Skip to main content

Sustainable Approaches for Biological Control of Fusarium Wilt in Pigeon Pea (Cajanus cajan L. Millspaugh)

  • Chapter
  • First Online:
Plant Growth and Health Promoting Bacteria

Part of the book series: Microbiology Monographs ((MICROMONO,volume 18))

  • 3593 Accesses

Abstract

Cajanus cajan (Pigeon pea) is an important crop of Indian subcontinent and African countries, cultivated in the tropics and subtropics. Fusarium wilt is one of the major yield and growth-limiting factors of pigeon pea. Along with nematodes such as Meloidogyne incognita and Heterodera cajani, F. udum result in highly destructive wilt disease complex, which is a major constraint for the successful cultivation of pigeon pea. F. udum from the same or different geographical origin have shown that the fungus is highly variable in cultural characteristics and pathogenicity. Although development and use of resistant cultivars is effec tive, economical, and environmentally sound strategy for disease control, still variable responses with cultivation conditions had been a matter of concern. For an eco-friendly and sustainable management of fusarium wilt, biological control with the application of PGPR offers a potential nonchemical means for disease management. Several strains of Pseudomonas and Bacillus have been widely reported as effective biocontrol agents for pigeon pea wilt, though combination of several organisms have been proved more effective in field conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adu-Gyamfi JJ, Katayama K, Gayatri D, Rao TP, Oto O (1996) Improvement of fertilizer and nitrogen use efficiency in intercropping. In: Ito O, Johansen C, Adu-Gyamfi JJ, Katayama K, Rao JVDK, Rego TJ (eds) Dynamics of roots and nitrogen in cropping systems of the semi-arid tropics. Japan International Center for Agricultural Sciences (JIRCAS), JIRCAS International Agriculture Series No 3, Tsukuba, pp 493–506

    Google Scholar 

  • Alabouvette C, Schipper SB, Lemanceau P, Bakker PAHM (1998) Biological control of Fusarium wilts. Toward development of commercial products. In: Boland GJ, Kuykendall LD (eds) Plant-microbe interactions and biological control. Marcel Dekker, New York, pp 15–30

    Google Scholar 

  • Alves-Santos FM, Benito EP, Eslawa AP, Diaz-Minguez JM (1999) Appl Environ Microbiol 65:3335–3340

    PubMed  CAS  Google Scholar 

  • Anjaiah V, Cornelis P, Koedam N (2003) Effect of genotype and root colonization in biological control of fusarium wilts in pigeon pea and chick pea by Pseudomonas aeruginosa PNA1. Can J Microbiol 49:85–91

    Article  PubMed  CAS  Google Scholar 

  • Anonymous (2007) http://www.icrisat.org/PigeonPea/PigeonPea.htm

  • Antoun H, Bordeleau LM, Gagnon C (1978) Antagonisme entre Rhizobium meliloti et Fusarium oxysporum en relation avec l’efficacite symbiotique. Can J of Plant Sci 58:75–78

    Article  Google Scholar 

  • Bacon CW, Yates IE, Hinton DM, Meredith F (2001) Biocontrol of Fusarium moniliforme in maize. Environ Health Persp 109:325–332

    CAS  Google Scholar 

  • Bae Y-S, Park K, Choi OH (2007) Laboratory culture media-dependent biocontrol ability of Burkholderia gladioli strain B543. Plant Pathol J 23:161–165

    Article  Google Scholar 

  • Bakker PAHM, Weisbeek PJ, Schippers B (1988) Siderophore production by plant growth-promoting Pseudomonas spp. J Plant Nutr 11:925–933

    Article  CAS  Google Scholar 

  • Bapat S, Shah AK (2000) Biological control of fusarial wilt of pigeon pea by Bacillus brevis. Can J Microbiol 46:125–132

    PubMed  CAS  Google Scholar 

  • Bartsev A, Kobayashi H, Broughton WJ (2004) Rhizobial signals convert pathogens to symbionts at the legume interface. In: Gillins M, Holmes A (eds) Plant microbiology. BIOS Scientific Publishers, Taylor and Francis Group, London and New York, pp 19–31

    Google Scholar 

  • Basha S, Ulaganathan K (2002) Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Curr Sci 82:1457–1463

    CAS  Google Scholar 

  • Bhatnagar H (1995) Integrated use of biocontrol agents with fungicides to control wilt incidence in pigeon-pea. World J Microbiol Biotechnol 11:564–566

    Article  CAS  Google Scholar 

  • Bloemberg GV, Lugtenberg BJJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4:343–350

    Article  PubMed  CAS  Google Scholar 

  • Boller T (1985). Induction of hydrolases as a defense reaction against pathogens. In: key JL, kosuge T (eds) Cellular and Molecular Biology of Plant Stress. Alan R Liss, Inc, New York, pp 247–262

    Google Scholar 

  • Booth C (1977) The genus Fusarium. Common Wealth Mycological Institute, Kew, England

    Google Scholar 

  • Burelle NK, Vavrina CS, Rosskopf EN, Shelby RA (2002) Field evaluation of plant growth promoting rhizobacteria amended transplant mixes and soil solarization for tomato and pepper production in Florida. Plant Soil 238:257–266

    Article  Google Scholar 

  • Burelle NK, Kloepper JW, Reddy MS (2006) Plant growth-promoting rhizobateria as transplant amendments and their effect on indigenous rhizosphere microorganism. Appl Soil Ecol 31:91–100

    Article  Google Scholar 

  • Butler EJ (1906) The wilt diseases of pigeonpea and pepper. Agric J of India 1:25–36

    Google Scholar 

  • Cavaglieri L, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillus subtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754

    Article  PubMed  CAS  Google Scholar 

  • Chakrabarty U, Chakrabarty BN (1988) Interaction of Rhizobium leguminasorum and Fusarium solani f. sp. pisi on pea affecting disease development and phytoalexin production. Can J Bot 67:1698–1701

    Article  Google Scholar 

  • Chanway CP, Holl FB, Turkington R (1988) Genotypic coadaptation in plant growth promotion of forage species by Bacillus polymyxa. Plant Soil 106:281–284

    Article  Google Scholar 

  • Chaurasia B, Pandey A, Palini LMS, Trivedi P, Kumar B, Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160:75–81

    Article  PubMed  CAS  Google Scholar 

  • Chin-A-Woeng TFC, Bloemberg GV, Van der Bij AJ, Van der Drift KMGM, Schripse-ma J, Kroon B, Scheffer RJ, Keel C et al (1998) Biocontrol by phenazine-1-carboxamide-producing Pseudomonas chlororaphis PCL1391 of tomato root rot caused by Fusarium oxysporum f. sp. radicis lycopersici. Mol Plant-Microbe Interact 11:1069–1077

    Article  CAS  Google Scholar 

  • Compant S, Duffy B, Nowak J, Clement C, Barka EA (2005) Use of plant growth promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action and future prospects. Appl Environ Microbiol 71:4951–4959

    Article  PubMed  CAS  Google Scholar 

  • Cook RJ, Thomasshow L, Weller DM, Fujimotto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanism of defense by rhizobacteria against root disease. Nat Acad Sci USA 92:4197–4201

    Article  CAS  Google Scholar 

  • Couteaudier Y, Alabouvette C (1990) Quantitative comparison of Fusarium oxysporum competitiveness in relation to carbon utilization. Microbiol Ecol 74:261–268

    Article  CAS  Google Scholar 

  • Dal-Soo K, Cook RJ, Weller DM (1997) Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Biol Control 87:551–558

    Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biocontrol agent against soil borne plant pathogenic fungi. Ind J Exp Biol 41:1160–1164

    CAS  Google Scholar 

  • Dhanasekar P, Dhumal KN, Reddy KS (2010) Identification of RAPD markers linked to plant type gene in pigeonpea. Ind J Biotechnol 9:58–63

    CAS  Google Scholar 

  • Dutta S, Mishra AK, Dileep Kumar BS (2008) Induction of systemic resistance against fusarial wilt in pigeon pea through interaction of plant growth promoting rhizobacteria and rhizobia. Soil Biol Biochem 40:452–461

    Article  CAS  Google Scholar 

  • Ehteshamul-Haque S, Ghaffar A (1993) Use of rhizobia in the control of root rot diseases of sunflower, okra, soybean and mungbean. J Phytopathol 138:157–163

    Article  Google Scholar 

  • Frommel MI, Nowak J, Lazarovits G (1991) Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum spp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96:928–936

    Article  PubMed  CAS  Google Scholar 

  • Gahukar RT (2006) Potential and use of biofertilizers in India. Everyman’s Science 40:354–361

    Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free-living bacteria. Can J Microbiol 47:109–117

    Article  Google Scholar 

  • Glick BR, Karatuprovic DM, Newwll PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536

    Article  CAS  Google Scholar 

  • Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:63–68

    Article  PubMed  CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by PGPB. Imperial College Press, London, U.K

    Google Scholar 

  • Gwata ET, Silim SN, Mgonja M (2006) Impact of a new source of resistance to fusarium wilt in pigeonpea. J Phytopathol 154:62–64

    Article  Google Scholar 

  • Gwata ET, Mligo JK, Silim SN (2007) Registration of pigeonpea cultivar Tumia. Crop Sci 47:436

    Article  Google Scholar 

  • Han JS, Cheng JH, Yoon TM, Song J, Rajkarnikar A, Kim WG, Yoo ID, Yang YY, Suh JW (2005) Biological control agent of common scab disease by antagonistic strain Bacillus sp. sunhua. J Appl Microbiol 99:213

    Article  PubMed  CAS  Google Scholar 

  • Harish S, Manjula K, Podile AR (1998) Fusarium udum is resistant to the mycolytic activity of a biocontrol strain of Bacillus subtilis AF 1. Microb Ecol 25:385–390

    Article  CAS  Google Scholar 

  • Hasan A (1984) Synergism between Heterodera cajani and Fusarium udum attacking Cajanus cajan. Nematol Medit 12:159–162

    Google Scholar 

  • Husain SL, Siddiqui ZA, Saddiqui MR (1989) Prevalence and geographical distribution of cyst forming nematodes in Uttar Pradesh, India. Indian J Nematol 19:108–114

    Google Scholar 

  • ICRISAT (1993) Plant material description no. 44. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India

    Google Scholar 

  • ICRISAT (1994) Plant material description no. 48. International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Andhra Pradesh, India

    Google Scholar 

  • Jain KC, Reddy MV (1995) Inheritance of resistance to Fusarium wilt in pigeonpea (Cajanus cajan L.). Ind J Genetics Plant Breeding 55:434–437

    Google Scholar 

  • Jayalakshmi SK, Sreermula K, Benig VI (2003) Efficacy of Trichoderma spp. against pigeonpea wilt caused by Fusarium udum. J Biol Cont 17:75–78

    Google Scholar 

  • Jeyarajan R, Ramakrishnan G, Sangeetha P (1991) Efficacy of Trichoderma as biocontrol agent for root rot disease of grain legumes. Petria 1:143

    Google Scholar 

  • Johansen C, Silim SN, Singh L (1993) Towards a data base for pigeonpea in Africa. Int Pigeonpea Newslett 18:2–5

    Google Scholar 

  • Joshi AR (1957) Genetics of resistance to disease and pests. Ind J Genet Plant Breed 17:305–317

    Google Scholar 

  • Kang GK, Shin SY, Kim MJ, Bajpai V, Maheshwari DK, Kang SC (2004) Isolation and anti-fungal activities of 2-Hydroxymethyl-chroman-4-one produced by Burkholderia sp. MSSP. J Antibiot 57:726–731

    Article  PubMed  CAS  Google Scholar 

  • Kannaiyan J, Nene YL, Reddy MV, Rajan JG, Raju TN (1984) Prevalence of pigeonpea diseases and associated crop losses in Asia, Africa and the Americas. Tropical Pest Management 30:62–71

    Article  Google Scholar 

  • Khonga EB, Hillocks RJ (1996) Soil borne diseases in maize-based cropping systems in southern Malawi: incidence and farmer’s perceptions. Afr Plant Protect 2:131–138

    Google Scholar 

  • Kimani PM, Nyende AB, Silim S (1994) Development of early maturing Fusarium wilt resistant pigeonpea cultivars. Afr Crop Sci J 2:35–41

    Google Scholar 

  • Kiprop EK, Baudoin JP, Mwang'ombe AW, Kimani PM, Mergeai G, Maquet A (2002) Characterization of Kenyan isolates of Fusarium udum from Pigeonpea [Cajanus cajan (L.) Millsp.] by cultural characteristics, aggressiveness and AFLP analysis. J Phytopathol 150:517–527

    Google Scholar 

  • Kiprop EK, Mwang’ombe AW, Baudoin JP, Kimani PM, Mergeai G (2002) Cultural characteristics, pathogenicity and vegetative compatibility of Fusarium udum isolates from pigeonpea (Cajanus cajan (L.) Millsp.) in Kenya. Eur J Plant Pathol 108:147–154

    Article  Google Scholar 

  • Kiprop EK, Mwang’ombe AW, Baudoin JP, Kimani PM, Mergeai G (2005) Genetic variability amongst F. udum isolates from pigeonpea. Afr Crop Sci J 13:163–172

    Google Scholar 

  • Kloepper JW, Schroth MN (1978) Plant growth promoting rhizobacteria on radishes. Proceedings of the 4th International conference on pathogenic bacteria (Vol II), Station de Pathologie Végétale et Phytobacteriologie, INRA, Angers, France, pp 879–882

    Google Scholar 

  • Kloepper JW, Hume DJ, Scher FM, Singeleton C, Tipping B, Laliberte M, Frauley K, Kutchaw T, Simonson C, Lifshitzr R, Zeleska I, Lee L (1988) Plant growth-promoting rhizobacteria (PGPR) on canola (rape seed). Plant Dis 72:42–46

    Article  Google Scholar 

  • Kloepper JW, Lifshitz R, Zablotowich RK (1989) Free living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43

    Article  Google Scholar 

  • Kotresh H, Fakruddin B, Punnuri SM, Rajkumar BK, Thudi M et al (2006) Identification of two RAPD markers genetically linked to two recessive allele of a Fusarium wilt resistance gene in pigeon pea [Cajanus cajan (L.) Millsp.]. Euphytica 149:113–120

    Article  CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Chul KS (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protect. doi:10.1016/j.cropro.2010.01.002

    Google Scholar 

  • Lin TS, Kolattukudy PE (1980) Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N terminus. Eur J Biochem 106:341–351

    Article  PubMed  CAS  Google Scholar 

  • Lucy M, Reed E, Glick R (2004) Application of free living plant growth promoting rhizobacteria. Antonie van Leeuwenhek 86:1–25

    Article  CAS  Google Scholar 

  • Maisuria VB, Gohel V, Mehta AN, Patel RR, Chhatpar HS (2008) Biological control of Fusarium wilt of pigeonpea by Pantoea dispersa, a field assessment. Ann Microbiol 58:411–419

    Article  Google Scholar 

  • Manjula K, Podile AR (2001) Chitin supplemented formulations improve biocontrol and plant growth promoting efficiency of Bacillus subtilis AF1. Can J Microbiol 47:618–625

    PubMed  CAS  Google Scholar 

  • Marley PS, Hillocks RJ (2007) The role of phytoalexins in resistance to fusarium wilt in pigeon pea (Cajanus cajan). Plant Pathol 42:212–218

    Article  Google Scholar 

  • Mitchell R, Alexander M (1961) The mycolytic phenomenon and biological control of Fusarium in soil. Nature 190:109–110

    Article  Google Scholar 

  • Muthamilan M, Jeyarajan R (1996) Integrated management of Sclerotium root rot of groundnut involving T. harzianum, Rhizobium and carbendazim. Ind J Mycol and Plant Pathol 26:204–209

    Google Scholar 

  • Muzzarelli RAA (1977) Chitin. Pergamon, Oxford

    Google Scholar 

  • Nakkeeran S, Dilantha Fernando WG, Siddiqui ZA (2005) Plant growth promoting rhizobacteria formulations and its scope in commercialization for the management of pests and diseases. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, The Netherlands, pp 257–296

    Google Scholar 

  • Nautiyal CS (1997) Rhizosphere competence of Pseudomonas sp. NBRI9926 and Rhizobium sp. NBRI9513 involved in the suppression of chickpea (Cicer arietinum L.) pathogenic fungus. Microb Ecol 23:145–158

    Article  CAS  Google Scholar 

  • Nene YL, Kannaiyan J, Reddy MV, Zote KK, Mahmood M, Hiremath RV, Shukla P, Kotasthane SR, Sengupta K, Jha DK, Haque MF, Grewal JS, Pal M (1985) Multilocational testing of pigeonpea for broad-based resistance to Fusarium wilt in India. Ind Phytopathol 40:33–36

    Google Scholar 

  • Nene YL, Sheila VK, Sharma SB (1996) A world list of chickpea and pigeon pea pathogens, 5th edn. ICRISAT, Patencheru 502324, Andhra Pradesh, India

    Google Scholar 

  • Niranjana SR, Lalitha S, Hariprasad P (2009) Mass multiplication and formulations of biocontrol agents for use against fusarium wilt of pigeonpea through seed treatment. International J Pest Management 55:317–324

    Article  Google Scholar 

  • O’Sullivan DJ, O’Gara F (1992) Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbial Rev 56:662–676

    Google Scholar 

  • Odeny DA, Githiri SM, Kimani PM (2009) Inheritance of resistance to Fusarium wilt in pigeonpea {Cajanus cajan (L.) Millsp.}. J Animal Plant Sci 2:89–95

    Google Scholar 

  • Pal BP (1934) Recent progress in plant breeding at Pusa. Agric Livest India 4:505–515

    Google Scholar 

  • Pandey P, Maheshwari DK (2007a) Bioformulation of Burkholderia sp. MSSP with a multi-species consortium for growth promotion of Cajanus cajan. Can J Microbiol 53:213–222

    Article  PubMed  CAS  Google Scholar 

  • Pandey P, Maheshwari DK (2007b) Two-species microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142

    CAS  Google Scholar 

  • Pandey RN, Pawar SE, Bhatia CR (1996) Inheritance of wilt resistance in pigeonpea. Indian J Genet Plant Breed 56:305–308

    Google Scholar 

  • Pandey P, Saraf M, Dubey RC, Maheshwari DK (2006) Application of fusaria in agricultural and industrial biotechnology. In: Maheshwari DK, Dubey RC (eds) Biotechnological applications of microorganisms: a techno-commercial approach. I. K. International Publishing House, New Delhi, India, pp 199–212

    Google Scholar 

  • Pathak GN (1970) Red gram. In: Pulse crops of Indian Council of Agricultural Research. New Delhi, India, pp 14–53

    Google Scholar 

  • Pawar NB, Mayee CD (1986) Reaction of pigeonpea genotypes and their crosses to Fusarium wilt. Indian Phytopathol 39:70–74

    Google Scholar 

  • Peres-Artes E, Tena M (1989) Pectic enzymes from two races of Fusarium oxysporum f. sp. ciceri. Enzyme production in culture and enzymatic activity on isolated chickpea cell walls. J Phytopathol 124:39–51

    Google Scholar 

  • Perveen K, Haseeb A, Shukla PK (1999) Effect of Meloidogyne incognita and Fusarium udum on the disease development and growth of pigeonpea. Curr Nematol 10:33–40

    Google Scholar 

  • Prasad RD, Rangeshwaran R, Hegde SV, Anuroop CP (2002) Effect of soil and seed application of Trichoderma harzianum on pigeonpea wilt caused by Fusarium udum under field conditions. Crop Protect 21:293–297

    Article  Google Scholar 

  • Prasad P, Eswara Reddy NP, Anandam RJ, Lakshmikantha Reddy G (2003) Isozymes variability among Fusarium udum resistant cultivars of pigeonpea (Cajanus cajan (L.) Millsp). Acta Physiologiae Plantarum 25:221–228

    Article  CAS  Google Scholar 

  • Raaijmakers JM, Leeman M, Van Oorschot MMP, van der Sluis L, Schippers B, Bakker PAHM (1995) Dose-response relationships in biological control of Fusarium wilt of radish by Pseudomonas spp. Phytopathol 85:1075–1081

    Article  Google Scholar 

  • Rai B, Upadhyay RS (1982) Gibberella indica: the perfect state of Fusarium udum. Mycologia 74:343

    Article  Google Scholar 

  • Ramamoorthy K, Vairavan K, Vijayalakshmi R, Jehangir KS (1994) Effect of phosphorus sources on growth and yield of pigeonpea. Ind J Pulses Res 7:84–85

    Google Scholar 

  • Reddy MV, Raju TN (1993) Pathogenic variability in pigeonpea wilt pathogen Fusarium udum. In: Muralidharan K, Reddy CS (eds) Plant disease problems in Central India 1993. Proc Symp Central Zone. Indian Phytopath Soc Directorate of Rice Research, Hyderabad, India, pp 32–34

    Google Scholar 

  • Reddy MV, Sharama SB, Nene YL (1990) Pigeonpea: diseases management. In: Nene YL, Hall SD, Sheila VK (eds) The pigeonpea. CAB International, Oxon, p 303

    Google Scholar 

  • Ren YY, West CA (1992) Elicitation of Diterpene biosynthesis in rice (Oryza sativa L.) by chitin. Plant Physiol 99:1169–1178

    Article  PubMed  CAS  Google Scholar 

  • Sarojini TS (1951) Soil conditions and root diseases, Part II. Fusarium udum disease of red gram [Cajanus cajan (Linn.) Millsp.]. Proc: Plant Sci 33:49–68

    Google Scholar 

  • Saxena KB (2008) Genetic improvement of pigeonpea – a review. Trop Plant Biol 1:159–178

    Article  Google Scholar 

  • Schuerger AC, Mitchell DJ (1993) Influence of mucilage secreted by macroconidia of Fusarium solani f. sp. phaseoli on spore attachment to roots of Vigna radiata in hydroponic nutrient solution. Phytopathology 83:1162–1170

    Article  Google Scholar 

  • Shaw FLF (1936) Studies in Indian pulses: the inheritance of morphological characters and of wilt resistance in Arhar (Cajanus indicus Spreng). Ind J Agric Sci 6:139–187

    Google Scholar 

  • Shit SK, Sen Gupta PK (1978) Possible existence of physiological races of Fusarium oxysporum f. sp. udum, the incitant of wilt of pigeonpea. Ind J Agric Sci 48:629–632

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1995) Biological control of Heterodera cajani and Fusarium udum by Bacillus subtilis, Bradyrhizobium japonicum and Glomus fasciculatum on pigeonpea. Fundam Appl Nematol 18:559–566

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1996) Effects of Heterodera cajani, Meloidogyne incognita on the wilt disease complex of pigeon pea. Indian J Nematol 26:102–104

    Google Scholar 

  • Siddiqui ZA, Mahmood I (1999) The effect of inoculations of Heterodera cajani, Meloidogyne incognita with Fusarium udum and Bradyrhizobium japonicum on the wilt disease complex of pigeon pea. Ind Phytopathol 52:66–70

    Google Scholar 

  • Siddiqui ZA, Shakeel U (2007) Screening of Bacillus isolates for potential biocontrol of the wilt disease complex of pigeon pea (Cajanus cajan) under greenhouse and small-scale field conditions. J Plant Pathol 89:179–183

    Google Scholar 

  • Siddiqui ZA, Shakeel U (2009) Biocontrol of wilt disease complex of pigeon pea (Cajanus cajan (L.) Millsp.) by isolates of Pseudomonas spp. Afr J Plant Sci 3:01–12

    CAS  Google Scholar 

  • Siddiqui ZA, Shakeel U, Siddiqui S (2008) Biocontrol of wilt disease complex of pigeonpea by fluorescent pseudomonads and Bacillus spp. under pot and field conditions. Acta Phytopathol Entomol Hung 43:77–92

    Article  CAS  Google Scholar 

  • Singh RS (1983) Wilt of pigeon pea. In: Singh RS (ed) Plant diseases, 51st edn. IBH Publishing, New Delhi, pp 412–417

    Google Scholar 

  • Singh R, Rai B (2000) Antifungal potential of some higher plants against Fusarium udum causing wilt disease of Cajanus cajan. Microbios 102:165–173

    PubMed  CAS  Google Scholar 

  • Singh IP, Vishwa D, Chaudhary RC, Pandey DK (1998) Genetics of Fusarium wilt resistance in pigeonpea. In: National symposium on management of biotic and abiotic stresses in pulse crops, 26–28th June, IIPR Kanpur, India, p 15

    Google Scholar 

  • Singh R, Singh BK, Upadhyay RS, Rai B, Lee YS (2002) Biological control of Fusarium wilt disease of pigeonpea. Plant Pathol J 18:279–283

    Article  Google Scholar 

  • Singh B, Ali SS, Askary Naimuddin TH (2004) Combined effect of Fusarium udum and Meloidogyne javanica on wilt resistant accessions of pigeon pea. Ann Plant Protect Sci 12:33–36

    Google Scholar 

  • Singh R, Kumar V, Sharma S, Behl RK, Singh BP, Narula N (2005) Performance and persistence of green fluorescent protein (gfp) marked Azotobacter chroococcum in sterilized and unsterilized wheat rhizospheric soil. Chi J Appl Environ Biol 11:751–755

    CAS  Google Scholar 

  • Singhal V, Pratibha M, Sengar RS (2003) Biofertilizer: boon for farmers. Indian Farming 4:11–12

    Google Scholar 

  • Songa WA, Omanga P, Reddy MV (1991) Survey of pigeonpea wilt and other diseases in Machakos and Kitui districts of Kenya. Int Pigeonpea Newsl 14:25–26

    Google Scholar 

  • Tang WH (1994) Yield increasing bacteria (YIB) and biological control of sheath blight of rice. In: Ryder MH, Stephens PM, Bowen GD (eds) Improving plant productivity with rhizosphere bacteria. Common wealth scientific and industrial research organization, Adelaide, Australia, pp 267–278

    Google Scholar 

  • Tilak KVBR, Ranganayaki N, Manoharachari C (2006a) Synergistic effects of plant-growth promoting rhizobacteria and Rhizobium on nodulation and nitrogen fixation by pigeonpea (Cajanus cajan). Eur J Soil Sci 57:67–71

    Article  CAS  Google Scholar 

  • Tilak KVBR, Ranganayaki N, Pal KK, De R, Saxena AK, Nautiyal CS, Mittal S, Tripathi AK, Johri BN (2006b) Diversity of plant growth and soil health supporting bacteria. Curr Sci 89:136–150

    Google Scholar 

  • Timonin MI (1947) Microflora of the rhizosphere in relation to the manganese-deficiency disease of oats. Soil Sci Soc Am Proc 11:284–292

    Article  CAS  Google Scholar 

  • Tobita S, Ito O, Matsunaga R, Rao TP, Rego TJ, Johansen C, Yoneyama T (1994) Field evaluation of nitrogen fixation and use of nitrogen fertilizer by sorghum/pigeon pea intercropping on an Alfisol in Indian semiarid tropics. Biol Fert Soils 17:241–248

    Article  Google Scholar 

  • Tu JC (1979) Evidence of differential tolerance among some root rot fungi to rhizobial parasitism in vitro. Physiol Plant Pathol 14:171–177

    Article  Google Scholar 

  • Upadhyay RS, Rai B (1982) Ecology of Fusarium udum causing wilt disease of pigeon pea: Population dynamics in the root region. Trans Brit Mycol Soc 78:209–220

    Article  Google Scholar 

  • Vaidya RJ, Shah IM, Vyas PR, Chhatpar HS (2001) Production of chitinase and its optimization from a novel isolate Alcaligenes xylosoxydans: potential in antifungal biocontrol. World J Microbiol Biotechnol 17:691–696

    Article  CAS  Google Scholar 

  • Vaidya RJ, Macmil SLA, Vyas P, Ghetiya LV, Thakor KJ, Chhatpar HS (2003a) Biological control of Fusarium wilt of pigeonpea Cajanus cajan (L.) Millsp. with chitinolytic Alcaligenes xylosoxydans. Ind J Exp Biol 41:1469–1472

    CAS  Google Scholar 

  • Vaidya RJ, Vyas P, Chhatpar HS (2003b) Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans. Enzyme Microb Technol 33:92–96

    Article  CAS  Google Scholar 

  • Van Loon LC (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van Peer R, Niemann GJ, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS417r. Phytopathology 81:728–734

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vidhyasekaran P, Sethuraman K, Rajappan K, Vasumathi K (1997) Powder formulation of Pseudomonas fluorescens to control pigeonpea wilt. Biol Control 8:166–171

    Article  Google Scholar 

  • Voisard C, Keel C, Haas D, Défago G (1989) Cyanide production by Pseudomonas fluorescens helps suppress black root rot of tobacco under gnotobiotic conditions. EMBO J 8:351–358

    PubMed  CAS  Google Scholar 

  • Vyas SP (2003) Efficacy of biofertilizer on Brassica genotypes in arid Gujarat. Fertiliser News 48:49–51

    Google Scholar 

  • Waage J, Greathead DJ (1988) Biological control-challenges and opportunities. In: Wood RKS, Way MJ (eds) Biological control of pests, pathogens, and weeds: developments and prospects. The Royal Society, London, pp 1–18

    Google Scholar 

  • Weller DM, Thomashao LS (1994) Current challenges in introducing beneficial microorganisms into the rhizosphere. In: O’Gara F, Dowling DN, Boesten B (eds) Molecular ecology of rhizosphere microorganisms: biotechnology and the release of GMO’s. Wiley-Vch, Weinheim, Germany, pp 1–18

    Chapter  Google Scholar 

  • Whipps JM, Davies KG (2000) Success in biological control of plant pathogens and nematodes by microorganisms. In: Gurr G, Wratten SD (eds) Measures of success in biological control. Kluwer, Dordrecht, The Netherlands, pp 231–269

    Chapter  Google Scholar 

  • Whipps JM, Lumsden RD (2001) Commercial use of fungi as plant disease biological control agents: status and prospects. In: Butt T, Jackson C, Magan N (eds) Fungal biocontrol agents – progress, problems and potential. CAB International, Wallingford, pp 36–43

    Google Scholar 

Download references

Acknowledgments

Financial support from UCOST, Dehradun, India is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Maheshwari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pandey, P., Aeron, A., Maheshwari, D.K. (2010). Sustainable Approaches for Biological Control of Fusarium Wilt in Pigeon Pea (Cajanus cajan L. Millspaugh). In: Maheshwari, D. (eds) Plant Growth and Health Promoting Bacteria. Microbiology Monographs, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13612-2_10

Download citation

Publish with us

Policies and ethics