Skip to main content

Finding the Maximal Pose Error in Robotic Mechanical Systems Using Constraint Programming

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

The position and rotational errors —also called pose errors— of the end-effector of a robotic mechanical system are partly due to its joints clearances, which are the play between their pairing elements. In this paper, we model the prediction of those errors by formulating two continuous constrained optimization problems that turn out to be NP-hard. We show that techniques based on numerical constraint programming can handle globally and rigorously those hard optimization problems. In particular, we present preliminary experiments where our global optimizer is very competitive compared to the best-performing methods presented in the literature, while providing more robust results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. GAMS (Visited October 2009), http://www.gams.com/

  2. Benhamou, F., Mc Allester, D., Van Hentenryck, P.: CLP (Intervals) Revisited. In: Proceedings of ILPS, pp. 124–138. MIT Press, Cambridge (1994)

    Google Scholar 

  3. Benhamou, F., Older, W.J.: Applying Interval Arithmetic to Real, Integer and Boolean Constraints. Journal of Logic Programming 32(1), 1–24 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Cardou, P., Caro, S.: The Kinematic Sensitivity of Robotic Manipulators to Manufacturing Errors. Technical report, IRCCyN, Internal Report No RI2009_4 (2009)

    Google Scholar 

  5. Collavizza, H., Delobel, F., Rueher, M.: Comparing Partial Consistencies. Reliable Computing 5(3), 213–228 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  6. Denavit, J., Hartenberg, R.S.: A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices. ASME J. Appl. Mech. 23, 215–221 (1955)

    MathSciNet  Google Scholar 

  7. Fogarasy, A., Smith, M.: The Influence of Manufacturing Tolerances on the Kinematic Performance of Mechanisms. Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 35–47 (1998)

    Google Scholar 

  8. Granvilliers, L., Benhamou, F.: Algorithm 852: RealPaver: an Interval Solver Using Constraint Satisfaction Techniques. ACM Trans. Math. Softw. 32(1), 138–156 (2006)

    Article  MathSciNet  Google Scholar 

  9. Innocenti, C.: Kinematic Clearance Sensitivity Analysis of Spatial Structures With Revolute. ASME J. Mech. Des. 124, 52–57 (2002)

    Article  Google Scholar 

  10. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis with Examples in Parameter and State Estimation, Robust Control and Robotics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  11. Lebbah, Y., Michel, C., Rueher, M.: An Efficient and Safe Framework for Solving Optimization Problems. Journal of Computational and Applied Mathematics 199(2), 372–377 (2007); Special Issue on Scientific Computing, Computer Arithmetic, and Validated Numerics (SCAN 2004)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lhomme, O.: Consistency Techniques for Numeric CSPs. In: Proceedings of IJCAI, pp. 232–238 (1993)

    Google Scholar 

  13. Mackworth, A.: Consistency in Networks of Relations. Artificial Intelligence 8(1), 99–118 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  14. Meng, J., Zhang, D., Li, Z.: Accuracy Analysis of Parallel Manipulators With Joint Clearance. ASME J. Mech. Des. 131 (2009)

    Google Scholar 

  15. Moore, R.: Interval Analysis. Prentice-Hall, Englewood Cliffs (1966)

    MATH  Google Scholar 

  16. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  17. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge Univ. Press, Cambridge (1990)

    MATH  Google Scholar 

  18. Wallace, M., Novello, S., Schimpf, J.: ECLiPSe: A Platform for Constraint Logic Programming. Technical report, IC-Parc, Imperial College, London (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Berger, N., Soto, R., Goldsztejn, A., Caro, S., Cardou, P. (2010). Finding the Maximal Pose Error in Robotic Mechanical Systems Using Constraint Programming. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13022-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13022-9_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13021-2

  • Online ISBN: 978-3-642-13022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics