Skip to main content

Systems of Linear Equations over \(\mathbb{F}_2\) and Problems Parameterized above Average

  • Conference paper
Algorithm Theory - SWAT 2010 (SWAT 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6139))

Included in the following conference series:

Abstract

In the problem Max Lin, we are given a system Az = b of m linear equations with n variables over \(\mathbb{F}_2\) in which each equation is assigned a positive weight and we wish to find an assignment of values to the variables that maximizes the excess, which is the total weight of satisfied equations minus the total weight of falsified equations. Using an algebraic approach, we obtain a lower bound for the maximum excess.

Max Lin Above Average (Max Lin AA) is a parameterized version of Max Lin introduced by Mahajan et al. (Proc. IWPEC’06 and J. Comput. Syst. Sci. 75, 2009). In Max Lin AA all weights are integral and we are to decide whether the maximum excess is at least k, where k is the parameter.

It is not hard to see that we may assume that no two equations in Az = b have the same left-hand side and n = rank A. Using our maximum excess results, we prove that, under these assumptions, Max Lin AA is fixed-parameter tractable for a wide special case: m ≤ 2p(n) for an arbitrary fixed function p(n) = o(n). This result generalizes earlier results by Crowston et al. (arXiv:0911.5384) and Gutin et al. (Proc. IWPEC’09). We also prove that Max Lin AA is polynomial-time solvable for every fixed k and, moreover, Max Lin AA is in the parameterized complexity class W[P].

Max r-Lin AA is a special case of Max Lin AA, where each equation has at most r variables. In Max Exact r-SAT AA we are given a multiset of m clauses on n variables such that each clause has r variables and asked whether there is a truth assignment to the n variables that satisfies at least (1 − 2− r)m + k2− r clauses. Using our maximum excess results, we prove that for each fixed r ≥ 2, Max r-Lin AA and Max Exact r-SAT AA can be solved in time 2O(k logk) + m O(1). This improves \(2^{O(k^2)}+m^{O(1)}\)-time algorithms for the two problems obtained by Gutin et al. (IWPEC 2009) and Alon et al. (SODA 2010), respectively.

It is easy to see that maximization of arbitrary pseudo-boolean functions, i.e., functions \(f:\ \{-1,+1\}^n\rightarrow \mathbb{R}\), represented by their Fourier expansions is equivalent to solving Max Lin. Using our main maximum excess result, we obtain a tight lower bound on the maxima of pseudo-boolean functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: Solving MAX-r-SAT above a tight lower bound. Tech. Report arXiv:0907.4573. A priliminary version was published in Proc. ACM-SIAM Symposium on Discrete Algorithms, SODA 2010, pp. 511–517 (2010), http://arxiv.org/abs/0907.4573

  2. Alon, N., Gutin, G., Krivelevich, M.: Algorithms with large domination ratio. J. Algorithms 50, 118–131 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Boros, E., Hammer, P.L.: Pseudo-boolean optimization. Discrete Appl. Math. 123, 155–225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Borwein, P.: Computational excursions in analysis and number theory. Springer, New York (2002)

    MATH  Google Scholar 

  5. Crowston, R., Gutin, G., Jones, M.: Note on Max Lin-2 above average. Tech. Report, arXiv:0911.5384, http://arxiv.org/abs/0911.5384

  6. Downey, R.G., Fellows, M.R.: Parameterized complexity. Springer, Heidelberg (1999)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  8. Gutin, G., Kim, E.J., Szeider, S., Yeo, A.: A probabilistic approach to problems parameterized above tight lower bound. In: Chen, J., Fomin, F.V. (eds.) Proc. IWPEC’09. LNCS, vol. 5917, pp. 234–245. Springer, Heidelberg (2009)

    Google Scholar 

  9. Jukna, S.: Extremal combinatorics: with applications in computer science. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  10. Håstad, J.: Some optimal inapproximability results. J. ACM 48(4), 798–859 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Håstad, J., Venkatesh, S.: On the advantage over a random assignment. Random Structures Algorithms 25(2), 117–149 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kleitman, D.J., Shearer, J.B., Sturtevant, D.: Intersection of k-element sets. Combinatorica 1, 381–384 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  13. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing MAX SNP problems above guaranteed values. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 38–49. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Mahajan, M., Raman, V., Sikdar, S.: Parameterizing above or below guaranteed values. J. Computer System Sciences 75(2), 137–153 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Niedermeier, R.: Invitation to fixed-parameter algorithms. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  16. O’Donnell, R.: Some topics in analysis of boolean functions. Technical report, ECCC Report TR08-055. Paper for an invited talk at STOC’08 (2008), http://www.eccc.uni-trier.de/eccc-reports/2008/TR08-055/

  17. de Wolf, R.: A Brief Introduction to fourier analysis on the boolean cube. Theory Of Computing Library Graduate Surveys 1, 1–20 (2008), http://theoryofcomputing.org

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Crowston, R., Gutin, G., Jones, M., Kim, E.J., Ruzsa, I.Z. (2010). Systems of Linear Equations over \(\mathbb{F}_2\) and Problems Parameterized above Average. In: Kaplan, H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13731-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13731-0_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13730-3

  • Online ISBN: 978-3-642-13731-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics