Skip to main content

Biomedically Aided Car Driver Safety System

  • Conference paper
Information Technologies in Biomedicine

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 69))

Abstract

The article presents some behavioural measurements, together with the results of some biomedical research experiments and the assumptions underlying them. In order to determine the behavioural characteristics driving style was analysed, which was estimated using data recorded by a tachometric device. Biomedical measurements were made with using an ECG holter and infrared camera to record heart rate changes and the image inside the cab of the vehicle. On the basis of the results obtained, the assumption of a biomedically aided driver safety system is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lal, S.K.L., Craig, A.: Driver fatigue: Electroencephalography and psychological assessment. Psychophysiology 39(3), 313–321 (2002)

    Article  Google Scholar 

  2. Healey, J.A., Picard, R.W.: Detecting Stress During Real World Driving Tasks Using Physiological Sensors. IEEE Transactions on Intelligent Transportation Systems 6(2), 156–166 (2005)

    Article  Google Scholar 

  3. Healey, J., Seger, J., Picard, R.: Quantifying Driver Stress: Developing a System for Collecting and Processing Bio Metric Signals in Natural Situations. In: Proceedings of the Rocky Mountian Bio-Engineering Symposium, April 16-18 (1999)

    Google Scholar 

  4. Igarashi, K., Miyajima, C., Itou, K., Takeda, K., Itakura, F., Abut, H.: Biometric identification using driving behavioural signals. In: Proc. 2004 IEEE International Conference on Multimedia and Expo. (2004)

    Google Scholar 

  5. Mitas, A., Bugdol, M., Rygula, A.: Simultaneous analysis of driver’s physiological and behavioural parameters under the aspect of transport safety. Journal of Medical Informatics and Technologies 13, 241–247 (2009)

    Google Scholar 

  6. Mitas, A., Bugdol, M., Rygula, A.: The psychophysiological conditionings of driver’s work under the aspect of traffic safety. Transport Problems 4(1), 87–94 (2009)

    Google Scholar 

  7. Mitas, A., Bugdol, M., Rygula, A.: Computer aid assessment of driver’s fatigue during driving based on eye movement analysis. Journal of Medical Informatics and Technologies 12, 195–200 (2008)

    Google Scholar 

  8. Mitas, A., Czapla, Z., Bugdol, M., Rygula, A.: Recording and evaluation of driver’s biometrics parameters for a traffic safety improvement. Scientific Papers of Silesian University of Technology, Katowice (2009) (in printing)

    Google Scholar 

  9. Rygula, A., Mitas, A.: Numeric tools for tachogram analysis. Transport Problems 2(4), 73–80 (2007)

    Google Scholar 

  10. Rygula, A.: Driving style identification method based on speed graph analysis. In: Proceedings of 4th International Conference on Image Analysis and Biometrics and International Conference on Kansei Engineering and Affective Systems, Cieszyn, June 25-28 (2009)

    Google Scholar 

  11. Tadeusiewicz, R.: Problems of biocybernetics, 2nd, revised edn., PWN, Warszawa (1993)

    Google Scholar 

  12. Wierwille, W., Ellsworth, L., Wreggit, S., Fairbanks, R., Kirn, C.: Research on vehicle based driver status/performance monitoring: development, validation, and refinement of algorithms for detection of driver drowsiness. National Highway Traffic Safety Administration Final Report: DOT HS 808 247 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mitas, A.W., Ryguła, A. (2010). Biomedically Aided Car Driver Safety System. In: Piȩtka, E., Kawa, J. (eds) Information Technologies in Biomedicine. Advances in Intelligent and Soft Computing, vol 69. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13105-9_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13105-9_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13104-2

  • Online ISBN: 978-3-642-13105-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics