 15:716–718

    Google Scholar 

  • Frey KJ, Cox TS, Rodgers DM, Bramel-Cox P (1984) Increasing cereal yields with genes from wild and weedy species. In: Genetics: new frontiers. 15th international congress on genetics, vol 4: Applied genetics, pp 51–68

    Google Scholar 

  • Frey KJ, Browning JA, Simons MD (1985) Registration of Multiline E76 and Multiline E77 oats. Crop Sci 25:1125

    Google Scholar 

  • Frey KJ, Michel LJ, Murphy JP, Browning JA (1986) Registration of Webster isolines. Crop Sci 26:374–375

    Google Scholar 

  • Frey KJ, Simons MD, Michel LJ, Murphy JP, Browning JA (1988) Registration of Webster oat isolines as parental lines. Crop Sci 28:386–387

    Google Scholar 

  • Frison E, Koenig J, Schittenhelm S (1993) Report of a working group on Avena. 4th Meet, Godolo, Hungary, 26–28 May 1993, ECP/GR. International Board for Plant Genetics Resources, Rome, Italy

    Google Scholar 

  • Fu Y-B, Williams DJ (2008) AFLP variation in 25 Avena species. Theor Appl Genet 117:333–342

    PubMed  CAS  Google Scholar 

  • Fu Y-B, Chong J, Fetch T, Wang M-L (2007) Microsatellite variation in Avena sterilis oat germplasm. Theor Appl Genet 114:1029–1038

    PubMed  CAS  Google Scholar 

  • Garcia P, Vences FJ, Perez de la Vega M, Allard RW (1989) Allelic and genotypic composition of ancestral Spanish and colonial Californian gene pools of Avena barbata: evolutionary implications. Genetics 122:687–694

    PubMed  CAS  Google Scholar 

  • Garcia-Baudin JM, Salto T, Aguirre R (1978) Variabilidad de la Avena sterilis L. en la zona interior de la peninsula Iberica. Anales Instituto Nacional Investigaciones Agrarias Proteccion Vegetal 8:149–158

    Google Scholar 

  • Garcia-Baudin JM, Salto T, Aguirre R (1981) Differentes types morphologiques chez Avena sterilis L. Fragm Herb Jugosl 10(1):57–71

    Google Scholar 

  • Gavrilova O, Gagkaeva T, Burkin A, Kononenko G, Loskutov I (2008) Susceptibility of oat germplasm to Fusarium infection and mycotoxin accumulation in grains. In: Proceedings of the 8th international oat conference, 27 June–2 July 2008, Minneapolis, MN, USA, Poster V-2a. http://wheat.pw.usda.gov/GG2/Avena/event/IOC2008/IOCprogram.html

  • Germeier CU (2008) Global strategy for the ex situ conservation for oats (Avena spp.). http://www.croptrust.org/documents/web/Oat-Strategy-DRAFT-07April08.pdf

  • Goffreda JC, Burnquist WB, Beer SC, Tanksley SD, Sorrells ME (1992) Application of molecular markers to assess genetic relationships among accessions of wild oat, Avena sterilis. Theor Appl Genet 85:146–151

    Google Scholar 

  • Gold Steinberg J, Mitchell Fetch J, Fetch TG (2005) Evaluation of Avena spp. collections for resistance to oat stem rust. Plant Dis 89:521–525

    Google Scholar 

  • Griffiths NAR (1984) Studies of chromosome manipulation in Avena. PhD Thesis, University of Wales, Aberystwyth

    Google Scholar 

  • Griffiths DJ, Rowlands G, Peregrine WTH (1959) Cytogenetic relationships of certain artifical and natural species of Avena. J Agric Sci 52:678–683

    Google Scholar 

  • Grisebach AHR (1844) Spicilegium florae rumelicae et bithynicae, vol II. Friedrich Vieweg und Sohn, Brunsvigae, p 452

    Google Scholar 

  • Grossheim AA (1967) Flora of Caucasus, vol 2. Nauka, Moscow–Leningrad

    Google Scholar 

  • Gruner LF (1867) Bull Soc Imp Naturalistes Moscou. xli. II. 458

    Google Scholar 

  • Guarino L, Chadja H, Mokkadem A (1991) Collection of Avena macrostachya Bal. ex Coss. et Dur. (Poaceae) germplasm in Algeria. Econ Bot 45(4):460–466

    Google Scholar 

  • Guillemenet R (1971) Wild oats in Vienne. Phytoma 232:24–27

    Google Scholar 

  • Guma I-R, Perez de la Vega M, Pedro G (2006) Isozyme variation and genetic structure of populations of Avena barbata from Argentina. Genet Resour Crop Evol 53:587–601

    CAS  Google Scholar 

  • Gupta SC, Cox DJ, Frey KJ (1986a) Association of two measures of vegetative growth rate with other traits in inter and intraspecific matings of oats. Theor Appl Genet 72:756–760

    Google Scholar 

  • Gupta SC, Frey KJ, Cox DJ (1986b) Changes in several traits of oats caused by selection for vegetative growth rate. Plant Breed 97:222–226

    Google Scholar 

  • Gupta SC, Frey KJ, Skrdla RK (1987) Selection for grain yield of oats via vegetative growth rates measured at anthesis and maturity. Euphytica 36:91–97

    Google Scholar 

  • Hagberg P (1983) Artkorsningar i havre (Abstr). Nordisk Jordbrugsforskning 65:271

    Google Scholar 

  • Hagberg P, Mattsson B (1986) Increased variability in oats from crosses between different species. In: Olsson G (ed) Svalof 1886–1986: Research and results in plant breeding. LTs forlag, Stockholm, Sweden, pp 121–127

    Google Scholar 

  • Hammer K, Teklu Y (2008) Plant genetic resources: selected issues from genetic erosion to genetic engineering. J Agric Rural Dev Trop Subtrop 109:15–50

    Google Scholar 

  • Harder DE, McKenzie RIH (1984) Complex additive-type of resistance to Puccinia coronata in Avena sterilis. Can J Plant Pathol 6:135–138

    Google Scholar 

  • Harder DE, McKenzie RIH, Martens JW (1980) Inheritance of crown rust resistance in three accessions of Avena sterilis. Can J Genet Cytol 22:27–33

    Google Scholar 

  • Harder DE, McKenzie RIH, Martens JW (1984) Inheritance of adult plant resistance to crown rust in an accession of Avena sterilis. Phytopathology 74:352–353

    Google Scholar 

  • Harder DE, Chong J, Brown PD, Martens JW (1990) Inheritance of resistance to Puccinia coronata avenae and P. graminis avenae in an accession of Avena sterilis from Spain. Genome 33:198–202

    Google Scholar 

  • Harder DE, Chong J, Brown PD, Sebesta J, Fox S (1992) Wild oat as a source of disease resistance: history, utilization and prospects. In: Proceedings of the 4th international oat conference, vol 2, 19–23 Oct 1992, Adelaide, SA, Australia, vol 2, pp 71–81

    Google Scholar 

  • Harlan JR (1975) Crop and man. American Agricultural Society, Madison, WI, USA

    Google Scholar 

  • Harlan JR, de Wet JMJ (1971) Toward a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Haussknecht C (1885) Uber die Abstammung des Saathaber. Mitteil. d. geogr. Gesellsch. (Thur.), Jena III, pp 231–242

    Google Scholar 

  • Hayasaki M, Morikawa T, Leggett MJ (2001) Intraspecific variation of 18S-5.8S-26S rDNA sites revealed by FISH and RFLP in wild oat, Avena agadiriana. Gene Genet Syst 76:9–14

    CAS  Google Scholar 

  • Hayes JD (1970) Arable crop breeding. In: Welsh plant breeding station jubilee report 1919–1969, pp 45

    Google Scholar 

  • Herrmann M, Roderick HW (1996) Characterisation of new oat germplasm for resistance to powdery mildew. Euphytica 89:405–410

    Google Scholar 

  • Hetzler J, Dambroth M (1990) Erstevaluierung von Winterhafer (Avena sativa L.). Landbauforschung-Volkenrode 40(4H):279–283

    Google Scholar 

  • Heum M, Murphy JP, Phillips TD (1994) A comparison of RAPD and isozyme analyses for determining the genetic relationships among Avena sterilis L. accessions. Theor Appl Genet 87:689–696

    Google Scholar 

  • Hochstetter CFF (1852) Schimp. Inter. Abyss. Sectio II. In: Plantae Abyssineae, Ed. II

    Google Scholar 

  • Hoffman DL (1996) Inheritance and linkage relationships of morphological and isozyme loci in the A-genome diploid oat. In: Proceedings of the 5th international oat conference, vol 2, 30 July–6 Aug 1996, Saskatoon, Sask., Canada, pp 330–332

    Google Scholar 

  • Hoffman DL, Chong J, Jackson EW, Obert DE (2006) Characterization and mapping of a crown rust resistance gene complex (Pc58) in TAM O-301. Crop Sci 46:2630–2635

    CAS  Google Scholar 

  • Holden JHW (1966) Species relationships in the Avenae. Chromosoma 20(I):75–124

    Google Scholar 

  • Holden JHW (1969) Field studies of some wild species of Avena. Econ Bot 23:339–345

    Google Scholar 

  • Holden JHW (1979) 28 Oats. Avena spp. (GramineaeAveneae). In: Simmonds NW (ed) Evolution of crop plants. Longman, London, UK, pp 86–90

    Google Scholar 

  • Holland JB (1997) Oat improvement. In: Kang MS (ed) Crop improvement for the 21st century. Research Signpost, Trivandrum, India, pp 57–98

    Google Scholar 

  • Holland JB, Bjornstad A, Frey KJ, Gullord M, Wesenberg DM (1996) Recurrent selection for yield stability in a broad-based oat population. In: Proceedings of the 5th international oat conference, vol 2, 30 July–6 Aug 1996, Saskatoon, Sask., Canada, pp 494–496

    Google Scholar 

  • Holub J (1958) Bemerkungen zur taxonomie der Gattung Helictotrichon Bess. In: Nemec B, Klastersky I et al (eds) Philipp Maxmilian Opiz und Seine Bedeutung fur die Pflanzentaxonomie. Tschechoslowakischen Akad. der Wissenschaften, Prag, pp 101–133

    Google Scholar 

  • Hoppe G, Hoppe HD (1991) Cluster analyses as breeding aid shown by the example of interspecific hybrids of Avena. A Zuchtungsforsch 21:183–190

    Google Scholar 

  • Hoppe HD, Kummer M (1991) New productive hexaploid derivatives after introgression of A. pilosa features. Vor. Pflanzenzuchtg 20:56–61

    Google Scholar 

  • Hoppe HD, Pohler W (1988) Successful hybridization between Avena prostrata and A. macrostachya. Cereal Res Commun 16:231–235

    Google Scholar 

  • Hoppe HD, Pohler W (1989) Hybrids between Avena barbata and A. macrostachya. Cereal Res Commun 17:129–134

    Google Scholar 

  • Hoppe HD, Pohler W, Kison HU (1990) Tri-, tetra- und pentaploide Bastarde aus interspezifischen Kreuzungen mit Avena macrostachya. Biol Zentralblatt 109:499–504

    Google Scholar 

  • Howarth C, Cowan A, Leggett JM, Valentine J (2000) Using molecular mapping to access and understanding valuable traits in wild relatives of oats. In: Proceedings of the 6th internationl oat conference, 13–16 Nov 2000, Canterbury, New Zealand, pp 157–159

    Google Scholar 

  • Huskins CL (1926) Genetical and cytological studies of the origin of false wild oats. Sci Agric 6:303–313

    Google Scholar 

  • Huskins CL (1927) On the genetics and cytology of fatuoid or false wild oat. J Genet 18:315–364

    Google Scholar 

  • IBPGR (1984) Report of a Working Group on Oat. Menemen, Turkey, 25–27 Sept 1984. ECP/GR. International Board for Plant Genetics Resources, Rome, Italy

    Google Scholar 

  • IBPGR (1986) Report of a Working Group on Avena (Second Meeting). Braunschweig, Germany, 18–20 Mar 1986. ECP/GR. International Board for Plant Genetics Resources, Rome, Italy

    Google Scholar 

  • IBPGR (1989) Report of a Working Group on Avena (Third Meeting). Radzikow, Poland, 7–9 Mar 1989. ECP/GR. International Board for Plant Genetics Resources, Rome, Italy

    Google Scholar 

  • Irigoyen ML, Loarce Y, Linares C, Ferrer E, Leggett M, Fominaya A (2001) Discrimination of the closely related A and B genomes in AABB tetraploid species of Avena. Theor Appl Genet 103:1160–1166

    CAS  Google Scholar 

  • Jain RK, Hasan N (1988) Further studies on the root-knot nematode Meloidogyne javanica infecting Avena sterilis. Acta Bot Indica 16:239–241

    Google Scholar 

  • Jellen EN, Beard J (2000) Geographical distribution of a chromosome 7C and 17 intergenomic translocation in cultivated oat. Crop Sci 40:256–263

    Google Scholar 

  • Jellen EN, Ladizinsky G (2000) Giemsa C-banding in Avena insularis Ladizinsky. Genet Resour Crop Evol 47(227):230

    Google Scholar 

  • Jellen EN, Leggett JM (2006) Cytogenetic manipulation in oat improvement. In: Singh RJ, Jauhar PP (eds) Genetic resources, chromosome engineering, and crop improvement. Chap. 2 Cereals. CRC, Boca Raton, pp 199–231

    Google Scholar 

  • Jellen EN, Phillips RL, Rines HW (1994) Chromosomal localization and polymorphisms of ribosomal DNA in oat (Avena spp.). Genome 37:23–32

    PubMed  CAS  Google Scholar 

  • Jellen EN, Phillips RL, Rines HW, Rooney WL (1995) Molecular genetic identification of Avena chromosomes related to the group 1 chromosomes of the Triticeae. Genome 38:185–189

    PubMed  CAS  Google Scholar 

  • Jessen CFW (1863) Deutschland Graser und Getreidearten. Leipzig 214–218

    Google Scholar 

  • Johnson LDR, Rothman PG (1986) Resistance to stem rust in Avena fatua L. (Abstr). Phytopathology 76:1147

    Google Scholar 

  • Jones ET, Griffiths DJ (1952) Varietal resistance and susceptibility of oats to powdery mildew (Erysiphe graminis). Br Mycol Soc Trans 35:71–80

    Google Scholar 

  • Jones IT, O'Reilly AM, Davies IJER (1984) Cereal breeding. Durable resistance to powdery mildew in oats. In: Annual report, 1983. Oats. Welsh Plant Breeding Stationn, pp 93–94

    Google Scholar 

  • Kahler AL, Allard RW, Krzakowa M, Wehrhahn CF, Nevo E (1980) Associations between isozyme phenotypes and environment in the slender wild oat (Avena barbata) in Israel. Theor Appl Genet 56:31–47

    CAS  Google Scholar 

  • Kanan G, Jaradat AA (1996) Wild oats in Jordan. In: Proceedings of the 5th international oat conference, vol 2. 30 July–6 Aug 1996, Saskatoon, Sask., Canada, pp 185–187

    Google Scholar 

  • Karow RS (1984) Studies on the inheritance of fatty acid composition and the enzyme lipoxygenase in cultivated oat (Avena sativa L.) and on the inheritance of crown rust resistance in a derived-tetraploid × natural tetraploid oat cross (Abstr). Dissert Abstr Int Sci Eng 44(9):2623B–2624B

    Google Scholar 

  • Karow RS, McNamara KR, Forsberg RA (1987) Crown rust resistance in progeny from a derived tetraploid × natural tetraploid cross in Avena. Genome 29:206–208

    Google Scholar 

  • Katsiotis A, Schmidt T, Heslop-Harrison JS (1996) Chromosomal and genomic organization of Ty1-copia-like retrotransposon sequences in the genus Avena. Genome 39:410–417

    PubMed  CAS  Google Scholar 

  • Katsiotis A, Hagidimitriou M, Heslop-Harrison JS (1997) The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA sequences. Ann Bot 79:103–109

    CAS  Google Scholar 

  • Katsiotis A, Loukas M, Heslop-Harrison JS (2000) Repetitive DNA, genome and species relationships in Avena and Arrhenatherum (Poaceae). Ann Bot 86:1135–1142

    CAS  Google Scholar 

  • Kiehn FA, McKenzie RIH, Harder DE (1976) Inheritance of resistance to Puccinia coronata avenae and its association with seed characteristics in four accessions of Avena sterilis. Can J Genet Cytol 12:230–236

    Google Scholar 

  • Kihara H (1919) Ueber cytologische Studien bei einigen Getreidearten. Mitteilung II. Chromosomenzahlen und Verwandtschaftsverhaltnisse unetr Avena-Arten. Bot Mag XXXIII 388:94–97

    Google Scholar 

  • Kim HB (1974) Inheritance of resistance to Puccinia coronata var. avenae in sex selections of Avena sterilis. Euphytica 23:174–180

    Google Scholar 

  • Kliphuis E, Wieffering JH (1972) Chromosome numbers of some angiosperms from the south of France. Acta Bot Neerlandica 21:598–604

    Google Scholar 

  • Koch K (1848) Beitrage zu einer Flora des Orientes. Linneaea 21:289–443

    Google Scholar 

  • Kropac Z, Lhotska M (1971) Avena ludoviciana Dur. and Bidens frondosus L. – two new species for Romanian Socialist Republic. Preslia 43:249–253

    Google Scholar 

  • Kuenzel KA, Frey KJ (1985) Protein yield of oats as determined by protein percentage and grain yield. Euphytica 34:21–31

    Google Scholar 

  • Kuhn F (1972) Oats in the Western Carpathians. Acta Universitatis Agriculturae Brno Facultas Agronomica 20:355–362

    Google Scholar 

  • Ladizinsky G (1969) New evidence on the origin of hexaploid oats. Evolution 23:4

    Google Scholar 

  • Ladizinsky G (1971a) Avena murphyi: a new tetraploid species of oat from southern Spain. Isr J Bot 20:24–27

    Google Scholar 

  • Ladizinsky G (1971b) Avena prostrata: a new diploid species of oat. Isr J Bot 20:297–301

    Google Scholar 

  • Ladizinsky G (1971c) Biological flora of Israel. 2. Avena L. Isr J Bot 20:133–151

    Google Scholar 

  • Ladizinsky G (1971d) Chromosome relationships between tetraploid (2n=28) Avena murphyi and some diploid, tetraploid and hexaploid species of oats. Can J Genet Cytol 13:203–209

    Google Scholar 

  • Ladizinsky G (1973a) The cytogenetic position of Avena prostrata among the diploid oats. Can J Genet Cytol 15:443–450

    Google Scholar 

  • Ladizinsky G (1973b) Genetic control of bivalent pairing in the Avena strigosa polyploid complex. Chromosoma 42:105–110

    PubMed  CAS  Google Scholar 

  • Ladizinsky G (1975) Oats in Ethiopia. Econ Bot 29:238–241

    Google Scholar 

  • Ladizinsky G (1988) Biological species and wild genetic resources in Avena. In: Proceedings of 3rd international oat conference, 4–8 July 1988, Lund, Sweden, pp 76–86

    Google Scholar 

  • Ladizinsky G (1989) Biological species and wild genetic resources in Avena. IBPGR, Report of a Working Group on Avena, Radzikow, Poland, pp 19–32

    Google Scholar 

  • Ladizinsky G (1992) Genetic resources of tetraploid wild oats and their utilization. In: Proceedings of the 4th international oat conference, 19–23 Oct 1992, Adelaide, SA, Australia, pp 65–70

    Google Scholar 

  • Ladizinsky G (1995) Domestication via hybridization of the wild tetraploid oats Avena magna and A. murphyi. Theor Appl Genet 91:639–646

    Google Scholar 

  • Ladizinsky G (1998) A new species of Avena from Sicily, possible the tetraploid progenitor of hexaploid oats. Genet Res Crop Evol 45:263–269

    Google Scholar 

  • Ladizinsky G (1999) Cytogenetic relationships between Avena insularis (2n=28) and both A. strigosa (2n=14) and A. murphyi (2n=28). Genet Resour Crop Evol 46:501–504

    Google Scholar 

  • Ladizinsky G (2000) A synthetic hexaploid (2n = 42) oat from the cross of Avena strigosa (2n = 14) and domesticated A. magna (2n = 28). Euphytica 116:231–235

    Google Scholar 

  • Ladizinsky G, Fainstein R (1977) Domestication of the protein-rich tetraploid wild oats Avena magna and A. murphyi. Euphytica 26:221–223

    Google Scholar 

  • Ladizinsky G, Jellen EN (2003) Cytogenetic affinities between populations of Avena insularis Ladizinsky from Sicily and Tunisia. Genet Resour Crop Evol 50:11–15

    Google Scholar 

  • Ladizinsky G, Johnson L (1972) Seed protein homologies and the evolution of poliploidy in Avena. Can J Genet Cytol 14:875–888

    Google Scholar 

  • Ladizinsky G, Zohary D (1968) Genetic relationships between diploids and tetraploids in series Eubarbatae of Avena. Can J Genet Cytol 10:68–81

    Google Scholar 

  • Ladizinsky G, Zohary D (1971) Notes on species delimination species relationships and poliploidy in Avena L. Euphytica 20:380–395

    Google Scholar 

  • Lagasca SM (1816) Quae aut novae sunt aut nondum recte cognoscuntur. Genera et species plantarum, Madrid, p 4

    Google Scholar 

  • Landry B, Comeau A, Minvielle F, St.-Pierre CA (1984) Genetic analysis of resistance to barley yellow dwarf virus in hybrids between Avena sativa ‘Lamar’ and virus-resistant lines of Avena sterilis. Crop Sci 24:337–340

    Google Scholar 

  • Lawrence PK, Frey KJ (1975) Backcross variability for grain yield in oat species crosses (Avena sativa L. × A. sterilis L.). Euphytica 24:77–85

    Google Scholar 

  • Leggett JM (1980) Chromosome relationships and morphological comparisons between the diploid oats Avena prostrata, A. canariensis and the tetraploid A. maroccana. Can J Genet Cytol 22:287–294

    Google Scholar 

  • Leggett JM (1984) Morphology and metaphase chromosome pairing in three Avena hybrids. Can J Genet Cytol 26:361–364

    Google Scholar 

  • Leggett JM (1985) Interspecific hybrids involving the perennial oat species Avena macrostachya. Can J Genet Cytol 27:29–32

    Google Scholar 

  • Leggett JM (1987) Interspecific hybrids involving the recently described diploid taxon Avena atlantica. Genome 29:361–364

    Google Scholar 

  • Leggett JM (1988) Inter- and intra-specific hybrids involving the tetraploid species Avena agadiriana Baum et Fedak sp. nov. (2n=4x=28). In: Proceedings of the 3rd international oat conference, 4–8 July 1988, Lund, Sweden, pp 62–67

    Google Scholar 

  • Leggett JM (1990) A new triploid hybrid between Avena eriantha and A. macrostachy. Cereal Res Commun 18:97–110

    Google Scholar 

  • Leggett JM (1992a) The conservation and exploration of wild oat species. In: Proceedings of the 4th international oat conference, vol 2. 19–23 Oct 1992, Adelaide, SA, Australia, pp 57–60

    Google Scholar 

  • Leggett JM (1992b) A further Avena macrostachya hybrid. In: Proceedings of the 4th international oat conference, vol 3. 19–23 Oct 1992, Adelaide, SA, Australia, pp 152–153

    Google Scholar 

  • Leggett JM (1996) Using and conserving Avena genetic resources. In: Proceedings of the 5th international oat conference, 30 July–6 Aug 1996, Saskatoon, Sask, vol 1. Canada, pp 128–132

    Google Scholar 

  • Leggett JM (1997) A revision of genome evolution in hexaploid Avena? Exp Biol Online: Aberystwyth Cell Genetics Group Meet

    Google Scholar 

  • Leggett JM (1998) Chromosome and genomic relationship between the diploid species Avena strigosa, A. eriantha, and the tetraploid A. maroccana. Heredity 80:361–367

    Google Scholar 

  • Leggett JM, Markland GS (1995) The genomic structure of Avena revealed by GISH. Proceedings of the kew chromosome conference IV, pp 133–139

    Google Scholar 

  • Leggett JM, Thomas H (1995) Oat evolution and cytogenetics. In: Welch RW (ed) The oat crop production and utilization. Chapman & Hall, London, UK, pp 120–149

    Google Scholar 

  • Leggett JM, Ladizinsky G, Hagberg P, Obanni M (1992) The distribution of nine Avena species in Spain and Morocco. Can J Bot 70:240–244

    Google Scholar 

  • Leonard K, Martinelli JA (2005) Virulence of oat crown rust in Brazil and Uruguay. Plant Dis 89:802–808

    Google Scholar 

  • Leonova S, Shelenga T, Hamberg M, Konarev AV, Loskutov IG, Carlsson AS (2008) Analysis of oil composition in cultivars and wild species of oat (Avena sp.). J Agric Food Chem 56:7983–7991

    PubMed  CAS  Google Scholar 

  • Levitsky GA (1976) Plant cytology, 1931: selected works. Nauka, Moscow

    Google Scholar 

  • Li CD, Rossnagel BG, Scoles GJ (2000) The development of oar microsatellite markers and their use in identifying relationships among Avena species and oat cultivars. Theor Appl Genet 101:1259–1268

    CAS  Google Scholar 

  • Li WT, Peng YY, Wei YM, Baum BR, Zheng YL (2009) Relationships among Avena species as revealed by consensus chloroplast simple sequence repeat (ccSSR) markers. Genet Resour Crop Evol 56:465–480

    CAS  Google Scholar 

  • Linares C, Gonzalez J, Ferrer E, Fominaya A (1996) The use of double fluorescence in situ hybridization to physically map the positions of 5S rRNA genes in relation to the chromosomal location of 18S–5.8S–26S rDNA and a C genome-specific DNA sequence in the genus Avena. Genome 39:535–542

    PubMed  CAS  Google Scholar 

  • Linneaus C (1762) Species plantarum, 2nd edn. London, UK

    Google Scholar 

  • Linneaus С (1753) Species plantarum. vol 1. A facsimile of the first edition. London, UK, pp 1957–1959

    Google Scholar 

  • Lipman E, Maggioni L, Knupffer H, Ellis R, Leggett M, Kleijer G, Faberova I, Le Blanc A (2005) Cereal genetic resources in Europe. Report on Cereals Network. 1st Meeting, 3–5 July 2003, Yerevan, Armenia. ECP/GR. International Plant Genetics Resource Institute, Rome, Italy

    Google Scholar 

  • Litzenberger SC (1949) Inheritance of resistance to specific races of crown and stem rust to Helminthosporium blight, and of certain agronomic characters of oats. Iowa Agric Exp Stn Bull 370:453–496

    Google Scholar 

  • Loarce Y, Ferrer E, Künzel G, Fominaya A (2002) Assignment of oat linkage groups to microdissected Avena strigosa chromosomes. Theor Appl Genet 104:1011–1016

    PubMed  CAS  Google Scholar 

  • Lookhart GL, Pomeranz Y (1985) Characterization of oat species by polyacrylamide gel electrophoresis and high performance liquid chromatography of their prolamin proteins. Cereal Chem 62:162–166

    CAS  Google Scholar 

  • Loon van JC (1974) A cytological investigation of flowering plants from the Canary Islands. Acta Bot Neerlandica 23:113–124

    Google Scholar 

  • Loskutov IG (1998) The collection of wild species of CIS as a source of diversity in agricultural traits. Genet Resour Crop Evol 45:291–295

    Google Scholar 

  • Loskutov IG (1999) Vavilov and his institute. A history of the world collection of plant genetic resources in Russia. IPGRI, Rome, Italy

    Google Scholar 

  • Loskutov IG (2001a) Influence of vernalization and photoperiod to the vegetation period of wild species of oats (Avena spp.). Euphytica 117:125–131

    Google Scholar 

  • Loskutov IG (2001b) Interspecific crosses in Avena L. genera. Russ J Genet 37:581–590

    CAS  Google Scholar 

  • Loskutov IG (2007) Oat (Avena L.). Distribution, taxonomy, evolution and breeding value. VIR, St. Peterburg, Russia

    Google Scholar 

  • Loskutov IG (2008) On evolutionary pathway of Avena species. Genet Resour Crop Evol 55:211–220

    Google Scholar 

  • Luby JJ, Stuthman DD (1983) Evaluation of Avena sativa L./A. fatua L. progenies for agronomic and grain quality characters. Crop Sci 23:1047–1052

    Google Scholar 

  • Luby JJ, Stuthman DD, Phillips RL (1985) Micronuclei frequency and character coherence in Avena sativa L./A.fatua L. crosses. Theor Appl Genet 69:367–373

    Google Scholar 

  • Lupton FGH, Thompson JB (1961) Spring oats. In: Annual report 1959–1960. PBI Cambridge, UK, pp 235–238

    Google Scholar 

  • Lyrene PM, Shands HL (1975) Groat protein percentage in Avena sativa × A. sterilis crosses in early generations. Crop Sci 15:398–400

    Google Scholar 

  • Maggioni L, Leggett M, Bucken S, Lipman E (1998) Report of a working group on Avena. 5th meeting, Vilnus, Lithuania, 7–9 May 1998. ECP/RG. International Plant Genetic Resources Institute, Rome, Italy

    Google Scholar 

  • Maggioni L, Katsiotis A, Knüpffer H, Kleijer G (2009) Report of a cereals network. 2nd Meeting, 21–24 Apr 2008, Foça, Turkey. ECPGR, Biversity International, Rome, Italy (in press)

    Google Scholar 

  • Maillet J (1980) Contribution a une etude des varietes d'Avena fatua et Avena sterilis. Fragm Herb Jugosl 9:61–67

    Google Scholar 

  • Mal B (1987) Wild genetic resource potential for forage oat improvement (Abstr). In: 1st symposium on crop improvement, 23–27 Feb 1987, India, pp 5–6

    Google Scholar 

  • Malzev AI (1930) Wild and cutivated oats. Section Euavena Griseb. Works Appl Bot Plant Breed Suppl No: 38. Leningrad, USSR

    Google Scholar 

  • Mansfeld R (1958) Zur Nomenklatur einiger Nutz- und Kulturpflanzen. Kulturphflanze 6:237–242

    Google Scholar 

  • Markhand GS, Leggett JM (1996) The genomes of A. lusitanica, A. hispanica and A. matritensis confirmed using GISH. In: Proceedings of 5th international oat conference, vol 2. 30 July–6 Aug 1996, Saskatoon, Sask, Canada, pp 347–349

    Google Scholar 

  • Marshall Bieberstein FA (1819) Avena pilosa. Flora Taur.- Cauc. III. Suppl. 84

    Google Scholar 

  • Marshall DR, Allard RW (1970) Isozyme polymorphisms in natural populations of Avena fatua and A. barbata. Heredity 25:373–382

    CAS  Google Scholar 

  • Marshall DR, Jain SK (1968) Phenotype plasticity of Avena fatua and A. barbata. Nature (Lond) 221:276–278

    Google Scholar 

  • Marshall DR, Jain SK (1970) Seed predation and dormancy in the population dynamics of Avena fatua and A. barbata. Ecology 51:886–891

    Google Scholar 

  • Marshall HG, Shaner GE (1992) Genetic and inheritance in oat. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Agronomy Monograph No. 33. ASA, CSSA, SSSA, Madison, WI, USA, pp 509–571

    Google Scholar 

  • Martens JW, McKenzie RIH (1973) Resistance and virulence in the Avena: Puccinia coronata host-parasite system in Kenya and Ethiopia. Can J Bot 51:711–714

    Google Scholar 

  • Martens JW, McKenzie RIH, Harder DE (1980) Resistance to Puccinia graminis avenae and P. coronata avenae in the wild and cultivated Avena populations of Iran, Iraq and Turkey. Can J Genet Cytol 22:641–649

    Google Scholar 

  • Martens JW, Rothman PG, McKenzie RIH, Brown PD (1981) Evidence for complementary gene action conferring resistance to Puccinia graminis avenae in Avena sativa. Can J Genet Cytol 23:591–595

    Google Scholar 

  • Martens JW, Brown PD, McKenzie RIH, Harder DE (1983) Development of resistance to Puccinia graminis avenae in Avena sativa by mutagen treatment. In: Induced mutations for disease resistance in crop plants II. IAEA, Vienna, Austria, pp 105–110

    Google Scholar 

  • Mattsson B (1988) The development of oat germplasm at Svalov. In: Mattsson B, Lyhagen L (eds) Proceedings of 3rd international oat conference, 4–8 July 1988, Lund, Sweden, pp 35–38

    Google Scholar 

  • Maxted N, Ford-Lloyd BV, Hawkes JG (1997) Complementary conservation strategies. In: Maxted N, Ford-Lloyd BV, Hawkes JG (eds) Plant genetic conservation: the in situ approach. Chapman & Hall, London, UK, pp 15–40

    Google Scholar 

  • McCallum BD, Harder DE, Dunsmore KM (2000) Stem rusts on wheat, barley, and oat in Canada in 1999. Can J Plant Pathol 22:23–28

    Google Scholar 

  • McDaniel ME (1974a) Registration of TAM 0-301 oats. Crop Sci 14:127–128

    Google Scholar 

  • McDaniel ME (1974b) Registration of TAM 0-312 oats. Crop Sci 14:128

    Google Scholar 

  • McFerson JK, Frey KJ (1990) Three selection strategies to increase protein yield in oats. J Genet Breed 44:56–59

    Google Scholar 

  • McFerson JK, Frey KJ (1991) Reccurrent selection for protein yield. Crop Sci 31:1–8

    CAS  Google Scholar 

  • McKenzie RIH, Fleischmann G (1964) The inheritance of crown rust resistance in selections from two Israeli collections of Avena sterilis. Can J Genet Cytol 6:232–236

    Google Scholar 

  • McKenzie RIH, Martens JW, Rajhathy T (1970) Inheritance of oat stem rust resistance in a Tunisian strain of Avena sterilis. Can J Genet Cytol 12:501–505

    Google Scholar 

  • McKenzie RIH, Martens JW, Brown PD, Harder DE, Nielsen J, Boughton GR (1981) Registration of Fidler oats. Crop Sci 21:623

    Google Scholar 

  • McKenzie RIH, Brown PD, Martens JW, Harder DE, Nielsen J, Gill CC, Boughton GR (1984) Registration of Dumont oats. Crop Sci 24:207

    Google Scholar 

  • McMullen MS (2005) Registration of ‘HiFi’ oat. Crop Sci 45:1664

    Google Scholar 

  • McMullen MS, Patterson FL (1992) Oat cultivar development in the U.S.A. and Canada. In: Sorrells ME, Marshall HG (eds) Oat science and technology. Agronomy Monograph No. 33. ASA, CSSA, SSSA, Madison, WI, USA, pp 573–612

    Google Scholar 

  • McMullen MS, Phillips RL, Stuthman DD (1982) Meiotic irregularities in Avena sativa L./A. sterilis L. hybrids and breeding implications. Crop Sci 22:890–897

    Google Scholar 

  • Milach SCK, Rines HW, Phillips RL, Stuthman DD, Morikawa T (1998) Inheritance of a new dwarfing gene in oat. Crop Sci 38:356–360

    Google Scholar 

  • Miller SS, Wood PJ, Pietrzak LN, Fulcher RG (1993) Mixed linkage β-glucan, protein content and kernel weigh in Avena species. Cereal Chem 70:231–233

    CAS  Google Scholar 

  • Mitrofanov AS, Mitrofanova KS (1972) Oat. Kolos, Moscow, USSR

    Google Scholar 

  • Mordvinkina AI (1936) Oat – Avena. Cultivated flora of the USSR. In: Cereals, vol 2. Rye, barley, oat. State Agriculture, Moscow–Leningrad, pp 333–438

    Google Scholar 

  • Mordvinkina AI (1969a) Resistance species, ecologo-geographical groups and varieties to main diseases. Works Appl Bot Genet Plant Breed 39(3):233–242

    Google Scholar 

  • Mordvinkina AI (1969b) Variety resources of oat. Works Appl Bot Genet Plant Breed 41(1):87–93

    Google Scholar 

  • Morikawa T (1989) Genetic analysis on dwarfness of wild oats. Jpn J Genet 64:363–371

    Google Scholar 

  • Morikawa T (1991) Isozyme and chromosome polymorphisms of the genus Avena and its geographic distribution in Morocco. Wheat Inform Serv 72:104–105

    Google Scholar 

  • Morikawa T (1992) Isozyme and chromosome variations of the Avena species in the Canary Islands and Morocco. In: Proceedings of the 4th international oat conference, vol 3. 19–23 Oct 1992, Adelaide, SA, Australia, pp 138–140

    Google Scholar 

  • Morikawa T (1995) Transfer of mildew resistance from the wild oat Avena prostrata into the cultivated oat. Bull Univ Osaka Prefect Ser B Agric Life Sci 47:1–10

    Google Scholar 

  • Morikawa T, Leggett JM (1990) Isozyme polymorphism in natural populations of Avena canariensis from the Canary Islands. Heredity 64:403–411

    CAS  Google Scholar 

  • Morikawa T, Leggett JM (2005) Isozyme polymorphism and genetic differentiation in natural populations of a new tetraploid species Avena agadiriana, from Morocco. Genet Resour Crop Evol 52:363–370

    CAS  Google Scholar 

  • Morikawa T, Sumiya M, Kuriyama S (2007) Transfer of new dwarfing genes from the weed species Avena fatua into cultivated oat A. byzantine. Plant Breed 126:30–35

    CAS  Google Scholar 

  • Moser HS, Frey KJ (1994) Direct and correlated responses to three S1-recurrent selection strategies for increasing protein yield in oat. Euphytica 78:123–132

    Google Scholar 

  • Murphy JP, Phillips TD (1993) Isozyme variation in cultivated oat and its progenitor species, Avena sterilis L. Crop Sci 33:1366–1372

    CAS  Google Scholar 

  • Murphy HC, Sadanaga K, Zilinsky FJ, Terrell E, Smith RT (1968) Avena magna: an important new tetraploid species in oats. Science 159:103–104

    Google Scholar 

  • Murray BE, Craig JL, Rajhathy T (1970) A protein electrophoretic study of three amphiploids and eight species in Avena. Can J Genet Cytol 12:651–655

    Google Scholar 

  • Musaev SG (1969) About new species of oat for flora of the USSR. Doklady AN Azerbaijan SSR 25(10):35–40

    Google Scholar 

  • Musaev SG, Isaev YaM (1971) Brunsa’s oat – endemic species of Azerbaijan Flora. Doklady AN Azerbaijan SSR 27(5):64–65

    Google Scholar 

  • Musaev SG, Nuriev SG, Sadygov IA (1976) New species of gramineous grasses in Flora of Nakhichevan SSR. Izv AN Azerbaijan SSR Biol Sci 5:12–15

    Google Scholar 

  • Nevski S (1934) Conspectus specierum generis Avenae. Schedae ad Herb. Flora Asie med Fusc 21–23

    Google Scholar 

  • Nielsen J (1978) Frequency and geographical distribution of resistance to Ustilago in six wild species of Avena. Can J Plant Sci 58:1099–1101

    Google Scholar 

  • Nielsen J (1993) Host specificity of Ustilago avenae and U. hordei on eight species of Avena. Can J Plant Pathol 15:14–16

    Google Scholar 

  • Nikolaeva AG (1922) Using of cytological method in breeding and genetics. Nauchnye Izv 4:183–188

    Google Scholar 

  • Nikoloudakis N, Katsiotis A (2008) The origin of the C-genome and cytoplasm of Avena polyploids. Theor Appl Genet 117:273–281

    PubMed  CAS  Google Scholar 

  • Nikoloudakis N, Skaracis G, Katsiotis A (2008) Evolutionary insights inferred by molecular analysis of the ITS1-5.8S-ITS2 and IGS Avena sp. sequences. Mol Phylogenet Evol 46:102–115

    PubMed  CAS  Google Scholar 

  • Nilsson B, Aberg E, Avholm K (1973) Flyghavretyper i Sverige. Lantbrukshogskolans Meddelanden. No. 187

    Google Scholar 

  • Nishiyama I (1929) The genetic and cytology of certain cereals. I. Morphological and cytological studies in triploid, pentaploid and hexaploid Avena hybrids. Jpn J Genet 5:1–48

    Google Scholar 

  • Nishiyama I, Yabuno T (1975) Meiotic chromosome pairing in two interspecific hybrids and a criticism of the evolutionary relationship of diploid Avena. Jpn J Genet 50:443–451

    Google Scholar 

  • Nocelli E, Giovannini T, Bioni M, Alicchio R (1999) RFLP- and RAPD-based genetic relationships of seven diploid species of Avena with the A genome. Genome 42:950–959

    PubMed  CAS  Google Scholar 

  • O’Donoughue LS, Kianian SF, Rayapati PJ, Penner GA, Sorrells ME, Tanksley SD, Phillips RL, Rines HW, Lee M, Fedak G, Molnar SJ, Hoffman D, Salas CA, Wu B, Autrique E, Van Deynze A (1995) A molecular linkage map of cultivated oat. Genome 38:368–380

    PubMed  Google Scholar 

  • Oates JD, Burdon JJ, Brouwer JB (1983) Interactions between Avena and Puccinia species. II. The pathogens: Puccinia coronata Cda and P. graminis Pers. f. sp. avenae Eriks. & Henn. J Appl Ecol 20:585–596

    Google Scholar 

  • O'Donoughue LS, Wang Z, Roder M, Kneen B, Leggett JM, Sorrells ME, Tanksley SD (1992) An RFLP-based linkage map of oats based on a cross between two diploid taxa (Avena atlantica × A. hirtula). Genome 35:765–771

    Google Scholar 

  • Ohm HW, Patterson FL (1973) A six-parent diallele cross analysis for protein in A. sterilis. Crop Sci 13:27–30

    CAS  Google Scholar 

  • Ohm HW, Shaner G (1992) Breeding oat for resistance to diseases. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Agronomy Monographs No. 33. ASA, CSSA, SSSA, Madison, WI, USA, pp 657–698

    Google Scholar 

  • Paterson JG, Boyd WJR, Goodchild NA (1976) Vernalization and photoperiod requirement of naturalized Avena fatua and Avena barbata Pott ex Link in Western Australia. J Appl Ecol 13:265–272

    Google Scholar 

  • Peng YY, Wei YM, Baum BR, Chen GY, Dai SF, Zheng YL (2009) Phylogenetic investigation of Avena genus (Poaceae: Aveneae) and the maternal donor of Avena polyploids. BMC Evol Biol

    Google Scholar 

  • Perez de la Vega M (1997) Plant genetic adaptedness to climatic and edaphic environment. In: Tigerstedt PMA (ed) Adaptation in plant breeding. Kluwer, Amsterdam, Netherland, pp 27–38

    Google Scholar 

  • Perez de la Vega M, Saenz de Miera LE, Garcia P (1998) Collecting wild germplasm in Spain. In: Report of a working group on Avena. 5th Meeting, 7–9 May 1998, Vilnius, Lithuania. ECP/RG, IPGRI, Rome, Italy, pp 65–69

    Google Scholar 

  • Peterson DM, Brinegar AC (1986) Oat storage proteins. In: Webster FH (ed) Oats: chemistry and technology. American Association for Cereal Chemists, St. Paul, MN, USA, pp 153–204

    Google Scholar 

  • Phillips TD, Murphy JP, Goodman MM (1993) Isozyme variation in germplasm accessions of the wild oat Avena sterilis L. Theor Appl Genet 86:54–64

    CAS  Google Scholar 

  • Pier D (1964) Evaluation and classification of Avena ssp. collected from naturalized populations in Texas. Diss Abstr 64-7836

    Google Scholar 

  • Pohler W, Hoppe HD (1991) Homeology between the chromosomes of Avena macrostachya and the Avena C genome. Plant Breed 106:250–253

    Google Scholar 

  • Popovic AO (1960) Neke osobine hibrida dodboijnih ukostanjem kulturnog i divljeg ovsa. Archiv poljopr Nauke 13:42

    Google Scholar 

  • Popovic AO (1980) Divlji ovas kao nosilac gena pri nterspecies hibridiza. Fragm Herbol Jugosl 9(2):37–45

    Google Scholar 

  • Portyanko VA, Hoffman DL, Lee M, Holland JB (2001) A linkage map of hexaploid oat based on grass anchor DNA clones and its relationship to other oat maps. Genome 44:249–265

    PubMed  CAS  Google Scholar 

  • Pott JF (1799) Schrad Journ II:315

    Google Scholar 

  • Qualset CO, Peterson ML (1978) Polymorphism for vernalization requirement in a winter oat cultivar. Crop Sci 18:311–315

    Google Scholar 

  • Rajhathy T (1961) Chromosomal differentiation and speciation in diploid Avena. Can J Genet Cytol 3:372–377

    Google Scholar 

  • Rajhathy T (1963) A standard kariotype for Avena sativa. Can J Genet Cytol 5:127–132

    Google Scholar 

  • Rajhathy T (1966) Evidence and a hypothesis for the origin of the C genome of hexaploid Avena. Can J Genet Cytol 8:774–779

    Google Scholar 

  • Rajhathy T (1971a) The allopolyploid model in Avena. In: Proceedings of 3rd Stadler symposium, pp 71–87

    Google Scholar 

  • Rajhathy T (1971b) Chromosome polymorphism in Avena ventricosa. Chromosoma 35:206–216

    Google Scholar 

  • Rajhathy T, Baum BR (1972) Avena damascena: a new diploid oat species. Can J Genet Cytol 14:645–654

    Google Scholar 

  • Rajhathy T, Dyck PL (1963) Chromosomal differentiation and speciation in diploid Avena: II. The karyotype of A. pilosa. Can J Genet Cytol 5:175–179

    Google Scholar 

  • Rajhathy T, Morrison JW (1959) Chromosome morphology in the genus Avena. Can J Bot 37:331–337

    Google Scholar 

  • Rajhathy T, Thomas H (1967) Chromosomal differentiation and speciation in diploid Avena: III. Mediterranean wild populations. Can J Genet Cytol 9:52–68

    Google Scholar 

  • Rajhathy T, Thomas H (1974) Cytogenetics of oats (Avena L.). Miscellaneous Publication of the Genetics Society of Canada, No. 2, Genetics Society Canada, Ottawa

    Google Scholar 

  • Rajhathy T, Zillinsky FJ, Hayes JD (1964) Report on Canada–Wales expedition. Canadian Department of Agriculture, Ottawa

    Google Scholar 

  • Rajhathy T, Zillinsky FJ, Hayes JD (1966) A collection of wild oat Mediterranean region. Canadian Department of Agriculture, Ottawa

    Google Scholar 

  • Razumov VI (1961) Environment and plant development. Leningrad-Moscow, Selkhozizdat

    Google Scholar 

  • Reich JM, Brinkman MA (1984) Inheritance of groat protein percentage in Avena sativa × A. fatua L. crosses. Euphytica 33:907–913

    Google Scholar 

  • Rezai A (1978) Variation for some agronomic traits in the world collection of wild oats (Avena sterilis L.). Diss Abstr Int 38.11.5129B

    Google Scholar 

  • Rezai A, Frey KJ (1988) Variation in relation to geographical distribution of wild oats – seed traits. Euphytica 39:113–118

    Google Scholar 

  • Rezai A, Frey KJ (1989a) Cytoplasmic effect on groat protein content in interspecific control in interspecific matings of Avena sativa L. and A. sterilis L. J Iowa Acad Sci 96:104–107

    Google Scholar 

  • Rezai A, Frey KJ (1989b) Variation for physiological and morphological traits in relation to geographical distribution of wild oats. SABRAO J 21:1–9

    Google Scholar 

  • Rezai A, Frey KJ (1990) Multivariate analysis of variation among wild oat accessions – seed traits. Euphytica 49:111–119

    Google Scholar 

  • Rines HW, Halstead RP (1988) Agronomic evaluation of oat cultivars with substituted Avena fatua and A. sterilis cytoplasm. Crop Sci 28:805–809

    Google Scholar 

  • Rines HW, Stuthman DD, Briggle LW, Youngs VL, Jedlinski H, Smith DH, Webster JA, Rothman PG (1980) Collection and evaluation of Avena fatua for use in oat improvement. Crop Sci 20:63–68

    CAS  Google Scholar 

  • Rines HW, Gengenbach BG, Boylan KL, Storey KK (1983) Comparison of oat cytoplasms by mitochondrial DNA analysis. Agron Abstr Am Soc Agron 78:253–268

    Google Scholar 

  • Rines HW, Gengenbach BG, Boylan KL, Storey KK (1988) Mitochondrial DNA diversity in oat cultivars and species. Crop Sci 28:171–176

    Google Scholar 

  • Rines HW, Molnar SJ, Tinker NA, Phillips RL (2006) Oat. In: Kole C (ed) Genome mapping and molecular breeding in plants, vol 1, cereals and millets. Springer, New York, pp 211–242

    Google Scholar 

  • Rines HW, Porter HL, Carson ML, Ochocki GE (2007) Introgression of crown rust resistance from diploid oat Avena strigosa into hexaploid cultivated oat A. sativa by two methods: direct crosses and through an initial 2x+4x synthetic hybrid. Euphytica 158:67–79

    Google Scholar 

  • Rines HW, Porter HL, Carson ML (2008) Suppressors of oat crown rust resistance in interspecific oat crosses. In: 8th International oat conference, 27 June–2 July 2008, Minneapolis, MN, Poster V-7. http://wheat.pw.usda.gov/GG2/Avena/event/IOC2008/IOCprogram.html

  • Robertson LD, Frey KJ (1984) Cytoplasmic effects on plant traits in interspecific matings of Avena. Crop Sci 24:200–204

    Google Scholar 

  • Roderick HW, Jones ERL, Sebesta J (2000) Resistance to oat powdery mildew in Britain and Europe: a review. Ann Appl Biol 136(8):5–91

    Google Scholar 

  • Rodionov AV, Tyupa NB, Kim EC, Machs EM, Loskutov IG (2005) Genomic structure of the autotetraploid oat species Avena macrostachya inferred from comparative analysis of the ITS1 and ITS2 sequences: on the oat karyotype evolution during the early stages of the Avena species divergence. Russ J Genet 41:518–528

    CAS  Google Scholar 

  • Rodionova NA, Soldatov VN, Merezhko VE, Yarosh NP, Kobylyansky VD (1994) Cultivated flora: oat, vol 2, part 3. Kolos, Moscow

    Google Scholar 

  • Romero Zarco C (1984) Numeros cromosomicos para la flora Espanoles. 300–364. Numeros 337–341. Lagascalia 12:292–294

    Google Scholar 

  • Romero Zarco C (1990) Las avenas del grupo barbata en la Peninsula Iberica y Baleares. Lagascalia 16:243–268

    Google Scholar 

  • Romero Zarco C (1994) Las avenas del grupo “sterilis” en la Peninsula Iberica y regions adyacentes del SW de Europa y NW de Africa. Lagascalia 17:277–309

    Google Scholar 

  • Romero Zarco C (1996) Sinopsis del genero Avena L. (Poaceae, Avenae) en Espana peninsular y Baleares. Lagascalia 18:171–198

    Google Scholar 

  • Rooney WL, Rines HW, Phillps RL (1994) Identification of RFLP markers linked to crown rust resistance genes Pc 91 and Pc 92 in oat. Crop Sci 34:940–944

    Google Scholar 

  • Roshevitz RYu (1934) Genus 132. Avena L. Flora of the USSR, vol 2. Publications of Academic Sciences, USSR, Leningrad, pp 259–270

    Google Scholar 

  • Roshevitz RYu (1937) Cereals. Nauka, Moscow- Leningrad

    Google Scholar 

  • Roshevitz RYu (1951) Flora of Kirgizskaya SSR. Nauka, Frunze, Kirgizskaya SSR

    Google Scholar 

  • Rothman PG (1984) Registration of four stem rust and crown rust resistant oat germplasm lines. Crop Sci 24:12–17

    Google Scholar 

  • Sackville Hamilton N, Chorlton KH (1997) Regeneration of accessions in seed collections: a dicision guide; IPGRI/FAO Handbooks for genebanks 5. IPGRI, Rome, Italy

    Google Scholar 

  • Sadanaga K, Zillinisky FJ, Murphy HC, Smith RT (1968) Chromosome association in triploid and tetraploid and pentaploid of Avena magna (2n=28). Crop Sci 8:594–597

    Google Scholar 

  • Sadasivaiah RS, Rajhathy T (1968) Genome relationships in tetraploid Avena. Can J Genet Cytol 10:655–669

    Google Scholar 

  • Saidi S (1998) Summary of the Moroccan oat germplasm evaluation. In: Report of a working group on Avena, 5th Meeting, 7–9 May 1998. Vilnius, Lithuania, ECP/RG, IPGRI, Rome, Italy, pp 32–33

    Google Scholar 

  • Saidi N, Ladizinsky G (2005) Distribution and ecology of the wild tetraploid oat species Avena magna and A. murphyi in Morocco. In: Report of a cereals network, 1st Meeting. 3–5 July 2003, Yerevan, Armenia. ECP/GR, IPGRI, Rome, Italy, pp 70–73

    Google Scholar 

  • Sampson DR (1954) On the origin of cultivated oats. Bot Mus Leaflets Harvard Univ 16:265–303

    Google Scholar 

  • Sampson DR, Burrows VD (1972) Influence of photoperiod, short-day vernalization, and cold vernalization on days to heading in Avena species and cultivars. Can J Plant Sci 52:471–482

    Google Scholar 

  • Sanchez de la Hoz P, Forminaya A (1989) Studies of isozymes in oat species. Theor Appl Genet 77:735–741

    Google Scholar 

  • Schipper H, Frey KJ (1991) Observed gains from three recurrent selection regimes for increased groat-oil content of oat. Crop Sci 31:1505–1510

    Google Scholar 

  • Schreber JCD von (1771) Inter Avena sativam frequens occurit, neglecta agricolisque ignota. Spicilegium Florae Lipsicae. Leipzig

    Google Scholar 

  • Schuler B (1978) Identification of wild oats and population studies (Avena sterilis L.) in wheat in Morocco. In: Proceedings of the symposium on plant protection, 7–18 Aug 1978, pp 15

    Google Scholar 

  • Scurrah M, Barr AR, Tasker SD (1992) Breeding for resistance and tolerance to oat stem nematode (Ditylenchus dipsaci) in South Australia. In: Proceedings of 4th international oat conference, vol 3, 19–23 Oct 1992, Adelaide, SA, Australia, pp 62–65

    Google Scholar 

  • Sebesta J, Kuhn F (1990) Avena fatua L. subsp. fatua v. glabrata Peterm. subv. pseudobasifixa Thele. as a source of crown rust resistance genes. Euphytica 50:51–55

    Google Scholar 

  • Sebesta J, Zukova AE, Kummer M (1987) Dalsi zdroje specificke rezistence ovsa k Puccinia coronata var. avenae. Sbornik UVTIZ Genetika a Slechteni 23:117–124

    Google Scholar 

  • Sebesta J, Roderick HW, Chong J, Harder DE (1993) The oat line Pc54 as a source of resistance to crown rust, stem rust and powdery mildew in Europe. Euphytica 71:91–97

    Google Scholar 

  • Sebesta J, Zwatz B, Roderick HW, Harder DE, Stojanovic S, Corazza L (1999) Oat fungal diseases in Europe and their genetic control. Pflanzenschutzberichte 58:152

    Google Scholar 

  • Sebesta J, Roderick HW, Stojanovic S, Zwatz B, Harder DE, Corazza L (2000) Genetic basis of oat resistance to fungal diseases. Plant Prot Sci 36:23–38

    Google Scholar 

  • Sebesta J, Zwartz B, Roderick HW, Corazza L, Starzyk MH, Reitan L, Loskutov IG (2001) Incidence of Pyrenophora avenae Ito et Kurib. in Europe between 1994-1998 and the varietal reaction of oats to it. Plant Prot Sci 37:91–95

    Google Scholar 

  • Sharma DC, Forsberg RA (1977) Spontaneous and induced interspecific gene transfer for crown rust resistance in Avena. Crop Sci 17:855–860

    Google Scholar 

  • Sheidai M, Koobaz P, Termeh F, Zehzad B (2002) Phenetic studies in Avena species and populations of Iran. J Sci Islam Repub Iran 13:19–28

    Google Scholar 

  • Shelukhina OYu (2008) Chromosomal and molecular marked of species genera Avena L. PhD Dissertation Abstract, Vavilov Instiute of General Genetics, Moscow

    Google Scholar 

  • Shelukhina OYu, Badaeva ED, Loskutov IG, Pukhal’sky VA (2007) A comparative cytogenetic study of the tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. Russ J Genet 43:613–626

    CAS  Google Scholar 

  • Shelukhina OYu, Badaeva ED, Brezhneva TA, Loskutov IG, Pukhalsky VA (2008a) Comparative analysis of diploid species of Avena L. using cytogenetic and biochemical markers: Avena canariensis Baum et Fedak and A. longiglumis Dur. Russ J Genet 44:694–701

    CAS  Google Scholar 

  • Shelukhina OYu, Badaeva ED, Brezhneva TA, Loskutov IG, Pukhalsky VA (2008b) Comparative analysis of diploid species of Avena L. using cytogenetic and biochemical markers: Avena pilosa M. B. and A. clauda Dur. Russ J Genet 44:1087–1091

    CAS  Google Scholar 

  • Shelukhina O Yu, Gorunova SV, Loskutov IG, Pukhalskiy VA, Badaeva ED (2009) Comparative investigation of tetraploid AB-genome Avena species using cytogenetic (C-banding and FISH) and RAPD analyses. Plant Syst Evol (in press)

    Google Scholar 

  • Shepeleva EM (1939) Karyological research of cultivated and wild species of oat. Doklady AN SSSR 25(3):215–218

    Google Scholar 

  • Simmonds NW (1993) Introgression and incorporation, strategies for the use of crop genetic resources. Biol Rev 68:539–562

    Google Scholar 

  • Simmonds NW (1995) The relation between yield and protein in cereal grain. J Sci Food Agric 67:309–315

    CAS  Google Scholar 

  • Simons MD (1965) Seedling resistance to Puccinia coronata avenae race 264 found in Avena sterilis. Phytopathology 55:700–701

    Google Scholar 

  • Simons MD (1979) Influence of genes for resistance to Puccinia coronata from Avena sterilis on yield and rust reaction of cultivated oats. Phytopathology 69:450–452

    Google Scholar 

  • Simons MD (1985) Transfer of field resistance to Puccinia coronata from Avena sterilis to cultivated oats by backcrossing. Phytopathology 75:314–317

    Google Scholar 

  • Simons MD, Briggle LW (1984) Screening for tolerance to Puccinia coronata in progenies of visually susceptible strains of Avena fatua. (Abstract). Phytopathology 74:1271

    Google Scholar 

  • Simons MD, Sadanaga K, Murphy HC (1959) Inheritance of resistance to strains of diploid and tetraploid species of oats to races of the crown rust fungus. Phytopathology 49:257–259

    Google Scholar 

  • Simons MD, Martens JM, McKenzie RIH, Nishiyama I, Sadanaga K, Sebesta J, Thomas H (1978) Oats: a standardized system of nomenclature for genes and chromosomes and catalogue of genes governing characters. USDA Agricultural Handbook No 509, USDA, Washington, DC

    Google Scholar 

  • Simons MD, Robertson LD, Frey KJ (1985) Association of host cytoplasm with reaction to Puccinia coronata in progeny of crosses between wild and cultivated oats. Plant Dis 69:969–971

    Google Scholar 

  • Simons MD, Michel LJ, Frey KJ (1987) Registration of three oat germplasm lines resistant to the crown rust fungus. Crop Sci 27:369

    Google Scholar 

  • Singh RS, Jain SK, Qualset CO (1973) Protein electrophoresis as an aid to oat variety identification. Euphytica 22:98–105

    CAS  Google Scholar 

  • Singh RP, Ma H, Aytrique E (1996) Suppressors for leaf rust and stripe rust in interspecific crosses. In: Kema GHJ, Niks RE, Daamen RA (eds) Proceedings of the 9th European and Mediterranean cereals rusts conference, 2–6 Sept 1996, Lunteren, The Netherlands. European and Mediterranean Cereals Rusts Foundation, Wageningen, The Netherlands, pp 176–178

    Google Scholar 

  • Soldatov VN, Merezhko VE, Loskutov IG (1990) Evaluation of cultivated and wild oat species for tolerant to BYDV. Oat Newsl 41:70

    Google Scholar 

  • Spilde AL, Albrechtsen RS, Rumbaugh MD (1974) Relationship of protein percent with other phenotypic characters in interspecific oat crosses. Crop Sci 14:767–769

    Google Scholar 

  • Spooner D, van Treuren R, de Vicente MC (2005) Molecular markers for genebank management. IPGRI Technical Bulletin No 10. IPGRI, Rome, Italy

    Google Scholar 

  • Sraon HS, Reeves DL, Rumbaugh MD (1975) Quantative gene action for protein content in oats. Crop Sci 15:668–670

    Google Scholar 

  • Stanton TR (1955) Oat identification and classification. USDA Technical Bulletin No:1100

    Google Scholar 

  • Stebbins GL (1971) Chromosomal evolution in higher plants. Edward Arnold, London, UK

    Google Scholar 

  • Steidl RP, Webster JA, Smith DH (1979) Cereal leaf beetle plant resistance: antibiosis in an Avena sterilis introduction. Environ Entomol 8:448–450

    Google Scholar 

  • Stevens JB, Brinkman MA (1986) Performance of Avena sativa L./Avena fatua L. backcross lines. Euphytica 35:785–792

    Google Scholar 

  • Suneson CA (1948) Wild oat selection resistant to rust. J Am Soc Agron 40:105

    Google Scholar 

  • Suneson CA (1967a) Registration of Rapida oats. Crop Sci 7:168

    Google Scholar 

  • Suneson CA (1967b) Registration of Sierra oats. Crop Sci 7:168

    Google Scholar 

  • Suneson CA (1969) Registration of Montezuma oats. Crop Sci 9:527

    Google Scholar 

  • Surface FM (1916) Studies on oat breeding. III. On the inheritance of certain glume characters in the cross Avena fatua × A. sativa var. Kherson. Genetics 1:252–286

    PubMed  CAS  Google Scholar 

  • Takeda K, Frey KJ (1976) Contributions of vegetative growth-rate and harvest index to the grain yield of progenies from Avena sativa by Avena sterilis crosses. Crop Sci 16:817–821

    Google Scholar 

  • Takeda K, Frey KJ (1985) Increasing grain yield of oats by independent culling for harvest index and vegetative growth index or unit straw weight. Euphytica 34:33–41

    Google Scholar 

  • Takeda K, Frey KJ (1987) Improving grain yield in backcross populations from Avena sativa × A. sterilis matings by using independent culling for harvest index and vegetative growth index or unit straw weight. Theor Appl Genet 74:659–665

    Google Scholar 

  • Takeda K, Bailey TB, Frey KJ (1985) Changes in mean, variance, and covariation among agronomic traits in successive backcross generations of interspecific matings (Avena sativa L. × A. sterilis L.) of oats. Can J Genet Cytol 27:426–432

    Google Scholar 

  • Thellung A (1911) Uber die Abstammung, den systematischen Wert und die Kulturgeschichte der Saathafer-Arten (Avena sativa Cosson), Beitrag zu einer naturlichen Systematic von Avena sect Euavena. Veirteljahrsschr d Naturf Gesellsch Zurich 54:311–345

    Google Scholar 

  • Thellung A (1919) Neuere Wege und Ziele der botanischen Systematik, erlautert am Beispiele unserer Getreidearten. Naturwiss Wochenschr 17:32–33

    Google Scholar 

  • Thellung A (1928) Die Ubergangsformen von Wildhafertypus (Avena agrestes) zum Saathafertypus (Avena sativae). Extrait du recueil des travaux botaniques Neerlandais. V 25a:416–444

    Google Scholar 

  • Thomas H (1968) The addition of single chromosome of Avena hirtula to the cultivated hexaploid oat A. sativa. Can J Genet Cytol 10:551–563

    Google Scholar 

  • Thomas H (1970) Chromosome relationships between the cultivated Avena sativa (6x) and A. ventricosa (2x). Can J Genet Cytol 12:36–43

    Google Scholar 

  • Thomas H (1988) New species of Avena. In: Proceedings of the 3rd international oat conference, 4–8 July 1988, Lund, Sweden, pp 18–23

    Google Scholar 

  • Thomas H (1992) Cytogenetics of Avena. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Agronomy Monographs No. 33. ASA, CSSA, SSSA, Madison, WI, USA, pp 473–507

    Google Scholar 

  • Thomas H (1995) 29 Oats. Avena spp. (Gramineae – Aveneae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants, 2nd edn. Longman, London, UK, pp 132–137

    Google Scholar 

  • Thomas H, Al-Ansari N (1988) Genotypic control of chromosome pairing in amphiploids involving the cultivated oat Avena sativa L. Euphytica 37:37–45

    Google Scholar 

  • Thomas H, Aung T (1978) The transfer of mildew resistance from the tetraploid wild oat Avena barbata into the cultivated oat. In: Interspecific hybridization in plant breeding. Proceedings of the 8th EUCARPIA congress. II. Interspecific gene transfer. Madrid, Spain, pp 109–112

    Google Scholar 

  • Thomas H, Griffiths N (1985) Oat cytogenetics. Alien chromosome substitution line. In: Annual Report of Welsh Plant Breeding Station: 1984, pp 102–103

    Google Scholar 

  • Thomas H, Jones ML (1965) Chromosomal differentiation in diploid species of Avena. Can J Genet Cytol 1:108–111

    Google Scholar 

  • Thomas H, Jones DIH (1968) Electrophoretic studies of proteins in Avena in relation to genome homology. Nature 220:825–826

    PubMed  CAS  Google Scholar 

  • Thomas H, Leggett JM (1974) Chromosome relationships between Avena sativa and the two diploid species A. canariensis and A. prostrata. Can J Genet Cytol 16:889–894

    Google Scholar 

  • Thomas H, Naqvi ZH (1991) Monosomic analysis of response to vernalization winter oat. Euphytica 57:151–155

    Google Scholar 

  • Thomas H, Griffiths N (1985) Oat cytogenetics. Alien chromosome substitution line. In: Annual Report of Welsh Plant Breeding Station: 1984, pp 102–103

    Google Scholar 

  • Thomas H, Thomas PT (1970) Cytology. In: Jubilee Report of the Welsh Plant Breeding Station 1919–1969, pp 45–46

    Google Scholar 

  • Thomas H, Leggett JM, Jones IT (1975) The addition of a pair of chromosomes of the wild oat Avena barbala (2N = 28) to the cultivated as oat A. sativa L. (2N = 42). Euphytica 24:717–724

    Google Scholar 

  • Thomas H, Haki JM, Arangzeb S (1980a) The introgression of characters of the wild oat Avena magna (2n = 4x = 28) into the cultivated oat A. sativa (2n = 6x = 42). Euphytica 29:391–399

    Google Scholar 

  • Thomas H, Powell W, Aung T (1980b) Interfering with regular meiotic behavior in Avena sativa as a method of incorporating the gene for mildew resistance from Avena barbata. Euphytica 29:635–640

    Google Scholar 

  • Thompson RK (1966) Mesa, new oat for southern Arizona. Prog Agric Arizona 18(3):8

    Google Scholar 

  • Thompson RK (1967) Registration of Mesa oats. Crop Sci 7:167

    Google Scholar 

  • Thro AM (1982) Feasibility of oats (Avena sativa L.) as an oilseed crop. Diss Abstr Int 43. 5. 1326B

    Google Scholar 

  • Thro AM, Frey KJ (1985) Inheritance of groat-oil content and high-oil selection in oats (Avena sativa L.). Euphytica 34:251–263

    Google Scholar 

  • Tinker NA, Kilian A, Wight CP, Heller-Katarzyna K, Wenzel P et al (2009) New DarT markers for oat provide enhanced map coverage and global germplasm characterization. BMC Genomics 10:39

    PubMed  Google Scholar 

  • Tournefort JP (1700) Méthode pour reconnaître les Plantes. Institutiones rei herbariae, editio altera, I

    Google Scholar 

  • Trabut L (1909) Contribution a l’Etude de l’Origine des Avoines cultivees Compt. Frend. Acad. Sci. Paris CXLIX:227–229

    Google Scholar 

  • Trabut L (1914) Origin of cultivated oats. J Hered 5:74–85

    Google Scholar 

  • Trofimovskaya AYa, Pasynkov VI, Rodionova NA, Soldatov VN (1976) Genetic potential of section true oat of genus Avena and it importance for breeding. Works Appl Bot Genet Plant Breed 58(2):83–109

    Google Scholar 

  • Udovenko GV (1977) Salt tolerance of cultivated plants. Kolos, Leningrad, USSR

    Google Scholar 

  • Valentine J (1987) Breeding cereals of high nutritional quality with special reference to oats and naked oats. Asp Appl Biol 15:541–548

    Google Scholar 

  • Valentine J, Bakewell EL, Welch RW (1994) Exploitation of the genetic potential of oats for use in feed and human nutrition. HGCA Project Report No 88E (2nd Report), pp 1–21

    Google Scholar 

  • Van Deynze AE, Nelson JC, O’Donoughue LS, Ahn SN, Siripoonwiwat W, Harrington SE, Yglesias ES, Brada DP, McCouch SR, Sorrells ME (1995) Comparative mapping in grasses. Oat relationships. Mol Gen Genet 249:349–356

    PubMed  Google Scholar 

  • Vavilov NI (1926) The centres of origin of cultivated plants. Works Appl Bot Plant Breed 16:91–99

    Google Scholar 

  • Vavilov NI (1927) Geographical regularities in relation to the distribution of the genes of cultivated plants. Works Appl Bot Genet Plant Breed 17:411–428

    Google Scholar 

  • Vavilov NI (1951) The origin, variation, immunity and breeding of cultivated plants. Translated by Chester KS. Ronald Press, New York, NY, USA

    Google Scholar 

  • Vavilov NI (1957) World resources of cereals, grain leguminous crops and flax and their utilization in plant breeding. Agroecological survey of the principal field crops. AN USSR Moscow–Leningrad, USSR

    Google Scholar 

  • Vavilov NI (1962) About origin of cultivated rye. Selected works, vol 3. Nauka, Moscow–Leningrad, USSR, pp 446–467

    Google Scholar 

  • Vavilov NI (1964a) Study of plant immunity to infectious diseases. (As applied to plant breeding purposes). Selected works, vol 4. Nauka, Moscow- Leningrad, USSR, pp 314–399

    Google Scholar 

  • Vavilov NI (1964b) Resistant varieties breeding as a main method fighting to rust diseases. Selected works, vol 4. Nauka, Moscow–Leningrad, USSR, pp 414–429

    Google Scholar 

  • Vavilov NI (1964c) The lows of natural plant immunity to infectious diseases. (Keys to finding immune forms). Selected works, vol 4. Nauka, Moscow–Leningrad, USSR, pp 430–488

    Google Scholar 

  • Vavilov NI (1965a) Centers of origin of cultivated plants. Selected works, vol 5. Nauka, Moscow–Leningrad, USSR, pp 9–107

    Google Scholar 

  • Vavilov NI (1965b) Universal centers of a wealth of types (genes) of cultivated plants. Selected works, vol 5. Nauka, Moscow–Leningrad, USSR, pp 108–119

    Google Scholar 

  • Vavilov NI (1965c) The Linnean species as a system. Selected works, vol 5. Nauka, Moscow–Leningrad, USSR, pp 233–252

    Google Scholar 

  • Vavilov NI (1992) Origin and geography of cultivated plants. Translated by Love D. Cambridge University Press, London, UK

    Google Scholar 

  • Vavilov NI (1997) Five continents. Translated by Love D. IPGRI/VIR, Italy, Rome

    Google Scholar 

  • Vavilov NI, Bukinich NI (1959) Agricultural Afghanistan. Selected works, vol 1. Nauka, Moscow–Leningrad, USSR, pp 45–360

    Google Scholar 

  • Steudel von EG (1855) Avena wiestii. Synopsis Plantarum Glumacearum. Stuttgartiae. I. 231

    Google Scholar 

  • Wahl I, Segal A (1986) Evolution of host-parasite balance in natural indigenous populations of wild barley and wild oats in Israel. In: Barigozzi C (ed) The origin and domestication of cultivated plants symposium, 25–27 Nov 1985, Rome, Italy, pp 129–141

    Google Scholar 

  • Weibull J (1986) Screening for resistance against Rhopalosiphum padi (L.). I. Avena species and breeding lines. Euphytica 35:993–999

    Google Scholar 

  • Weibull J (1988a) Resistance in the wild crop relatives Avena macrostachya and Hordeum bogdani to the aphid Rhopalosiphum padi. Entomol Exp Appl 48:225–232

    Google Scholar 

  • Weibull J (1988b) Free amino acids in the phloem sap from oats and barley resistant to Rhopalosiphum padi. Phytochemistry 27:2069–2072

    CAS  Google Scholar 

  • Weibull J, Hanson R (1986) Mojligheter till resistensforadling mot bladloss i strasad. Vaxtskyddsrapporter Jordbruk 39:39–44

    Google Scholar 

  • Welch RW, Leggett JM (1997) Nitrogen content, oil content and oil composition of oat cultivars (A. sativa) and wild Avena species in relation to nitrogen fertility, yield and partitioning of assimilates. J Cereal Sci 26:105–120

    CAS  Google Scholar 

  • Welch RW, Leggett JM, Lloyd JD (1991) Variation in the kernel (13)(14)-beta-D-glucan content of oat cultivars and wild Avena species and its relationship to other characteristics. J Cereal Sci 13:173–178

    CAS  Google Scholar 

  • Welch RW, Brown JCW, Leggett JM (2000) Interspecific and intraspecific variation in grain and groat characteristics of wild oat (Avena) species: very high groat (1-3), (1-4)-b-D-glucan in an Avena atlantica genotype. J Cereal Sci 31:273–279

    CAS  Google Scholar 

  • Welsh A (1945) Pythium root necrosis of oats. Iowa State Coll J Sci 19:361–399

    Google Scholar 

  • Wesenberg DM, Briggle LW, Smith DH (1992) Germplasm collection, preservation and utilization. In: Marshall HG, Sorrells ME (eds) Oat science and technology. Agronomy Monographs No. 33. ASA, CSSA, SSSA, Madison, WI, USA, pp 793–820

    Google Scholar 

  • Whalley RDB, Burfitt JM (1972) Ecotypic variation in Avena fatua L., A. sterilis L. (A. ludoviciana), and A. barbata Pott. in New South Wales and southern Queensland. Aust J Agric Res 23:799–810

    Google Scholar 

  • Williams W, Verma UN (1956) Investigation on resistance to disease among species of the genus Avena. 2. Resistance to physiologic races of Puccinia coronata avenae and P. graminis avenae. Ann Appl Biol 44:56–71

    Google Scholar 

  • Wilson WA, McMullen MS (1996b) Identification of RAPD markers linked to Pc91. In: Proceedings of the 5th international oat conference, vol 2. 30 July–6 Aug 1996, Saskatoon, Sask., Canada, pp 310–311

    Google Scholar 

  • Wilson WA, McMullen MS (1997a) Recombination between a crown rust resistance locus and an interchange breakpoint in hexaploid oat. Crop Sci 37:1694–1698

    Google Scholar 

  • Wilson WA, McMullen MS (1997b) Dosage dependent genetic suppression of oat crown rust resistance gene Pc 62. Crop Sci 37:1699–1705

    CAS  Google Scholar 

  • Wong LSL, McKenzie RIH, Harder DE, Martens JW (1983) The inheritance of resistance to Puccinia coronata and of floret characters in Avena sterilis. Can J Genet Cytol 25:329–335

    Google Scholar 

  • Yamaguchi H (1976) Taxonomy and distribution of weed oats in Japan and Korea. In: Proceedings of the 5th Asian-Pacific weed sci society conference, 1975, Tokyo, Japan, pp 34–37

    Google Scholar 

  • Yamaguchi H (1977) Ecotypic variations of wild common oats (Avena fatua L.) in East Asia. In: Proceedings of the 6th Asian-Pacific weed science society conference, Indonesia, vol 1, pp 123–131

    Google Scholar 

  • Youngs VL, Peterson DM (1973) Protein distribution in the oat (Avena sterilis L.) kernel. Crop Sci 13:365–367

    CAS  Google Scholar 

  • Yu J, Herrmann M (2006) Inheritance and mapping of a powdery mildew resistance gene introgressed from Avena macrostachya in cultivated oat. Theor Appl Genet 113:429–437

    PubMed  CAS  Google Scholar 

  • Zade A (1918) Der Hafer. Eine Monographie auf wissenschaftlicher und praktischer Grundlage Jena 2–1:355

    Google Scholar 

  • Zadoo SN, Choubey RN, Gupta SK, Premachandran MN (1988) Chromosomal stability in the backcross progenies of pentaploid hybrids between Avena sativa L. and A. maroccana Gdgr. Plant Breed 100:316–319

    Google Scholar 

  • Zelenskaya YaG, Konarev AV, Loskutov IG, Gubareva NK, Strelchenko PP (2004) Characteristics of collection of cultivated oat landraces (Avena sativa L.) for avenins polymorphism. Agrarnaya Rossiya 6:50–58

    Google Scholar 

  • Zhou X, Jellen EN, Murphy JP (1999) Progenitor germplasm of domesticated hexaploid oat. Crop Sci 39:1208–1214

    Google Scholar 

  • Zillinsky FJ, Derick RA (1960) Crown rust resistant derivatives from crosses between autotetraploid Avena strigosa and A. sativa. Can J Plant Sci 40:366–370

    Google Scholar 

  • Zillinsky FJ, Murphy HC (1967) Wild oat species as source of disease resistance for improvement of cultivated oats. Plant Dis Rep 51:391–395

    Google Scholar 

  • Zillinsky FJ, Sadanaga K, Simons MD, Murphy HC (1959) Rust resistant derivatives from crosses between Avena abyssinica and Avena strigosa. Agron J 51:343–345

    Google Scholar 

  • Zwatz B, Sebesta J, Corazza L, Herrmann M, Krolikowski J (1994) Incidence of Septoria avenae Frank f. sp. avenae in Europe in 1990-1993 and the varietal reaction of oats to it. Pflanzenschutzb 54:129–135

    Google Scholar 

Download references

Acknowledgments

Igor G. Loskutov is grateful to Ekatherina D. Badaeva (Engelhardt Institute of Molecular Biology, Moscow, Russia), Alexander V. Rodionov (Komarov Botanical Institute, St. Petersburg, Russia), Irina N. Anisimova (Vavilov Institute of Plant industry, St. Petetrsburg, Russia), and Ronald L. Phillips (Department of Agronomy and Plant Genetics, Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, USA) for critical reading of thе manuscript and making valuable suggestions and wish to extend thanks to translator of VIR Mr. Sergei V. Shuvalov.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor G. Loskutov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loskutov, I.G., Rines, H.W. (2011). Avena. In: Kole, C. (eds) Wild Crop Relatives: Genomic and Breeding Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-14228-4_3

Download citation

Publish with us

Policies and ethics