Skip to main content

Abstract

In the previous chapter, a mathematical approach has been introduced for determining the thermomechanical response in skin tissue, e.g. that induced by electromagnetic heating whereby simulating medical treatments. Whilst insightful, there are, nonetheless, some limitations, where the main deficiency is that the skin tissue is assumed to have constant properties due to the comparatively few relative studies. More experiments are thus needed to better understand the variation in properties with temperature and the corresponding collagen denaturation, so that these properties can be reliably used in future, more sophisticated models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shergold O A, Fleck N A, Radford D. The uniaxial stress versus strain response of pig skin and silicone rubber at low and high strain rates. International Journal of Impact Engineering, 2006, 32(9): 1384–1402.

    Google Scholar 

  2. Douglas W R. Of pigs and men and research: A review of applications and analogies of the pig, sus scrofa, in human medical research. Space and Life Sciences, 1972, 3(3): 226–234.

    Google Scholar 

  3. Johnson T E, Mitchell M A, Rico P J, et al. Corneal and skin laser exposures from 1540 nm laser pulses. Laser-Tissue Interactions XI: Photochemical, Photothermal, and Photomechanical. SPIE, 2001: 222–229.

    Google Scholar 

  4. Meyer W, Schwarz R, Neurand K. The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Current Problems in Dermatology, 1978, 7: 39–52.

    Google Scholar 

  5. Shergold O A, Fleck N A. Experimental investigation into the deep penetration of soft solids by sharp and blunt punches, with application to the piercing of skin. Journal of Biomechanical Engineering, 2005, 127(5): 838–848.

    Google Scholar 

  6. Middelkoop E, van den Bogaerdt A J, Lamme E N, et al. Porcine wound models for skin substitution and burn treatment. Biomaterials, 2004, 25(9): 1559–1567.

    Google Scholar 

  7. Meyer W, Kacza J, Zschemisch N H, et al. Observations on the actual structural conditions in the stratum superficiale dermidis of porcine ear skin, with special reference to its use as model for human skin. Annals of Anatomy, 2007, 189(2): 143–156.

    Google Scholar 

  8. Ankerson J. Puncture resistance and tensile strength of skin stimulants. Proceedings of the Institution of Mechanical Engineers, 1999, 213(Part H): 493–501.

    Google Scholar 

  9. Meyer W, Zschemisch N H, Godynicki S. The porcine ear skin as a model system for the human integument: Influences of storage conditions on basic features of epidermis structure and function—a histological and histochemical study. Polish Journal of Veterinary Sciences, 2003, 6(1): 17–28.

    Google Scholar 

  10. Wright D M, Wiig H, Winlove C P, et al. Simultaneous measurement of interstitial fluid pressure and load in rat skin after strain application in vitro. Annals of Biomedical Engineering, 2003, 31(10): 1246–1254.

    Google Scholar 

  11. Holtzhauer M. Basic Methods for the Biochemical Lab. New York: Springer-Verlag, 2006.

    Google Scholar 

  12. Essenpreis M. Thermally Induced Changes in Optical Properties of Biological Tissues [Ph. D. Thesis]. London: University College London, 1992.

    Google Scholar 

  13. Lin W, Motamedi M M, Welch A J. Dynamics of tissue optics during laser heating of turbid media. Applied Optics, 1996, 35(19): 3413–3420.

    Google Scholar 

  14. Diridollou S, Vabre V, Berson M, et al. Skin ageing: Changes of physical properties of human skin in vivo. International Journal of Cosmetic Science, 2001, 23(6): 353–362.

    Google Scholar 

  15. Choi H S, Vito R P. Two-dimensional stress-strain relationship for canine pericardium. Journal of Biomechanical Engineering, 1990, 112(2): 153–159.

    Google Scholar 

  16. Young G S. Thermodynamic characterization of skin, hide and similar materials composed of fibrous collagen. Studies in Conservation, 1998, 43(2): 65–79.

    Google Scholar 

  17. Schiller R, Funke A P, Gunther C. DSC measurements on full thickness mice skin: An additional tool to investigate permeation enhancement of highly lipophilic drugs. Journal of Thermal Analysis and Calorimetry, 2004, 77(2): 497–510.

    Google Scholar 

  18. Wright N T, Humphrey J D. Denaturation of collagen via heating: An irreversible rate process. Annual Review of Biomedical Engineering, 2002, 4: 109–128.

    Google Scholar 

  19. Wells P B. Thermal Alteration of Collagenous Tissue Subjected to Biaxial Isometric Constraints [Ph. D. Thesis]. Texas: Texas A & M University, 2005.

    Google Scholar 

  20. Downs J, Halperin H R, Humphrey J D, et al. An improved video-based computer tracking system for soft-biomaterials testing. IEEE Transactions on Biomedical Engineering, 1990, 37(9): 903–907.

    Google Scholar 

  21. Malcolm D T K, Nielsen P M F, Hunter P J, et al. Strain measurment in biaxially loaded inhomogeneous, anisotropic elastic membranes. Biomechanics and Modeling in Mechanobiology, 2002, 1(3): 197–210.

    Google Scholar 

  22. Shergold O A, The Mechanics of Needle-Free Injection [Ph. D. Thesis]. Cambridge: University of Cambridge, 2004.

    Google Scholar 

  23. Reihsner R, Menzel E. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics, 1998, 31(11): 985–993.

    Google Scholar 

  24. Elsner P, Wilhelm D, Maibach H I. Mechanical properties of human forearm and vulvar skin. British Journal of Dermatology, 1990, 122(5): 607–614.

    Google Scholar 

  25. Fung Y C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer-Verlag, 1993.

    Google Scholar 

  26. Pan L, Zan L, Foster F S. Ultrasonic and viscoelastic properties of skin under transverse mechanical stress in vitro. Ultrasound in Medicine and Biology, 1998, 24(7): 995–1007.

    Google Scholar 

  27. Hermanns-Le T, Uhoda I, Smitz S, et al. Skin tensile properties revisited during ageing. Where now, where next? Journal of Cosmetic Dermatology, 2004, 3(1): 35–40.

    Google Scholar 

  28. Pailler-Mattei C, Zahouani H. Study of adhesion forces and mechanical properties of human skin in vivo. Journal of Adhesion Science and Technology, 2004, 15(16): 1739–1758.

    Google Scholar 

  29. Lanir Y. Biaxial stress relaxation in skin. Annals of Biomedical Engineering, 1976, 4(3): 250–270.

    Google Scholar 

  30. Arumugam V, Naresh M, Sanjeevi R. Effect of strain rate on the fracture behaviour of skin. Journal of Biosciences, 1994, 19(3): 307–313.

    Google Scholar 

  31. Wu J Z, Cutlip R G, Welcome D, et al. Estimation of the viscous properties of skin and subcutaneous tissue in uniaxial stress relaxation tests. Bio-Medical Materials and Engineering, 2006, 16(1): 53–66.

    Google Scholar 

  32. Battaglia T C. GDF-5 deficiency alters stress-relaxation properties in mouse skin. Journal of Dermatological Science, 2005, 39(3): 192–195.

    Google Scholar 

  33. Reihsner R, Menzel E J. Two-dimensional stress-relaxation behavior of human skin as influenced by non-enzymatic glycation and the inhibitory agent aminoguanidine. Journal of Biomechanics, 1998, 31(11): 985–993.

    Google Scholar 

  34. Vogel H G. Tensile strength, relaxation and mechanical recovery in rat skin as influenced by maturation and age. Journal of Medicine, 1976, 7(2): 177–188.

    Google Scholar 

  35. Vogel H G. Stress relaxation in rat skin after treatment with hormones. Journal of Medicine, 1973, 4(1): 19–27.

    Google Scholar 

  36. Lange L, Echt M, Kirsch K, et al. Studies in stress-relaxation and distensibility characteristics of small skin veins in vivo by a combined photoelectric-photographic and plethysmographic technique. European Journal of Physiology, 1972, 337(4): 311–322.

    Google Scholar 

  37. Pierard G E. EEMCO guidance to the in vivo assessment of tensile functional properties of the skin, Part 1: Relevance to the structures and ageing of the skin and subcutaneous tissues. Skin Pharmacology and Applied Skin Physiology, 1999, 12(6): 352–362.

    Google Scholar 

  38. Chae Y, Aguilar G, Lavernia E J, et al. Characterization of temperature dependent mechanical behavior of cartilage. Lasers in Surgery and Medicine, 2003, 32(4): 271–278.

    Google Scholar 

  39. Chao K K H, Burden M A, Wong B J F. Dynamic changes in the elastic modulus of lagomorph nasal septal cartilage during Nd:YAG laser irradiation. Society of Photo-Optical Instrumentation Engineers, 2001, 4257: 247–254.

    Google Scholar 

  40. Yamashita J, Li X, Furman B R, et al. Collagen and bone viscoelasticity: A dynamic mechanical analysis. Journal of Biomedical Materials, 2002, 63(1): 31–36.

    Google Scholar 

  41. Mano J F. Viscoelastic properties of bone: Mechanical spectroscopy studies on a chicken model. Materials Science and Engineering C, 2005, 25(2): 145–152.

    MathSciNet  Google Scholar 

  42. Alexander H, Cook T H. Variations with age in the mechanical properties of human skin in vivo //Kennedy R M. Bedsore Biomechanics. Bath: McMillan Press, 1976, 16: 109–118.

    Google Scholar 

  43. Silver F H, Kato Y P, Ohno M, et al. Analysis of mammalian connective tissue: Relationship between hierarchical structures and mechanical properties. Journal of Long-Term Effects of Medical Implants, 1992, 2(2–3): 165–198.

    Google Scholar 

  44. Davidson J M, Giro M, Sutclie M, et al. Regulation of elastin synthesis//Tamburro A M, Davidson J M. Elastin: Chemical and Biological Aspects. Galatina: Congedo Editore, 1990.

    Google Scholar 

  45. Baek S, Wells P B, Rajagopal K R, et al. Heat-induced changes in the finite strain viscoelastic behavioir of a collaagenous tissue. Journal of Biomechanical Engineering, 2005, 127(4): 580–586.

    Google Scholar 

  46. Eshel H, Lanir Y. Effects of strain level and proteoglycan depletion on preconditioning and viscoelastic responses of rat dorsal skin. Annals of Biomedical Engineering, 2001, 29(2): 164–172.

    Google Scholar 

  47. Henriques F C, Moritz A R. Studies of thermal injury, I. The conduction of heat to and through skin and the temperatures attained therein. A theoretical and an experimental investigation. The Journal of Pathology, 1947, 23(4): 531–549.

    Google Scholar 

  48. Weir C E. Rate of shrinkage of tendon collagen-heat, entropy, and free energy of activation of the shrinkage of untreated tendon. Effect of acid, salt, pickle, and tannage on the activation of tendon collagen. Journal of the American Leather Chemists Association, 1949, 44: 108–140.

    Google Scholar 

  49. Pietrucha K. Changes in denaturation and rheological properties of collagen-hyaluronic acid scaflolds as a result of temperature dependencies. International Journal of Biological Macromolecules, 2005, 36(5): 299–304.

    Google Scholar 

  50. Ozawa T. Kinetic analysis of derivatives curves in thermal analysis. Journal of Thermal Analysis and Calorimetry, 1970, 2: 301–324.

    Google Scholar 

  51. Miles C A. Kinetics of collagen denaturation in mammalian lens capsules studied by differential scanning calorimetry. International Journal of Biological Macromolecules, 1993, 15(5): 265–271.

    Google Scholar 

  52. Miles C A, Burjanadze T V, Bailey A J. The kinetics of the thermal denaturation of collagen in unrestrained rat tail tendon determined by differential scanning calorimetry. Journal of Molecular Biology, 1995, 245(4): 437–446.

    Google Scholar 

  53. Humphrey J D. Continuum thermomechanics and the clinical treatment of disease and injury. Applied Mechanics Reviews, 2003, 56(2): 231–260.

    Google Scholar 

  54. Dunn M G, Silver F H, Swann D A. Mechanical analysis of hypertrophic scar tissue: Structural basis for apparent increased rigidity. Journal of Investigative Dermatology, 1985, 84(1): 9–13.

    Google Scholar 

  55. Veronda D R, Westmann R A. Mechanical characterization of skin-finite de-formations. Journal of Biomechanics, 1970, 3(1): 111–124.

    Google Scholar 

  56. Luescher M, Ruegg M, Schindler P. Effect of hydration upon the thermal stability of tropocollagen and its dependence on the presence of neutral salts. Biopolymers, 1974, 13(12): 2489–2503.

    Google Scholar 

  57. Rubin L R. Langer’s lines and facial scars. Plastic and Reconstructive Surgery, 1948, 3: 147–155.

    Google Scholar 

  58. Von Gierke H E. Biomechanics of impact injury. Proceedings of the Impact Acceleration Stress Symposium, National Academy of Sciences, 1962, Publication No. 977.

    Google Scholar 

  59. North J F, Gibson F. Volume compressibility of human abdominal skin. Journal of Biomechanics, 1978, 11(4): 203–207.

    Google Scholar 

  60. Cox H. The cleavage lines of the skin. British Journal of Surgery, 1941, 29: 234.

    Google Scholar 

  61. Vossoughi J, Vaishnav R N. Comments on the paper “Volume compressibility of human abdominal skin”. Journal of Biomechanics, 1979, 12(6): 481.

    Google Scholar 

  62. Wu J Z, Dong R G, Smutz W P, et al. Non-linear and viscoelastic characteristics of skin under compression: Experiment and analysis. Bio-Medical Materials and Engineering, 2003, 13(4): 373–385.

    Google Scholar 

  63. Ankersen J, Birkbeck A E, Thomson R D, et al. Puncture resistance and tensile strength of skin simulants. Journal of Engineering in Medicine, 1999, 213(6): 493–501.

    Google Scholar 

  64. Glaser A A, Marangoni R D, Must J S, et al. Refinements in the methods for the measurement of the mechanical properties of unwounded and wounded skin. Medical Electronics and Biological Engineering, 1965, 3(4): 411–419.

    Google Scholar 

  65. Ridge M D, Wright V. The directional effects of skin. A bio-engineering study of skin with particular reference to Langer’s lines. Journal of Investigative Dermatology, 1966, 46(4): 341–346.

    Google Scholar 

  66. Jamison C E, Marangoni R D, Glaser A A. Viscoelastic properties of soft tissue by discrete model characterization. ASME New York, 1967: 9.

    Google Scholar 

  67. Fung Y C. Biomechanics, its scope, history and some problems of continuum mechanics in physiology. Applied Mechanics Reviews, 1968, 21(1): 1–20.

    Google Scholar 

  68. Wu J Z, Dong R G, Rakheja S, et al. Simulation of mechanical responses of fingertip to dynamic loading. Medical Engineering and Physics, 2002, 24(4): 253–264.

    Google Scholar 

  69. Wan A W. Biaxial tension test of human skin in vivo. Bio-Medical Materials and Engineering, 1994, 4: 473–486.

    Google Scholar 

  70. Wu J Z, Cutlip R G, Andrew M E, et al. Simultaneous determination of the nonlinear-elastic properties of skin and subcutaneous tissue in unconfined compression tests. Skin Research and Technology, 2007, 13(1): 34–42.

    Google Scholar 

  71. Tregear R T, Dirnhuber P. Viscous flow in compressed human and rat skin. Journal of Investigative Dermatology, 1965, 45: 119–125.

    Google Scholar 

  72. Dikstein S, Hartzshtark A. What does low-pressure indentometry measure. Arzt Kosmetol, 1983, 16: 327–328.

    Google Scholar 

  73. Vogel H G. Antagonistic effect of aminoacetonitrile and prednisolone on mechanical properties of rat skin. Biochimica et Biophysica Acta, 1971, 252(3): 580–585.

    Google Scholar 

  74. Ranu H S, Burlin T E, Hutton W C. The effects of X-irradiation on the mechanical properties of skin. Physics in Medicine and Biology, 1975, 20(1): 96–105.

    Google Scholar 

  75. Jansen L H, Rottier P B. Comparison of the mechanical properties of strips of human abdominal skin excised from below and from above the umbilic. Dermatologica, 1958, 117(4): 252–258.

    Google Scholar 

  76. Jansen L H, Rottier P B. Some mechanical properties of human abdominal skin measured on excised strips: A study of their dependence on age and how they are influenced by the presence of striae. Dermatologica, 1958, 117(2): 65–83.

    Google Scholar 

  77. Smalls L K, Wickett R R, Visscher M O. Effect of dermal thickness, tissue composition, and body site on skin biomechanical properties. Skin Research and Technology, 2006, 12(1): 43–49.

    Google Scholar 

  78. Pierard G E, Letawe C, Dowlati A, et al. Effect of hormone replacement therapy for menopause on the mechanical properties of skin. Journal of the American Geriatrics Society, 1995, 43(6): 662–665.

    Google Scholar 

  79. Pierard G E, Nikkels-Tassoudji N, Pierard-Franchimont C. Influence of the test area on the mechanical properties of skin. Dermatology, 1995, 191(1): 9–15.

    Google Scholar 

  80. Lennox F G. Shrinkage of collagen. Biochimica et Biophysica Acta, 1949, 3: 170–187.

    Google Scholar 

  81. Chachra D, Gratzer P F, Pereira C A, et al. Effect of applied uniaxial stress on rate and mechanical effects of cross-linking in tissue-derived biomaterials. Biomaterials, 1996, 17(19): 1865–1875.

    Google Scholar 

  82. Chen S S, Humphrey J D. Heat-induced changes in the mechanics of a collagenous tissue: Pseudoelastic behavior at 37 degrees C. Journal of Biomechanics, 1998, 31(3): 211–216.

    Google Scholar 

  83. Harris J L, Wells P B, Humphrey J D. Altered mechanical behavior of epicardium due to isothermal heating under biaxial isotonic loads. Journal of Biomechanical Engineering, 2003, 125(3): 381–388.

    Google Scholar 

  84. Wells P B, Harris J L, Humphrey J D. Altered mechanical behavior of epi-cardium under isothermal biaxial loading. Journal of Biomechanical Engineering, 2004, 126(4): 492–497.

    Google Scholar 

  85. Lanir Y. Skin mechanics//Skalak R, Chien S. Handbook of Bioengineering. New York: McGraw-Hill, 1987: 11.11–11.25.

    Google Scholar 

  86. Hormann H, Schlebusch H. Reversible and irreversible denaturation of collagen fibers. Biochemistry, 1971, 10(6): 932–937.

    Google Scholar 

  87. Yip C P, Walker D, Fernlund G, et al. Role of dermal fibroblasts in rat skin tissue biomechanics. Bio-Medical Materials and Engineering, 2007, 17(2): 109–117.

    Google Scholar 

  88. Giles J M, Black A E, Bischoff J E. Anomalous rate dependence of the precon-ditioned response of soft tissue during load controlled deformation. Journal of Biomechanics, 2007, 40(4): 777–785.

    Google Scholar 

  89. Vogel H G, Hilgner W. Influence of age and of desmotropic drugs on the step phenomenon observed in rat skin. Archives of Dermatological Research, 1979, 264(2): 225–241.

    Google Scholar 

  90. Arumugam V, Naresh M D, Sanjeevi R. Effect of strain rate on the fracture behaviour of skin. Journal of Biosciences, 1994, 19(3): 307–313.

    Google Scholar 

  91. Jamison C E, Marangoni R D, Glaser A A. Viscoelastic properties of soft tissue by discrete model characterization. Journal of Biomechanics, 1968, 1(1): 33–36.

    Google Scholar 

  92. Vogel H G, Hilgner W. The “step phenomenon” as observed in animal skin. Journal of Biomechanics, 1979, 12(1): 75–81.

    Google Scholar 

  93. Cohen R E, Hooley C J, McCrum N G. Viscoelastic creep of collagenous tissue. Journal of Biomechanics, 1976, 9(4): 175–184.

    Google Scholar 

  94. Haut R C. The sensitivity of skin to strain rate of loading. 7th Annual Meeting of the American Society of Biomechanics. Rochester, 1983.

    Google Scholar 

  95. Daly C H. Biomechanical properties of dermis. Journal of Investigative Dermatology, 1982, 79(Suppl. 1): 17s–20s.

    MathSciNet  Google Scholar 

  96. Li J T, Armstrong C G, Mow V C. The effect of strain rate on mechanical properties of articular cartilage in tension. ASME Biomechanics Symposium, 1983: 117–120.

    Google Scholar 

  97. Lakes R S, Viscoelastic Solids. Boca Raton: CRC Press, 1998.

    Google Scholar 

  98. Fung Y C. Stress-strain history relations of soft tissues in simple elongation//Fung Y C, Perrone N, Anliker M. Biomechanics: Its Foundations and Objectives. Englewood Cliffs: Prentice-Hall, 1971: 181–208.

    Google Scholar 

  99. Ledoux W R, Blevins J J. The compressive material properties of the plantar soft tissue. Journal of Biomechanics, 2007, 40(13): 2975–2981.

    Google Scholar 

  100. Decraemer W F, Maes M A, Vanhuyse V J, et al. A non-linear viscoelastic constitutive equation for soft biological tissues based upon a structural model. Journal of Biomechanics, 1980, 13(7): 559–564.

    Google Scholar 

  101. Moon D K, Woo S L, Takakura Y, et al. The effects of refreezing on the viscoelastic and tensile properties of ligaments. Journal of Biomechanics, 2006, 39(6): 1153–1157.

    Google Scholar 

  102. Defrate L E, Li G. The prediction of stress-relaxation of ligaments and tendons using the quasi-linear viscoelastic model. Biomechanics and Modeling in Mechanobiology, 2007, 6(4): 245–251.

    Google Scholar 

  103. Funk J R, Hall G W, Crandall J R, et al. Linear and quasi-linear viscoelastic characterization of ankle ligaments. Journal of Biomechanical Engineering, 2000, 122(1): 15–22.

    Google Scholar 

  104. Woo S L Y, Simon B R, Kuei S C, et al. Quasi-linear viscoelastic properties of normal articular cartilage. Journal of Biomechanical Engineering, 1980, 102(2): 85–90.

    Google Scholar 

  105. Simon B R, Coats R S, Woo S L Y. Relaxation and creep quasilinear viscoelastic models for normal articular cartilage. Journal of Biomechanical Engineering, 1984, 106(2): 159–164.

    Google Scholar 

  106. Sarver J J, Robinson P S, Elliott D M. Methods for quasi-linear viscoelastic modeling of soft tissue: Application to incremental stress-relaxation experiments. Journal of Biomechanical Engineering, 2003, 125(5): 754–758.

    Google Scholar 

  107. Johnson G A, Tramaglini D M, Levine R E, et al. Tensile and viscoelastic properties of human patellar tendon. Journal of Orthopaedic Research, 1994, 12(6): 796–803.

    Google Scholar 

  108. Carew E O, Talman E A, Boughner D R, et al. Quasi-linear viscoelastic theory applied to internal shearing of porcine aortic valve leaflets. Journal of Biomechanical Engineering, 1999, 121(4): 386–392.

    Google Scholar 

  109. Lin H C, Kwan M K, Woo S L Y. On the stress relaxation properties of anterior cruciate ligament (ACL). Advances in Bioengineering, 1987: 5–6.

    Google Scholar 

  110. Kwan M K, Lin T H, Woo S L. On the viscoelastic properties of the anteromedial bundle of the anterior cruciate ligament. Journal of Biomechanics, 1993, 26(4–5): 447–452.

    Google Scholar 

  111. Myers B, McElhaney J, Nightingale R, et al. Experimental limitations of quasi-linear theory, and a method for reducing these effects. Advances in Bioengineering, 1991, BED-20: 139–142.

    Google Scholar 

  112. Dortmans L J, Sauren A A, Rousseau E P. Parameter estimation using the quasi-linear viscoelastic model proposed by Fung. Journal of Biomechanical Engineering, 1984, 106(3): 198–203.

    Google Scholar 

  113. Nigul I, Nigul U. On algorithms of evaluation of Fung’s relaxation function parameters. Journal of Biomechanics, 1987, 20(4): 343–352.

    Google Scholar 

  114. Gimbel J A, Sarver J J, Soslowsky L J. The effect of overshooting the target strain on estimating viscoelastic properties from stress relaxation experiments. Journal of Biomechanical Engineering, 2004, 126(6): 844–848.

    Google Scholar 

  115. Abramowitch S D, Woo S L. An improved method to analyze the stress relaxation of ligaments following a finite ramp time based on the quasi-linear viscoelastic theory. Journal of Biomechanical Engineering, 2004,126(1):92–97.

    Google Scholar 

  116. Puso M A, Weiss J A. Finite Element implementation of anisotropic quasi-linear viscoelasticity using a discrete spectrum approximation. Journal of Biomechanical Engineering, 1998, 120(1): 62–70.

    Google Scholar 

  117. Kenedi R M, Gibson T, Evans J H, et al. Tissue mechanics. Physical Medical Biology, 1975, 20(3): 699–717.

    Google Scholar 

  118. Barbenel J C, Evans J H. The time-dependent mechanical properties of skin. Journal of Investigative Dermatology, 1977, 69(3): 318–320.

    Google Scholar 

  119. Purslow P P, Wess T J, Hukins D W L. Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues. Journal of Experimental Biology, 1998, 201(1): 135–142.

    Google Scholar 

  120. Haut R C, Little R W. A constitutive equation for collagen fibers. Journal of Biomechanics, 1972, 5(5): 423–430.

    Google Scholar 

  121. Lanir Y. A microstructure model for the rheology of mammalian tendon. Journal of Biomechanical Engineering, 1980, 102(4): 332–339.

    Google Scholar 

  122. Pioletti D P, Rakotomanana L R. On the independence of time and strain effects in the stress relaxation of ligaments and tendons. Journal of Biomechanics, 2000, 33(12): 1729–1732.

    Google Scholar 

  123. Yang W, Fung T C, Chian K S, et al. Viscoelasticity of esophageal tissue and application of a QLV model. Journal of Biomechanical Engineering, 2006, 128(6): 909–916.

    Google Scholar 

  124. Oyen M L, Cook R F, Stylianopoulos T, et al. Uniaxial and biaxial mechanical behavior of human amnion. Journal of Materials Research, 2005, 20(11): 2902–2909.

    Google Scholar 

  125. Dunn M G, Silver F H. Viscoelastic behavior of human connective tissues: Relative contribution of viscous and elastic components. Connective Tissue Research, 1983, 12(1): 59–70.

    Google Scholar 

  126. Woo S L Y, Lee T Q, Gomez M A, et al. Temperature dependent behaviour of the canine medial collateral ligament. Journal of Biomechanical Engineering, 1987, 109(1): 68–71.

    Google Scholar 

  127. Rigby R B, Hirai R, Spikes J D, et al. The mechanical properties of rat tail tendon. The Journal of General Physiology, 1959, 43: 265–283.

    Google Scholar 

  128. Sobol E, Sviridov A, Omel’chenko A, et al. Laser reshaping of cartilage. Biotechnology and Genetic Engineering Reviews, 2000, 17: 553–578.

    Google Scholar 

  129. Gaon M D, Wong B J F. Measurement of the elastic modulus of porcine septal cartilage specimens following Nd:YAG laser treatment. Lasers in Medical Science, 2003, 18(3): 370–379.

    Google Scholar 

  130. Wong B J F, Milner T E, Anvari B, et al. Measurement of radiometric surface temperature and integrated backscattered light intensity during feedback controlled laserassisted cartilage reshaping. Lasers in Surgery and Medicine, 1998, 13(1): 66–72.

    Google Scholar 

  131. Wong B J F, Milner T E, Kim H K, et al. Characterization of temperature dependent biophysical properties during laser mediated cartilage reshaping. IEEE Journal of Selected Topics in Quantum Electronics, 1999, 5(4): 1095–1102.

    Google Scholar 

  132. Karamzadeh A M, Wong B J F, Milner T E, et al. Temperature distributions in Nd:YAG (=1.32 mm) laser-irradiated cartilage grafts accompanied by cryogen spray cooling. Society of Photo-Optical Instrumentation Engineers, 1999, 3601: 422–433.

    Google Scholar 

  133. Chao K K, Ho K H, Wong B J. Measurement of the elastic modulus of rabbit nasal septal cartilage during Nd:YAG laser irradiation. Lasers in Surgery and Medicine, 2003, 32(5): 377–383.

    Google Scholar 

  134. Brinkmann R, Radt B, Flamm C, et al. Influence of temperature and time on thermally induced forces in corneal collagen and the effect on laser thermokeratoplasty. Journal of Cataract and Refractive Surgery, 2000, 26(5): 744–754.

    Google Scholar 

  135. Silver F H, Freeman J W, DeVore D. Viscoelastic properties of human skin and processed dermis. Skin Research and Technology, 2001, 7(1): 18–23.

    Google Scholar 

  136. Silver F H, Christiansen D L, Snowhill P B, et al. Role of storage on changes in the mechanical properties of tendon and self-assembled collagen fibers. Connective Tissue Research, 2000, 41(2): 155–164.

    Google Scholar 

  137. Silver F H, Horvath I, Foran D J. Viscoelasticity of the vessel wall: The role of collagen and elastic fibers. Critical Reviews in Biomedical Engineering, 2001, 29(3): 279–301.

    Google Scholar 

  138. Huang D, Chang T R, Aggarwal A, et al. Mechanisms and dynamics of mechanical strengthening in ligament-equivalent fibroblast-populated collagen matrices. Annals of Biomedical Engineering, 1993, 21(3): 289.

    Google Scholar 

  139. Fung Y C. Biomechanics: Mechanical Properties of Living Tissue. New York: Springer-Verlag, 1981.

    Google Scholar 

  140. Potts R O, Breuer M M. The low strain viscoelastic properties of skin. 3rd International Symposium on Bioengineering of the Skin. Philadelphia, 1981.

    Google Scholar 

  141. Sanjeevi R, Somanathan N, Ramaswamy D. A viscoelastic model for collagen fibres. Journal of Biomechanics, 1982, 15(3): 181–183.

    Google Scholar 

  142. Vogel H G. Age dependent mechanical and biochemical changes in the skin. Bioeng Skin, 1988, 4: 75–81.

    Google Scholar 

  143. Mansour J M, Davis B R, Srour M, et al. Effects of ribose on the tensile behavior of skin: Application to a theory of aging. Proceedings of ASME Biomechanics Symposium, 1991: 299–302.

    Google Scholar 

  144. Wainwright S A, Biggs W D, Curry J D, et al. Mechanical Designs in Organisms. London: Edward Arnold, 1976.

    Google Scholar 

  145. Wilkes G L, Brown I A, Wildnauer R H. The biomechanical properties of skin. CRC Critical Reviews in Bioengineering, 1973, 1(4): 453–495.

    Google Scholar 

  146. Minns R J, Soden P D, Jackson D S. The role of the fibrous components and the ground substance in the mechanical properties of biological tissues: A preliminary investigation. Journal of Biomechanics, 1973, 6(2): 153–165.

    Google Scholar 

  147. Wells S M, Langille B L, Lee J M, et al. Determinants of mechanical properties in the developing ovine thoracic aorta. American Journal of Physiology, 1999, 277(4): H1385–H1391.

    Google Scholar 

  148. Nishimura M, Yan W, Mukudai Y, et al. Role of chondroitin sulfate-hyaluronan interactions in the viscoelastic properties of extracellular matrices and fluids. Biochimica et Biophysica Acta, 1998, 1380(1): 1–9.

    Google Scholar 

  149. Rochdi A, Foucat L, Renou J P. Effect of thermal denaturation on water-collagen interactions: NMR relaxation and differential scanning calorimetry analysis. Biopolymers, 1999, 50(7): 690–696.

    Google Scholar 

  150. Klavuhn K G. Epidermal protection: A comparative analysis of sapphire contact and cryogen spray cooling. Laser Hair Removal Technical Note No. 1, 2001.

    Google Scholar 

  151. Basinger B, Aguilar G, Nelson J S. Effect of skin indentation on heat transfer during cryogen spray cooling. Lasers in Surgery and Medicine, 2004, 34(2): 155–163.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, F., Lu, T. (2011). Experimental Characterization of Skin Biothermomechanics. In: Introduction to Skin Biothermomechanics and Thermal Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13202-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13202-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13201-8

  • Online ISBN: 978-3-642-13202-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics