Skip to main content

Methylxanthines and Human Health: Epidemiological and Experimental Evidence

  • Chapter
  • First Online:
Methylxanthines

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 200))

Abstract

When considering methylxanthines and human health, it must be recognized that in many countries most caffeine is consumed as coffee. This is further confounded by the fact that coffee contains many bioactive substances in addition to caffeine; it is rich in phenols (quinides, chlorogenic acid, and lactones) and also has diterpenes (fatty acid esters), potassium, niacin, magnesium, and the vitamin B3 precursor trigonelline. There is a paradox as consumption of either caffeine or caffeinated coffee results in a marked insulin resistance and yet habitual coffee consumption has repeatedly been reported to markedly reduce the risk for type 2 diabetes. There is strong evidence that caffeine reduces insulin sensitivity in skeletal muscle and this may be due to a combination of direct antagonism of A1 receptors and indirectly β-adrenergic stimulation as a result of increased sympathetic activity. Caffeine may also induce reduced hepatic glucose output. With the exception of bone mineral, there is little evidence that caffeine impacts negatively on other health issues. Coffee does not increase the risk of cardiovascular diseases or cancers and there is some evidence suggesting a positive relationship for the former and for some cancers, particularly hepatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AUC:

Area under the curve

cAMP:

Cyclic AMP

CGA:

Chlorogenic acid

CNS:

Central nervous system

CVD:

Cardiovascular disease

CYP1A2:

Cytochrome P450 1A2

FFA:

Free fatty acid

GIP:

Glucose-dependent insulinotropic polypeptide

GLP-1:

Glucagon-like peptide-1

ISI:

Insulin sensitivity index

OGTT:

Oral glucose tolerance test

SNS:

Sympathetic nervous system

T2D:

Type 2 diabetes

References

  • Acheson KJ, Zahorska-Markiewick B et al (1980) Caffeine and coffee: their influence on metabolic rate and substrate utilization in normal weight and obese individuals. Am J Clin Nutr 33(5):989–997

    PubMed  CAS  Google Scholar 

  • Acheson KJ, Gremaud G et al (2004) Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 79(1):40–46

    PubMed  CAS  Google Scholar 

  • Adeney KL, Williams MA et al (2007) Coffee consumption and the risk of gestational diabetes mellitus. Acta Obstet Gynecol Scand 86(2):161–166, Abstract

    Article  PubMed  CAS  Google Scholar 

  • Agardh EE, Carlsson S et al (2004) Coffee consumption, type 2 diabetes and impaired glucose tolerance in Swedish men and women. J Intern Med 255(6):645–652

    Article  PubMed  CAS  Google Scholar 

  • Ahmed HN, Levitan E et al (2009) Coffee consumption and risk of heart failure in men: an analysis from the cohort of Swedish men. Am Heart J 158:667–672

    Article  PubMed  CAS  Google Scholar 

  • Andrade-Cetto A, Wiedenfeld H (2001) Hypoglycemic effect of Cecropia obtusifolia on streptozotocin diabetic rats. J Ethnopharmacol 78(2–3):145–149

    Article  PubMed  CAS  Google Scholar 

  • Antoniade C, Antonopoulos AS et al (2009) Homocysteine and coronary atherosclerosis: from folate fortification to the recent clinical trials. Eur Heart J 30(1):6–15

    Article  CAS  Google Scholar 

  • Arciero PJ, Gardner AW et al (1995) Effects of caffeine ingestion on NE kinetics, fat oxidation, and energy expenditure in younger and older men. Am J Physiol 268(6Pt1):E1192–E1198

    PubMed  CAS  Google Scholar 

  • Arion WJ, Canfield WK et al (1997) Chlorogenic acid and hydroxynitrobenzaldehyde: new inhibitors of hepatic glucose 6-phosphatase. Arch Biochem Biophys 339(2):315–322

    Article  PubMed  CAS  Google Scholar 

  • Ascherio A, Zhang SM et al (2001) Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 50(1):56–63

    Article  PubMed  CAS  Google Scholar 

  • Ascherio A, Chen H et al (2003) Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 60(5):790–795

    Article  PubMed  CAS  Google Scholar 

  • Astrup A, Toubro S et al (1990) Caffeine: a double-blind, placebo-controlled study of its thermogenic, metabolic, and cardiovascular effects in healthy volunteers. Am J Clin Nutr 51(5):759–767

    PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6):2131–2157

    Article  PubMed  CAS  Google Scholar 

  • Baker JA, Beehler GP (2006) Consumption of coffee, but not black tea, is associated with decreased risk of premenopausal breast cancer. J Nutr 136(1):166–171

    PubMed  CAS  Google Scholar 

  • Barranco Quintana JL, Allam MF et al (2007) Alzheimer’s disease and coffee: a quantitative review. Neurol Res 29(1):91–95

    Article  PubMed  Google Scholar 

  • Battram DS, Graham TE et al (2005) The effect of caffeine on glucose kinetics in humans – influence of adrenaline. J Physiol 569(1):347–355

    Article  PubMed  CAS  Google Scholar 

  • Battram DS, Arthur R et al (2006) The glucose intolerance induced by caffeinated coffee ingestion is less pronounced than that due to alkaloid caffeine in men. J Nutr 136(5):1276–1280

    PubMed  CAS  Google Scholar 

  • Battram DS, Graham TE et al (2007a) Caffeine's impairment of insulin-mediated glucose disposal cannot be solely attributed to adrenaline in humans. J Physiol 583(3):1069–1077

    Article  PubMed  CAS  Google Scholar 

  • Battram DS, Bugaresti J et al (2007b) Acute caffeine ingestion does not impair glucose tolerance in persons with tetraplegia. J Appl Physiol 102(1):374–381

    Article  PubMed  CAS  Google Scholar 

  • Belfort R, Mandarino L (2005) Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54(6):1640–1648

    Article  PubMed  CAS  Google Scholar 

  • Bidel S, Hu G et al (2006) Coffee consumption and risk of total and cardiovascular mortality among patients with type 2 diabetes. Diabetologia 49:2618–2626

    Article  PubMed  CAS  Google Scholar 

  • Boden G, Lebed B et al (2001) Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50(7):1612–1617

    Article  PubMed  CAS  Google Scholar 

  • Bonen A, Megeney LA et al (1992) Epinephrine administration stimulates GLUT4 translocation but reduces glucose transport in muscle. Biochem Biophys Res Commun 187(2):685–691

    Article  PubMed  CAS  Google Scholar 

  • Bracco D, Ferrarra JM et al (1995) Effects of caffeine on energy metabolism, heart rate, and methylxanthine metabolism in lean and obese women. Am J Physiol 269(4 Pt 1):E671–E678

    PubMed  CAS  Google Scholar 

  • Bravi F, Bosetti C et al (2007) Coffee drinking and hepatocellular carcinoma risk: a meta-analysis. Hepatology 46(2):430–435

    Article  PubMed  Google Scholar 

  • Bullock BP, Heller RS et al (1996) Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137(7):2968–2978

    Article  PubMed  CAS  Google Scholar 

  • Buxton DB, Fisher RA et al (1987) Stimulation of glycogenolysis and vasoconstriction by adenosine analogs in the perfused rat liver. Biochem J 248:35–41

    PubMed  CAS  Google Scholar 

  • Camargo MC, Toledo MC et al (1999) Caffeine daily intake from dietary sources in Brazil. Food Addit Contam 16(2):79–87

    Article  PubMed  CAS  Google Scholar 

  • Challis RAJ, Budohoski L et al (1984) Effects of an adenosine-receptor antagonist on insulin-resistance in soleus muscle from obese Zucker rats. Biochem J 221:915–917

    PubMed  CAS  Google Scholar 

  • Cheng JT, Chi TC et al (2000) Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats. Auton Neurosci 83:127–133

    Article  PubMed  CAS  Google Scholar 

  • Cornelis MC, El-Sohemy A et al (2006) Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 295(10):1135–1141

    Article  PubMed  CAS  Google Scholar 

  • Daly JW, Fredholm BB (2004) Mechanisms of action of caffeine on the nervous system. In: Nehlig A (ed) Coffee, tea, chocolate and the brain, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • De Felice FG, Verira MNN et al (2009) Protection of synapses against Alzheimer’s-linked toxins: insulin signaling prevents the pathogenic binding of A beta oligomers. Proc Natl Acad Sci USA 106:1971–1976

    Article  PubMed  Google Scholar 

  • de Galan BE, Tack CE et al (2002) Theophylline improves hypoglycemia unawareness in type 1 diabetes. Diabetes 51:790–796

    Article  PubMed  Google Scholar 

  • Debrah K, Haigh R et al (1995) Effects of acute and chronic caffeine use on the cerebrovascular, cardiovascular and hormonal responses to orthostasis in healthy volunteers. Clin Sci (Lond) 89(5):475–480

    CAS  Google Scholar 

  • Dekker MJ, Gusba JE et al (2007) Glucose homeostasis remains altered by acute caffeine ingestion following 2 weeks of daily caffeine consumption in previously non-caffeine-consuming males. Br J Nutr 98:556–562

    Article  PubMed  CAS  Google Scholar 

  • Dixon AK, Gubitz AK et al (1996) Tissue distribution of adenosine receptor mRNAs in the rat. Br J Pharmacol 118(6):1461–1468

    Article  PubMed  CAS  Google Scholar 

  • Dresner A, Laurent D et al (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103(2):253–259

    Article  PubMed  CAS  Google Scholar 

  • Drucker DJ, Nauck MA (2006) The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 368(9548):1696–1705

    Article  PubMed  CAS  Google Scholar 

  • Dulloo AG, Geissler CA et al (1989) Normal caffeine consumption: influence on thermogenesis and daily energy expenditure in lean and postobese human volunteers. Am J Clin Nutr 49(1):44–50

    PubMed  CAS  Google Scholar 

  • Engler MB, Engler MM (2006) The emerging role of flavonoid-rich cocoa and chocolate in cardiovascular health and disease. Nutr Rev 64(3):109–118

    Article  PubMed  Google Scholar 

  • Frary CD, Johnson RK, Wang MQ (2005) Food sources and intakes of caffeine in the diets of persons in the United States. J Am Diet Assoc 105(1):110–113

    Article  PubMed  Google Scholar 

  • Fredholm BB, Bättig K et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51(1):83–133

    PubMed  CAS  Google Scholar 

  • Freedman ND, Everhart JE et al (2009) Coffee intake is associated with lower rates of liver disease progression in chronic hepatitis C. Hepatology 50(5):1360–1369

    Article  PubMed  CAS  Google Scholar 

  • Gallus S, Bertuzzi M et al (2002a) Does coffee protect against hepatocellular carcinoma? Br J Cancer 87:956–959

    Article  PubMed  CAS  Google Scholar 

  • Gallus S, Tavani A et al (2002b) Does coffee protect against liver cirrhosis? Ann Epidemiol 12(3):202–205

    Article  PubMed  Google Scholar 

  • Ganmaa D, Willett WC et al (2008) Coffee, tea, caffeine and risk of breast cancer: a 22-year follow-up. Int J Cancer 122:2071–2076

    Article  PubMed  CAS  Google Scholar 

  • Goodman MT, Tung KH et al (2003) Association of caffeine intake and CYP1A2 genotype with ovarian cancer. Nutr Cancer 46(1):23–29

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Spriet LL (1995) Metabolic, catecholamine, and exercise performance responses to various doses of caffeine. J Appl Physiol 78(3):867–874

    PubMed  CAS  Google Scholar 

  • Graham TE, Hibbert E et al (1998) Metabolic and exercise endurance effects of coffee and caffeine ingestion. J Appl Physiol 85(3):883–889

    PubMed  CAS  Google Scholar 

  • Graham TE, Helge JW et al (2000) Caffeine ingestion does not alter carbohydrate of fat metabolism in human skeletal muscle during exercise. J Physiol 529(3):837–847

    Article  PubMed  CAS  Google Scholar 

  • Graham TE, Sathasivam P et al (2001) (2001) Caffeine ingestion elevates plasma insulin response in humans during an oral glucose tolerance test. Can J Physiol Pharmacol 79:559–565

    Article  PubMed  CAS  Google Scholar 

  • Greenberg JA, Axen KV et al (2005) Coffee, tea and diabetes: the role of weight loss and caffeine. Int J Obes (Lond) 29(9):1121–1129

    Article  CAS  Google Scholar 

  • Greenberg JA, Owen DR et al (2009) Decaffeinated coffee and glucose metabolism in young men. Diabetes Care 33(2):278–280

    Article  PubMed  CAS  Google Scholar 

  • Greer F, Hudson R et al (2001) Caffeine ingestion decreases glucose disposal during a hyperinsulinemic-euglycemic clamp in sedentary humans. Diabetes 50(10):2349–2354

    Article  PubMed  CAS  Google Scholar 

  • Hallström H, Wolk A et al (2006) Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporos Int 17:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Hammar N, Andersson T et al (2003) Association of boiled and filtered coffee with incidence of first nonfatal myocardial infarction: the SHEEP and the VHEEP study. J Intern Med 253:653–659

    Article  PubMed  CAS  Google Scholar 

  • Han XX, Bonen A (1998) Epinephrine translocates GLUT-4 but inhibits insulin-stimulated glucose transport in rat muscle. Am J Physiol 274(4Pt1):E700–E707

    PubMed  CAS  Google Scholar 

  • Han DH, Hansen PA et al (1998) Removal of adenosine decreases the responsiveness of muscle glucose transport to insulin and contractions. Diabetes 47(11):1671–1675

    Article  PubMed  CAS  Google Scholar 

  • Harris SS, Dawson-Hugues B (1994) Caffeine and bone loss in healthy postmenopausal women. Am J Clin Nutr 60:573–578

    PubMed  CAS  Google Scholar 

  • Health Canada (2007) Caffeine. http://www.hc-sc.gc.ca/fn-an/securit/facts-faits/caffeine_e.html. Cited 8 Feb 2010.

  • Herling AW, Burger H et al (1999) Alterations of carbohydrate and lipid intermediary metabolism during inhibition of glucose-6-phosphatase in rats. Eur J Pharmacol 368(1):75–82

    Article  Google Scholar 

  • Hernan MA, Takkouche B et al (2002) A meta-analysis of coffee drinking, cigarette smoking, and the risk of Parkinson’s disease. Ann Neurol 52(3):276–284

    Article  PubMed  Google Scholar 

  • Hernandez-Avila M, Colditz GA et al (1991) Caffeine, moderate alcohol intake, and risk of fractures of the hip and forearm in middle-aged women. Am J Clin Nutr 54:157–163

    PubMed  CAS  Google Scholar 

  • Higdon JV, Frei B (2006) Coffee and health: a review of recent human research. Crit Rev Food Sci Nutr 46:101–123

    Article  PubMed  CAS  Google Scholar 

  • Hilliare-Buys D, Gross R et al (1989) Effect of pertussis toxin on A1 receptor-mediated inhibition of insulin secretion. Br J Pharmacol 96:3–4

    Article  Google Scholar 

  • Homko CJ, Cheung P et al (2003) Effects of free fatty acids on glucose uptake and utilization in healthy women. Diabetes 52(2):487–491

    Article  PubMed  CAS  Google Scholar 

  • Honjo S, Kono S et al (2001) Coffee consumption and serum aminotransferases in middle-aged Japanese men. J Clin Epidemiol 54(8):823–829

    Article  PubMed  CAS  Google Scholar 

  • Howlett K, Galbo H et al (1999) Effect of adrenaline on glucose kinetics during exercise in adrenalectomised humans. J Phys 519(3):911–921

    Article  CAS  Google Scholar 

  • Hu G, Bidel S et al (2007) Coffee and tea consumption and the risk of Parkinson’s disease. Mov Disord 22(15):2242–2248

    Article  PubMed  Google Scholar 

  • Hu G, Tuomilehto J et al (2008) Joint effects of coffee consumption and serum gamma-glutamyltransferase on the risk of liver cancer. Hepatology 48(1):129–136

    Article  PubMed  Google Scholar 

  • Huxley R, Lee CMY et al (2009) Coffee, decaffeinated coffee, and tea consumption in relation to incident type 2 diabetes mellitus. Arch Intern Med 169(22):2053–2063

    Article  PubMed  Google Scholar 

  • Ingelman-Sundberg M, Sim SC et al (2006) Coffee, myocardial infarction, and CYP nomenclature. JAMA 296(7):764–765

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Yoshimi I et al (2005) Influence of coffee drinking on subsequent risk of hepatocellular carcinoma: a prospective study in Japan. J Natl Cancer Inst 97:293–300

    Article  PubMed  CAS  Google Scholar 

  • Inoue M, Kurahashi N et al (2009) Effect of coffee and green tea consumption on the risk of liver cancer: cohort analysis by hepatitis virus infection status. Cancer Epidemiol Biomark Prev 18(6):1746–1753

    Article  Google Scholar 

  • Ishitani K, Lin J et al (2008) Caffeine consumption and risk of breast cancer in a large prospective cohort of women. Arch Intern Med 168(18):2022–2031

    Article  PubMed  CAS  Google Scholar 

  • Itani SI, Ruderman NB et al (2002) Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 51(17):2005–2011

    Article  PubMed  CAS  Google Scholar 

  • Jacobson TL, Febbraio MA et al (2001) Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. Exp Physiol 86(1):137–144

    Article  PubMed  CAS  Google Scholar 

  • Je Y, Liu W et al (2009) Coffee consumption and risk of colorectal cancer: a systematic review and meta-analysis of prospective cohort studies. Int J Cancer 124:1662–1668

    Article  PubMed  CAS  Google Scholar 

  • Jee SH, He J et al (1999) The effect of chronic coffee drinking on blood pressure: a meta-analysis of controlled clinical trials. Hypertension 33:647–652

    Article  PubMed  CAS  Google Scholar 

  • Jee SH, He J et al (2001) Coffee consumption and serum lipids: a meta-analysis of randomized controlled clinical trials. Am J Epidemiol 153:353–362

    Article  PubMed  CAS  Google Scholar 

  • Johansson SM, Yang JN et al (2007) Eliminating the antilipolytic adenosine A1 receptor does not lead to compensatory changes in the antilipolytic actions of PGE2 and nicotinic acid. Acta Physiol (Oxf) 190(1):87–96

    Article  CAS  Google Scholar 

  • Johnston KL, Clifford MN et al (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr 78(4):728–733

    PubMed  CAS  Google Scholar 

  • Juliano LM, Griffiths RR (2004) A critical review of caffeine withdrawal: empirical validation of symptoms and signs, incidence, severity, and associated features. Psychopharmacology 176(1):1–29

    Article  PubMed  CAS  Google Scholar 

  • Jung RT, Shetty PS et al (1981) Caffeine: its effect on catecholamines and metabolism in lean and obese humans. Clin Sci (Lond) 60(5):527–535

    CAS  Google Scholar 

  • Kabagambe EK, Wellons MF (2009) Benefits and risk of caffeine and caffeinated beverages. In Eamranond P (ed) UpToDate, version 17.3

    Google Scholar 

  • Kacker S (2003) Ingestion of caffeinated coffee impairs blood glucose homeostasis in response to either high or low glycemic index cereals in non-obese males. Master thesis, University of Guelph

    Google Scholar 

  • Keijzers GB, DeGalan BE et al (2002) Caffeine can decrease insulin sensitivity in humans. Diabetes Care 25:364–369

    Article  PubMed  CAS  Google Scholar 

  • Kiel DP, Felson DT et al (1990) Caffeine and the risk of hip fracture: the Framingham study. Am J Epidemiol 132:675–684

    PubMed  CAS  Google Scholar 

  • Kleemola P, Jousilahti P et al (2000) Coffee consumption and the risk of coronary heart disease and death. Arch Intern Med 160:3393–3400

    Article  PubMed  CAS  Google Scholar 

  • Korpelainen R, Korpelainen J et al (2003) Lifestyle factors are associated with osteoporosis in lean women but not in normal and overweight women: a population-based cohort study of 1222 women. Osteoporos Int 14(1):34–43

    Article  PubMed  CAS  Google Scholar 

  • Kotsopoulos J, Ghadiria P et al (2007) The CYP1A2 genotype modifies the association between coffee consumption and breast cancer risk among BRCA1 mutation carriers. Cancer Epidemiol Biomark Prev 16(5):912–916

    Article  CAS  Google Scholar 

  • Kruszynska YT, Worrall DS et al (2002) Fatty acid-induced insulin resistance: decreases muscle PI3K activation but unchanged Akt phosphorylation. J Clin Endocrinol Metab 87(1):226–234

    Article  PubMed  CAS  Google Scholar 

  • Kurozawa Y, Ogimoto I et al (2005) Coffee and risk of death from hepatocellular carcinoma in a large cohort study in Japan. Br J Cancer 93:607–610

    Article  PubMed  CAS  Google Scholar 

  • La Vecchia C, Tavani A (2007) Coffee and cancer risk: an update. Eur J Cancer Prev 16:385–389

    Article  PubMed  Google Scholar 

  • Lane JD, Barkauskas CE et al (2004) Caffeine impairs glucose metabolism in type 2 diabetes. Diabetes Care 27(8):2047–2048

    Article  PubMed  CAS  Google Scholar 

  • Lane JD, Feinglos MN et al (2008) Caffeine increases ambulatory glucose and postprandial responses in coffee drinkers with type 2 diabetes. Diabetes Care 31(2):221–222

    Article  PubMed  CAS  Google Scholar 

  • Larsson SC, Bergkvist L et al (2006) Coffee consumption and incidence of colorectal cancer in two prospective cohort studies of Swedish women and men. Am J Epidemiol 163:638–644

    Article  PubMed  Google Scholar 

  • Lee S, Hudson R et al (2005) Caffeine ingestion is associated with reductions in glucose uptake independent of obesity and type 2 diabetes before and after exercise training. Diabetes Care 28(3):566–572

    Article  PubMed  CAS  Google Scholar 

  • Liang HX, Belardinelli L et al (2002) Tonic activity of the rat adipocyte A1-adenosine receptor. Br J Pharmacol 135(6):1457–1466

    Article  PubMed  CAS  Google Scholar 

  • Lloyd T, Johnson-Rollings N et al (2000) Bone status among postmenopausal women with different habitual caffeine intakes: a longitudinal investigation. J Am Coll Nutr 19(2):256–261

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia E, van Dam RM et al (2006) Changes in caffeine intake and long-term weight change in men and women. Am J Clin Nutr 83(3):674–680

    PubMed  CAS  Google Scholar 

  • Lopez-Garcia E, van Dam RM et al (2008) The relationship of coffee consumption with mortality. Ann Intern Med 148:904–914

    PubMed  Google Scholar 

  • Lopez-Garcia E, Rodriguez-Artalejo F et al (2009) Coffee consumption and risk of stroke in women. Circulation 119:1116–1123

    Article  PubMed  CAS  Google Scholar 

  • Lovallo WR, Wilson MF et al (2004) Blood pressure response to caffeine shows incomplete tolerance after short-term regular consumption. Hypertension 43:760–765

    Article  PubMed  CAS  Google Scholar 

  • Lundsberg LS (1998) Caffeine consumption. In: Spiller JA (ed) Caffeine, 1st edn. CRC Press, Boca Raton, FL

    Google Scholar 

  • Lynge J, Hellsten Y (2000) Distribution of adenosine A1, A2a and A2b receptors in human skeletal muscle. Acta Physiol Scand 169:283–290

    Article  PubMed  CAS  Google Scholar 

  • Maia L, de Mendonca A (2002) Does caffeine intake protect from Alzheimer’s disease? Eur J Neurol 9(4):377–382

    Article  PubMed  CAS  Google Scholar 

  • Martin EA, Nicholson WT et al (2006a) Bimodal distribution of vasodilator responsiveness to adenosine due to difference in nitric oxide contribution: implications for exercise hyperemia. J Appl Physiol 101(2):492–499

    Article  PubMed  CAS  Google Scholar 

  • Martin EA, Nicholson WT et al (2006b) Influences of adenosine receptor antagonism on vasodilator responses to adenosine and exercise in adenosine responders and nonresponders. J Appl Physiol 101(6):1678–1684

    Article  PubMed  CAS  Google Scholar 

  • Martin EA, Nicholson WT et al (2007) Adenosine transporter antagonism in humans augments vasodilator responsiveness to adenosine, but not exercise, in both adenosine responders and non-responders. J Physiol 59(Pt 1):237–245

    Article  CAS  Google Scholar 

  • Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22(9):1462–1470

    Article  PubMed  CAS  Google Scholar 

  • McCarthy MF (2005) A chlorogenic acid-induced increase in GLP-1 production may mediate the impacts of heavy coffee consumption on diabetes risk. Med Hypotheses 64:848–853

    Article  CAS  Google Scholar 

  • McLane MP, Black PR et al (1990) Adenosine reversal of in vivo hepatic responsiveness to insulin. Diabetes 39(1):62–69

    Article  PubMed  CAS  Google Scholar 

  • McLean C, Graham TE (2002) Effects of exercise and thermal stress on caffeine pharmacokinetics in men and eumenorrheic women. J Appl Physiol 93:1471–1478

    PubMed  CAS  Google Scholar 

  • Meier JJ, Goetze O et al (2004) Gastric inhibitory polypeptide does not inhibit gastric emptying in humans. Am J Physiol Endocrinol Metab 286:E621–E625

    Article  PubMed  CAS  Google Scholar 

  • Michels KB, Willet WC et al (2005) Coffee, tea, and caffeine consumption and incidence of colon and rectal cancer. J Natl Cancer Inst 97(4):282–292

    Article  PubMed  CAS  Google Scholar 

  • Mineharu Y, Koizumi A et al (2009) Coffee, green tea, black tea and oolong tea consumption and risk of mortality from cardiovascular disease in Japanese men and women. J Epidemiol Community Health, doi:10.1136/jech.2009.097311

    Google Scholar 

  • Misra A, Khurana L (2008) Obesity and the metabolic syndrome in developing countries. J Clin Endocrinol Metab 93:S9–S30

    Article  PubMed  CAS  Google Scholar 

  • Mohr T, Van Soeren M et al (1998) Caffein ingestion and metabolic responses of tetraplegic humans during electrical cycling. J Appl Psysiol 85(3):979–985

    CAS  Google Scholar 

  • Moisey LL, Kacker S et al (2008) Caffeinated coffee consumption impairs blood glucose homeostasis in response to high and low glycemic index meals in healthy men. Am J Clin Nutr 87(5):1254–1261

    PubMed  CAS  Google Scholar 

  • Moisey LL, Robinson LE et al (2009) Consumption of caffeinated coffee and a high carbohydrate meal affects postprandial metabolism of a subsequent oral glucose tolerance test in young, healthy males. Br J Nutr 103(6):833–841

    Article  PubMed  CAS  Google Scholar 

  • Montella M, Polesel J et al (2007) Coffee and tea consumption and risk of hepatocellular carcinoma in Italy. Int J Cancer 120(7):1555–1559

    Article  PubMed  CAS  Google Scholar 

  • Mukamal KJ, Hallqvist J et al (2009) Coffee consumption and mortality after acute myocardial infarction: the Stockholm Heart Epidemiology Program. Am Heart J 157:495–501

    Article  PubMed  Google Scholar 

  • Naganuma T, Kuriyama S et al (2007) Coffee consumption and risk of colorectal cancer: a prospective cohort study in Japan. Int J Cancer 120:1542–1547

    Article  PubMed  CAS  Google Scholar 

  • Nawrot P, Jordan S et al (2003) Effects of caffeine on human health. Food Addit Contam 20(1):1–30

    Article  PubMed  CAS  Google Scholar 

  • Nkondjock A, Ghadirian P et al (2006) Coffee consumption and breast cancer risk among BRCA1 and BRCA2 mutation carriers. Int J Cancer 118(1):103–107

    Article  PubMed  CAS  Google Scholar 

  • Norager CB, Jensen MB et al (2006) Metabolic effects of caffeine ingestion and physical work in 75-year old citizens. A randomized, double-blind, placebo-controlled, cross-over study. Clin Endocrinol 65:223–228

    Article  CAS  Google Scholar 

  • Nygard O, Refsum H et al (1997) Coffee consumption and plasma total homocysteine: the Hordaland Homocysteine Study. Am J Clin Nutr 65:136–143

    PubMed  CAS  Google Scholar 

  • Olmos V, Bardoni N et al (2009) Caffeine levels in beverages from Argentina’s market: application to caffeine dietary intake assessment. Food Addit Contam A Chem Anal Control Expos Risk Assess 26(3):275–281

    Article  CAS  Google Scholar 

  • Palatini P, Ceolotto G et al (2009) CYP1A2 genotype modifies the association between coffee intake and the risk of hypertension. J Hypertens 27(8):1594–1601

    Article  PubMed  CAS  Google Scholar 

  • Pelluchi C, La Vecchia C (2009) Alcohol, coffee, and bladder cancer risk: a review of epidemiological studies. Eur J Cancer Prev 18(1):62–68

    Article  Google Scholar 

  • Pencek RR, Battram D et al (2004) Portal vein caffeine infusion enhances net hepatic glucose uptake during a glucose load in conscious dogs. J Nutr 134(11):3042–3046

    PubMed  CAS  Google Scholar 

  • Pereira MA, Parker ED et al (2006) Coffee consumption and risk of type 2 diabetes mellitus: an 11-year prospective study of 28 812 postmenopausal women. Arch Intern Med 166(12):1311–1316

    Article  PubMed  Google Scholar 

  • Petrie HJ, Chown SE et al (2004) Caffeine ingestion increases the insulin response to an oral-glucose-tolerance test in obese men before and after weight loss. Am J Clin Nutr 80(1):22–28

    PubMed  CAS  Google Scholar 

  • Pizziol A, Tikhonoff V et al (1998) Effects of caffeine on glucose tolerance: a placebo-controlled study. Eur J Clin Nutr 52(11):846–849, Abstract

    Article  PubMed  CAS  Google Scholar 

  • Quinlan PT, Lane J et al (2000) The acute physiological and mood effects of tea and coffee: the role of caffeine level. Pharmacol Biochem Behav 66(1):19–28

    Article  PubMed  CAS  Google Scholar 

  • Ranheim T, Halvorsen B (2005) Coffee consumption and human health – beneficial or detrimental? Mechanisms for effects of coffee consumption on different risk factors for cardiovascular disease and type 2 diabetes mellitus. Mol Nutr Food Res 49:274–284

    Article  PubMed  CAS  Google Scholar 

  • Rapuri PB, Gallagher C et al (2001) Caffeine intake increases the rate of bone lose in elderly women and interacts with vitamin D receptor genotypes. Am J Clin Nutr 74:694–700

    PubMed  CAS  Google Scholar 

  • Reissig CJ, Strain ED et al (2009) Caffeinated energy drinks – a growing problem. Drug Alcohol Depend 99(1–3):1–10

    Article  PubMed  CAS  Google Scholar 

  • Reppert SM, Weaver DR (1991) Molecular cloning and characterization of a rat A1-adenosine receptor that is widely expressed in brain and spinal cord. Mol Endocrinol 5(8):1037–1048

    Article  PubMed  CAS  Google Scholar 

  • Ricksen NP, Rongen GA et al (2009) Acute and long-term cardiovascular effects of coffee: implications for coronary heart disease. Pharmacol Ther 121(2):185–191

    Article  CAS  Google Scholar 

  • Riksen NP, Smits P et al (2010) The cardiovascular effects of methylxanthines. In: Fredholm BB (ed) Methylxanthines. Springer, Heidelberg

    Google Scholar 

  • Robinson LE, Spafford et al (2009) Acute caffeine-induced impairment in insulin sensitivity in women with gestational diabetes mellitus. J Obstet Gynacol Can 31:304–312

    Google Scholar 

  • Robertson D, Wade D et al (1981) Tolerance to the humoral and hemodynamic effects of caffeine in man. J Clin Invest 67(4):1111–1117

    Article  PubMed  CAS  Google Scholar 

  • Robinson LE, Savani S et al (2004) Caffeine ingestion before an oral glucose tolerance test impairs blood glucose management in men with type 2 diabetes. J Nutr 134(10):2528–2533

    PubMed  CAS  Google Scholar 

  • Rosner SA, Akesson A et al (2006) Coffee consumption and risk of myocardial infarction among older Swedish women. Am J Epidemiol 165:288–293

    Article  PubMed  Google Scholar 

  • Ruhl CE, Everhart JE (2005a) Coffee and caffeine consumption reduce the risk of elevated serum alanine aminotransferase activity in the United States. Gastroenterology 128(1):24–32

    Article  PubMed  CAS  Google Scholar 

  • Ruhl CE, Everhart JE (2005b) Coffee and tea consumption are associated with a lower incidence of chronic liver disease in the United States. Gastroenterology 129(6):1928–1936

    Article  PubMed  Google Scholar 

  • Rush JW, Spriet LL (2001) Skeletal muscle glycogen phosphorylase a kinetics: effects of adenine nucleotides and caffeine. J Appl Physiol 91(5):2071–2078

    PubMed  CAS  Google Scholar 

  • Salazar-Martinez E, Willet WC et al (2004) Coffee consumption and risk for type 2 diabetes mellitus. Ann Intern Med 140(1):1–8

    PubMed  Google Scholar 

  • Sandhu H, Wiesenthal SR et al (1999) Glucagon-like peptide 1 increases insulin sensitivity in depancreatized dogs. Diabetes 48(5):1045–1053

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Takaoka I et al (1987) Effects of sucrose or caffeine ingestion on running performance and biochemical responses to endurance running. Int J Sports Med 8(3):203–207

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J (2010) Methylxanthines and pain. In: Fredholm BB (ed) Methylxanthines. Springer, Heidelberg

    Google Scholar 

  • Schulte G, Fredholm BB (2003) Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 15(9):813–827

    Article  PubMed  CAS  Google Scholar 

  • Shearer J, Farah A et al (2003) Quinides of roasted coffee enhance insulin action in conscious rats. J Nutr 133(11):3529–3532

    PubMed  CAS  Google Scholar 

  • Shearer J, Sellars EA et al (2007) Effects of chronic coffee consumption on glucose kinetics in the conscious rat. Can J Physiol Pharmacol 85:823–830

    Article  PubMed  CAS  Google Scholar 

  • Shimazu T, Tsuborno Y et al (2005) Coffee consumption and the risk of primary liver cancer: pooled analysis of two prospective studies in Japan. Int J Cancer 116(1):150–154

    Article  PubMed  CAS  Google Scholar 

  • Silletta MG, Marfisi RM et al (2007) Coffee consumption and risk of cardiovascular events after acute myocardial infarction: results from the GISSS (Gruppo italiano per lo studio della sopravvievenza nell’infarto miocardico) – prevenzione trial. Circulation 116:2944–2951

    Article  PubMed  CAS  Google Scholar 

  • Smith B, Wingard DL et al (2006) Does coffee consumption reduce the risk of type 2 diabetes in individuals with impaired glucose? Diabetes Care 29:2385–2390

    Article  PubMed  Google Scholar 

  • Smits P, Hoffmann H et al (1983) Hemodynamic and humoral effects of coffee after beta 1-selective and nonselective beta-blockade. Clin Pharmacol Ther 34(2):153–158

    Article  PubMed  CAS  Google Scholar 

  • Smits P, Lenders JW et al (1990) Caffeine and theophylline attenuate adenosine-induced vasodilation in humans. Clin Pharmacol Ther 48(4):410–418

    Article  PubMed  CAS  Google Scholar 

  • Smits P, Stratman C et al (1991) Dose-dependent inhibition of the hemodynamic response to dipyridamole by caffeine. Clin Pharmacol Ther 50(5 Pt 1):529–537

    Article  PubMed  CAS  Google Scholar 

  • Stamler J, Vaccaro O et al (1993) Diabetes, other risk factors, and 12-yr cardiovascular mortality for men screened in the Multiple Risk Factor Intervention Trial. Diabetes Care 16(2):434–444

    Article  PubMed  CAS  Google Scholar 

  • Tan EK, Tan C et al (2003) Dose-dependent protective effects of coffee, tea, and smoking in Parkinson’s disease: a study in ethnic Chinese. J Neurol Sci 216(1):163–167

    Article  PubMed  Google Scholar 

  • Tanaka K, Hara M et al (2007) Inverse association between coffee drinking and the risk of hepatocellular carcinoma: a case-control study in Japan. Cancer Sci 98(2):214–218

    Article  PubMed  CAS  Google Scholar 

  • Thom E (2007) The effect of chlorogenic acid enriched coffee on glucose absorption in healthy volunteers and its effect on body mass when used long-term in overweight and obese people. J Int Med Res 35:900–908

    PubMed  CAS  Google Scholar 

  • Thong FSL, Graham TE (2002) Caffeine-induced impairment of glucose tolerance is abolished by beta-adrenergic receptor blockade in humans. J Appl Physiol 92(6):2347–2352

    PubMed  CAS  Google Scholar 

  • Thong FSL, Derave W et al (2002) Caffeine-induced impairment of insulin action but not insulin signaling in human skeletal muscle is reduced by exercise. Diabetes 51(3):583–590

    Article  PubMed  CAS  Google Scholar 

  • Thong FS, Lally JS et al (2007) Activation of the A1 adenosine receptor increases insulin-stimulated glucose transport in isolated rat soleus muscle. Appl Physiol Nutr Metab 32(4):701–710

    Article  PubMed  CAS  Google Scholar 

  • Töpfer M, Burbeil CE et al (2008) Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: the possible contribution of 86Rb+ efflux and 45Ca+ uptake. Cell Biochem Funct 26:833–843

    Article  PubMed  CAS  Google Scholar 

  • Tse SYH (1991) Coffee contains cholinomimetic compound distinct from caffeine. 1: purification and chromatographic analysis. J Pharm Sci 80:665–669

    Article  PubMed  CAS  Google Scholar 

  • Tse SYH (1992) Cholinomimetic compound distinct from caffeine contained in coffee. II: Muscarinic actions. J Pharm Sci 81:449–452

    Article  PubMed  CAS  Google Scholar 

  • Tunicliffe JM, Shearer J (2008) Coffee, glucose homeostasis, and insulin resistance: physiological mechanisms and mediators. Appl Physiol Nutr Metab 33:1290–1300

    Article  CAS  Google Scholar 

  • Tunicliffe JM, Erdman KA et al (2008) Consumption of dietary caffeine and coffee in physically active populations: physiological interactions. Appl Physiol Nutr Metab 33:1301–1310

    Article  CAS  Google Scholar 

  • Tuomilehto J, Hu G et al (2004) Coffee consumption and risk of type 2 diabetes mellitus among middle-aged Finnish men and women. JAMA 291(10):1213–1219

    Article  PubMed  CAS  Google Scholar 

  • van Dam RM (2008) Coffee consumption and risk of type 2 diabetes, cardiovascular disease, and cancer. Appl Physiol Nutr Metab 33:1269–1283

    Article  PubMed  Google Scholar 

  • van Dam RM, Hu FB (2005) Coffee consumption and risk of type 2 diabetes: a systematic review. JAMA 294(1):97–104

    Article  PubMed  Google Scholar 

  • van Dam RM, Willett WC et al (2006) Coffee, caffeine, and risk of type 2 diabetes. Diabetes Care 29(2):398–403

    Article  PubMed  Google Scholar 

  • van Dijk AE, Olthof MR et al (2009) Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care 32:1023–1025

    Article  PubMed  CAS  Google Scholar 

  • Van Dusseldorp M, Katan MB et al (1991) Cholesterol-raising factor from boiled coffee does not pass a paper filter. Arterioscler Thromb Vasc Biol 11:586–593

    Article  Google Scholar 

  • Van Nieuwenhoven MA, Brummer RM et al (2000) Gastrointestinal function during exercise: comparison of water, sports drink, and sports drink with caffeine. J Appl Physiol 89(3):1079–1085

    PubMed  Google Scholar 

  • Van Soeren MH, Nohr T et al (1996) Acute effects of caffeine ingestion at rest in humans with impaired epinephrine responses. J Appl Physiol 80:999–1005

    Google Scholar 

  • Van Soeren MH, Sathasivam P et al (1993) Caffeine metabolism and epinephrine responses during exercise in users and nonusers. J Appl Physiol 75(2):805–812

    PubMed  Google Scholar 

  • Vergauwen L, Hespel P et al (1994) Adenosine receptors mediate synergistic stimulation of glucose uptake and transport by insulin and by contractions in rat skeletal muscle. J Clin Invest 93:974–981

    Article  PubMed  CAS  Google Scholar 

  • Vergauwen L, Richter EA et al (1997) Adenosine exerts a glycogen-sparing action in contracting rat skeletal muscle. Am J Physiol 272(5Pt1):E762–E768

    PubMed  CAS  Google Scholar 

  • Villanueva CM, Silverman DT et al (2009) Coffee consumption, genetic susceptibility and bladder cancer risk. Cancer Causes Control 20(1):121–127

    Article  PubMed  Google Scholar 

  • Wei Y, Mojsov S (1996) Distribution of GLP-1 and PACAP receptors in human tissues. Acta Physiol Scand 157(3):355–357

    Article  PubMed  CAS  Google Scholar 

  • World Health Organization (2010) Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/print.html. Accessed 10 Feb 2010

  • Wu T, Willet WC et al (2005) Caffeinated coffee, decaffeinated coffee, and caffeine in relation to plasma C-peptide levels, a marker of insulin secretion, in U.S. women. Diabetes Care 28:1390–1396

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Sasaki S et al (2009) Estimation of caffeine intake in Japanese adults using 16 d weighed diet records based on a food composition database newly developed for Japanese populations. Public Health Nutr 16:1–10

    Google Scholar 

  • Yeo SE, Jentjens RL et al (2005) Caffeine increases exogenous carbohydrate oxidation during exercise. J Appl Physiol 99(3):844–850

    Article  PubMed  CAS  Google Scholar 

  • Zeegers MP, Tan FE et al (2001) Are coffee and tea consumption associated with urinary tract cancer risk? Int J Epidemiol 30(2):353–362

    Article  PubMed  CAS  Google Scholar 

  • Zhang WL, Lopez-Garcia E et al (2009) Coffee consumption and risk of cardiovascular events and all-cause mortality among women with type 2 diabetes. Diabetologia 52:810–817

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work by the authors was supported by the Natural Science and Engineering Research Council of Canada (NSERC). M.-S.B. received an Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terry E. Graham .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Beaudoin, MS., Graham, T.E. (2011). Methylxanthines and Human Health: Epidemiological and Experimental Evidence. In: Methylxanthines. Handbook of Experimental Pharmacology, vol 200. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13443-2_21

Download citation

Publish with us

Policies and ethics