Skip to main content

Methylxanthines and Ryanodine Receptor Channels

  • Chapter
  • First Online:
Methylxanthines

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

Methylxanthines of either natural or synthetic origin have a number of interesting pharmacological features. Proposed mechanisms of methylxanthine-induced pharmacological effects include competitive antagonism of G-coupled adenosine A1 and A2A receptors and inhibition of phosphodiesterases. A number of studies have indicated that methylxanthines also exert effects through alternative mechanisms, in particular via activation of sarcoplasmic reticulum or endoplasmic reticulum ryanodine receptor (RyR) channels. More specifically, RyR channel activation by methylxanthines was reported (1) to stimulate the process of excitation coupling in muscle cells, (2) to augment the excitability of neurons and thus their capacity to release neurotransmitters, and also (3) to improve their survival. Here, we address the mechanisms by which methylxanthines control RyR activation and we consider the pharmacological consequences of this activation, in muscle and neuronal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Botanical sources and bioconversion pathways of methylxanthines are described in detail in Ashihara et al. (2010) and Arnaud (2010), respectively.

  2. 2.

    See Francis et al. (2010) for details on the pharmacological effects of methylxanthines that are mediated by adenosine receptor blockade or phosphodiesterase inhibition.

Abbreviations

Ca 2+cyt :

Cytoplasmic Ca2+

ER:

Endoplasmic reticulum

RyR:

Ryanodine receptor

SR:

Sarcoplasmic reticulum

References

  • Arnaud M (2010) Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In: Fredholm BB (ed) Methylxanthines. Springer, Heidelberg

    Google Scholar 

  • Ascherio A, Zhang SM, Hernan MA, Kawachi I, Colditz GA, Speizer FE, Willett WC (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50:56–63

    Article  PubMed  CAS  Google Scholar 

  • Ashihara H, Kato M, Crozier A (2010) Distribution, biosynthesis and catabolism of methylxanthines in plants. In: Fredholm BB (ed) Methylxanthines. Springer, Heidelberg

    Google Scholar 

  • Birkett DJ, Dahlqvist R, Miners JO, Lelo A, Billing B (1985) Comparison of theophylline and theobromine metabolism in man. Drug Metab Dispos 13:725–728

    PubMed  CAS  Google Scholar 

  • Block BM, Barry SR, Faulkner JA (1992) Aminophylline increases submaximum power but not intrinsic velocity of shortening of frog muscle. J Appl Physiol 73:71–74

    PubMed  CAS  Google Scholar 

  • Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS (2003) Ryanodine receptors of pancreatic β-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17:301–303

    PubMed  CAS  Google Scholar 

  • Buck E, Zimanyi I, Abramson JJ, Pessah IN (1992) Ryanodine stabilizes multiple conformational states of the skeletal muscle Ca2+ release channel. J Biol Chem 267:23560–23567

    PubMed  CAS  Google Scholar 

  • Cavallaro RA, Filocamo L, Galuppi A, Galione A, Brufani M, Genazzani AA (1999) Potentiation of cADPR-induced Ca2+-release by methylxanthine analogues. J Med Chem 42:2527–2534

    Article  PubMed  CAS  Google Scholar 

  • Chen BT, Moran KA, Avshalumov MV, Rice ME (2006) Limited regulation of somatodendritic dopamine release by voltage-sensitive Ca2+ channels contrasted with strong regulation of axonal dopamine release. J Neurochem 96:645–655

    Article  PubMed  CAS  Google Scholar 

  • Connett RJ, Ugol LM, Hammack MJ, Hays ET (1983) Twitch potentiation and caffeine contractures in isolated rat soleus muscle. Comp Biochem Physiol C 74:349–354

    Article  PubMed  CAS  Google Scholar 

  • Conway D, Sakai T (1960) Caffeine contracture. Proc Natl Acad Sci USA 46:897–903

    Article  PubMed  CAS  Google Scholar 

  • Daly JW (2007) Caffeine analogs: biomedical impact. Cell Mol Life Sci 64:2153–2169

    Article  PubMed  CAS  Google Scholar 

  • Dettbarn C, Palade P (1997) Ca2+ feedback on “quantal” Ca2+ release involving ryanodine receptors. Mol Pharmacol 52:1124–1130

    PubMed  CAS  Google Scholar 

  • Douhou A, Troadec JD, Ruberg M, Raisman-Vozari R, Michel PP (2001) Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 78:163–174

    Article  PubMed  CAS  Google Scholar 

  • Du GG, MacLennan DH (1999) Ca2+ inactivation sites are located in the COOH-terminal quarter of recombinant rabbit skeletal muscle Ca2+ release channels (ryanodine receptors). J Biol Chem 274:26120–26126

    Article  PubMed  CAS  Google Scholar 

  • Du GG, Khanna VK, Guo X, MacLennan DH (2004) Central core disease mutations R4892W, I4897T and G4898E in the ryanodine receptor isoform 1 reduce the Ca2+ sensitivity and amplitude of Ca2+-dependent Ca2+ release. Biochem J 382(Pt 2):557–564

    PubMed  CAS  Google Scholar 

  • Elbaz A, Moisan F (2008) Update in the epidemiology of Parkinson’s disease. Curr Opin Neurol 21:454–460

    Article  PubMed  Google Scholar 

  • Endo M (1977) Calcium release from the sarcoplasmic reticulum. Physiol Rev 57:71–108

    PubMed  CAS  Google Scholar 

  • Fabiato A (1983) Calcium-induced release of calcium from the cardiac sarcoplasmic reticulum. Am J Physiol Cell Physiol 245:C1–C14

    CAS  Google Scholar 

  • Ferré S, Guix T, Sallés J, Badia A, Parra P, Jané F, Herrera-Marschitz M, Ungerstedt U, Casas M (1990) Paraxanthine displaces the binding of [3H]SCH 23390 from rat striatal membranes. Eur J Pharmacol 179:295–299

    Article  PubMed  Google Scholar 

  • Fessenden JD, Feng W, Pessah IN, Allen PD (2006) Amino acid residues Gln4020 and Lys4021 of the ryanodine receptor type 1 are required for activation by 4-chloro-m-cresol. J Biol Chem 281:21022–21031

    Article  PubMed  CAS  Google Scholar 

  • Fill M, Copello JA (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    PubMed  CAS  Google Scholar 

  • Francis SH, Sekhar KR, Ke H, Corbin JD (2010) Inhibition of cyclic nucleotide phosphodiesterases by methylxanthines and related compounds. In: Fredholm BB (ed) Methylxanthines. Springer, Heidelberg

    Google Scholar 

  • Galante M, Marty A (2003) Presynaptic ryanodine-sensitive calcium stores contribute to evoked neurotransmitter release at the basket cell-Purkinje cell synapse. J Neurosci 23:11229–11234

    PubMed  CAS  Google Scholar 

  • Galione A, Lee HC, Busa WB (1991) Ca2+-induced Ca2+ release in sea urchin egg homogenates: modulation by cyclic ADP-ribose. Science 253:1143–1146

    Article  PubMed  CAS  Google Scholar 

  • Garaschuk O, Yaari Y, Konnerth A (1997) Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurones. J Physiol 502:13–30

    Article  PubMed  CAS  Google Scholar 

  • Guerreiro S, Toulorge D, Hirsch E, Marien M, Sokoloff P, Michel PP (2008) Paraxanthine, the primary metabolite of caffeine, provides protection against dopaminergic cell death via stimulation of ryanodine receptor channels. Mol Pharmacol 74:980–989

    Article  PubMed  CAS  Google Scholar 

  • Hawke TJ, Allen DG, Lindinger MI (2000) Paraxanthine, a caffeine metabolite, dose dependently increases [Ca2+]i in skeletal muscle. J Appl Physiol 89:2312–2317

    PubMed  CAS  Google Scholar 

  • Herrmann-Frank A, Lüttgau HC, Stephenson DG (1999) Caffeine and excitation-contraction coupling in skeletal muscle: a stimulating story. J Muscle Res Cell Motil 20:223–237

    Article  PubMed  CAS  Google Scholar 

  • Hymel L, Inui M, Fleischer S, Schindler H (1988) Purified ryanodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc Natl Acad Sci USA 85:441–445

    Article  PubMed  CAS  Google Scholar 

  • Islam MS, Leibiger I, Leibiger B, Rossi D, Sorrentino V, Ekström TJ, Westerblad H, Andrade FH, Berggren PO (1998) In situ activation of the type 2 ryanodine receptor in pancreatic beta cells requires cAMP-dependent phosphorylation. Proc Natl Acad Sci USA 95:6145–6150

    Article  PubMed  CAS  Google Scholar 

  • Jacobson KA, Gao ZG (2006) Adenosine receptors as therapeutic targets. Nat Rev Drug Discov 5:247–264

    Article  PubMed  CAS  Google Scholar 

  • Kano M, Garaschuk O, Verkhratsky A, Konnerth A (1995) Ryanodine receptor-mediated intracellular calcium release in rat cerebellar Purkinje neurones. J Physiol 487:1–16

    PubMed  CAS  Google Scholar 

  • Kelly E, Bailey CP, Henderson G (2008) Agonist-selective mechanisms of GPCR desensitization. Br J Pharmacol 153(Suppl 1):S379–S388

    PubMed  CAS  Google Scholar 

  • Kirino Y, Shimizu H (1982) Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies. J Biochem 92:1287–1296

    PubMed  CAS  Google Scholar 

  • Kong H, Jones PP, Koop A, Zhang L, Duff HJ, Chen SR (2008) Caffeine induces Ca2+ release by reducing the threshold for luminal Ca2+ activation of the ryanodine receptor. Biochem J 414:441–452

    Article  PubMed  CAS  Google Scholar 

  • Kramer ER, Aron L, Ramakers GM, Seitz S, Zhuang X, Beyer K, Smidt MP, Klein R (2007) Absence of Ret signaling in mice causes progressive and late degeneration of the nigrostriatal system. PLoS Biol 5:e39

    Article  PubMed  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 46:598–605

    Article  PubMed  CAS  Google Scholar 

  • Lee HC (1993) Potentiation of calcium- and caffeine-induced calcium release by cyclic ADP-ribose. J Biol Chem 268:293–299

    PubMed  CAS  Google Scholar 

  • Liu W, Meissner G (1997) Structure-activity relationship of xanthines and skeletal muscle ryanodine receptor/Ca2+ release channel. Pharmacology 54:135–143

    Article  PubMed  CAS  Google Scholar 

  • Love S, Plaha P, Patel NK, Hotton GR, Brooks DJ, Gill SS (2005) Glial cell line-derived neurotrophic factor induces neuronal sprouting in human brain. Nat Med 11:703–704

    Article  PubMed  CAS  Google Scholar 

  • Magkos F, Kavouras SA (2005) Caffeine use in sports, pharmacokinetics in man, and cellular mechanisms of action. Crit Rev Food Sci Nutr 45:535–562

    Article  PubMed  CAS  Google Scholar 

  • McGarry SJ, Williams AJ (1994) Adenosine discriminates between the caffeine and adenine nucleotide sites on the sheep cardiac sarcoplasmic reticulum calcium-release channel. J Membr Biol 137:169–177

    PubMed  CAS  Google Scholar 

  • McPherson PS, Kim YK, Valdivia H, Knudson CM, Takekura H, Franzini-Armstrong C, Coronado R, Campbell KP (1991) The brain ryanodine receptor: a caffeine-sensitive calcium release channel. Neuron 7:17–25

    Article  PubMed  CAS  Google Scholar 

  • Meissner G, Henderson JS (1987) Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 262:3065–3073

    PubMed  CAS  Google Scholar 

  • Meissner G, Rousseau E, Lai FA, Liu QY, Anderson KA (1988) Biochemical characterization of the Ca2+ release channel of skeletal and cardiac sarcoplasmic reticulum. Mol Cell Biochem 82:59–65

    Article  PubMed  CAS  Google Scholar 

  • Michel PP, Alvarez-Fischer D, Guerreiro S, Hild A, Hartmann A, Hirsch EC (2007) Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. J Neurochem 101:289–297

    Article  PubMed  CAS  Google Scholar 

  • Moutin MJ, Dupont Y (1988) Rapid filtration studies of Ca2+-induced Ca2+ release from skeletal sarcoplasmic reticulum. Role of monovalent ions. J Biol Chem 263:4228–4235

    PubMed  CAS  Google Scholar 

  • Näbauer M, Callewaert G, Cleemann L, Morad M (1989) Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 246:1640

    Google Scholar 

  • Patel JC, Witkovsky P, Avshalumov MV, Rice ME (2009) Mobilization of calcium from intracellular stores facilitates somatodendritic dopamine release. J Neurosci 29:6568–6579

    Article  PubMed  CAS  Google Scholar 

  • Pessah IN, Stambuk RA, Casida JE (1987) Ca2+-activated ryanodine binding: mechanisms of sensitivity and intensity modulation by Mg2+, caffeine, and adenine nucleotides. Mol Pharmacol 31:232–238

    PubMed  CAS  Google Scholar 

  • Ritter M, Menon S, Zhao L, Xu S, Shelby J, Barry WH (2001) Functional importance and caffeine sensitivity of ryanodine receptors in primary lymphocytes. Int Immunopharmacol 1:339–347

    Article  PubMed  CAS  Google Scholar 

  • Rousseau E, Ladine J, Liu QY, Meissner G (1988) Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 267:75–86

    Article  PubMed  CAS  Google Scholar 

  • Sääksjärvi K, Knekt P, Rissanen H, Laaksonen MA, Reunanen A, Männistö S (2008) Prospective study of coffee consumption and risk of Parkinson’s disease. Eur J Clin Nutr 62:908–915

    Article  PubMed  Google Scholar 

  • Salthun-Lassalle B, Hirsch EC, Wolfart J, Ruberg M, Michel PP (2004) Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci 24:5922–5930

    Article  PubMed  CAS  Google Scholar 

  • Satake W, Nakabayashi Y, Mizuta I, Hirota Y, Ito C, Kubo M, Kawaguchi T, Tsunoda T, Watanabe M, Takeda A, Tomiyama H, Nakashima K, Hasegawa K, Obata F, Yoshikawa T, Kawakami H, Sakoda S, Yamamoto M, Hattori N, Murata M, Nakamura Y, Toda T (2009) Genome-wide association study identifies common variants at four loci as genetic risk factors for Parkinson's disease. Nat Genet 41:1303–1307

    Google Scholar 

  • Sharma G, Vijayaraghavan S (2003) Modulation of presynaptic store calcium induces release of glutamate and postsynaptic firing. Neuron 38:929–939

    Article  PubMed  CAS  Google Scholar 

  • Sitsapesan R, Williams AJ (1990) Mechanisms of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol 423:425–439

    PubMed  CAS  Google Scholar 

  • Sitsapesan R, McGarry SJ, Williams AJ (1995) Cyclic ADP-ribose, the ryanodine receptor and Ca2+ release. Trends Pharmacol Sci 16:386–391

    Article  PubMed  CAS  Google Scholar 

  • Smith AB, Cunnane TC (1996) Ryanodine-sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea-pig. J Physiol 497(Pt 3):657–664

    PubMed  CAS  Google Scholar 

  • Sutko JL, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Pharmacol Rev 49:53–98

    PubMed  CAS  Google Scholar 

  • Trueta C, Sánchez-Armass S, Morales MA, De-Miguel FF (2004) Calcium-induced calcium release contributes to somatic secretion of serotonin in leech Retzius neurons. J Neurobiol 61:309–316

    Article  PubMed  CAS  Google Scholar 

  • Usachev Y, Verkhratsky A (1995) IBMX induces calcium release from intracellular stores in rat sensory neurones. Cell Calcium 17:197–206

    Article  PubMed  CAS  Google Scholar 

  • Usachev Y, Shmigol A, Pronchuk N, Kostyuk P, Verkhratsky A (1993) Caffeine-induced calcium release from internal stores in cultured rat sensory neurons. Neuroscience 57:845–859

    Article  PubMed  CAS  Google Scholar 

  • Veley VH, Waller AD (1910) On the comparative toxicity of theobromine and caffeine, as measured by their direct effect upon the contractility of isolated muscle. Proc R Soc Lond B Biol Sci 82:568–574

    Article  Google Scholar 

  • Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279

    Article  PubMed  CAS  Google Scholar 

  • Walz B, Baumann O, Zimmermann B, Ciriacy-Wantrup EV (1995) Caffeine- and ryanodine-sensitive Ca2+-induced Ca2+ release from the endoplasmic reticulum in honeybee photoreceptors. J Gen Physiol 105:537–567

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Bolstad J, Kong H, Zhang L, Brown C, Chen SR (2004) The predicted TM10 transmembrane sequence of the cardiac Ca2+ release channel (ryanodine receptor) is crucial for channel activation and gating. J Biol Chem 279:3635–42

    Article  PubMed  CAS  Google Scholar 

  • Wang SJ (2007) Caffeine facilitation of glutamate release from rat cerebral cortex nerve terminals (synaptosomes) through activation protein kinase C pathway: an interaction with presynaptic adenosine A1 receptors. Synapse 61:401–411

    Article  PubMed  CAS  Google Scholar 

  • Wyskovsky W (1994) Caffeine-induced calcium oscillations in heavy-sarcoplasmic-reticulum vesicles from rabbit skeletal muscle. Eur J Biochem 221:317–325

    Article  PubMed  CAS  Google Scholar 

  • Xu L, Meissner G (1988) Regulation of cardiac muscle Ca2+ release channel by sarcoplasmic reticulum lumenal Ca2+. Biophys J 75:2302–2312

    Article  Google Scholar 

  • Xu K, Xu YH, Chen JF, Schwarzschild MA (2010) Neuroprotection by caffeine: time course and role of its metabolites in the MPTP model of Parkinson's disease. Neuroscience 167:475–478

    Google Scholar 

  • Xu K, Xu Y, Brown-Jermyn D, Chen JF, Ascherio A, Dluzen DE, Schwarzschild MA (2006) Estrogen prevents neuroprotection by caffeine in the mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Neurosci 26:535–541

    Article  PubMed  CAS  Google Scholar 

  • Zalk R, Lehnart SE, Marks AR (2007) Modulation of the ryanodine receptor and intracellular calcium. Annu Rev Biochem 76:367–385

    Article  PubMed  CAS  Google Scholar 

  • Zucchi R, Ronca-Testoni S (1997) The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol Rev 49:1–51

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work by the authors mentioned in this paper received support from Institut de Recherche Pierre Fabre. We gratefully acknowledge support from Institut National de la Santé et de la Recherche Médicale (INSERM) and Université Pierre et Marie Curie-Paris 6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick P. Michel .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Guerreiro, S., Marien, M., Michel, P.P. (2011). Methylxanthines and Ryanodine Receptor Channels. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_5

Download citation

Publish with us

Policies and ethics