Skip to main content

Neurobiologische Grundlagen der Plastizität des Nervensystems

  • Chapter
NeuroRehabilitation

Zusammenfassung

In weit höherem Maße als früher angenommen, besitzt das erwachsene menschliche Gehirn die Fähigkeit, sich neu zu organisieren. Neuronale Plastizität findet nicht nur als Anpassung auf veränderte Umgebungsbedingungen im Alltag und beim Lernen kontinuierlich statt, sondern auch als Reaktion auf umschriebene zentrale und periphere Läsionen. Über die neurobiologischen Mechanismen, die einer Reorganisation von zentralen Strukturen und der Wiedererlangung verloren gegangener zerebraler Funktionen zugrunde liegen können, wurden in den letzen Jahren viele neue Erkenntnisse gewonnen. Ziel des vorliegenden Kapitels ist es, die Konzepte zusammenzufassen, die zur Erstellung theoretischer Grundlagen für die neurologische Rehabilitation von Bedeutung sind.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Allegrini PR, Wiesner C. Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnC12. NMR Biomed 2003;6:252–256.

    Article  Google Scholar 

  • Bach-y-Rita P, Wood S, Leder R, Paredes O, Bahr D, Wicab-Bach-y-Rita E, Murillo N. Computer-assisted motivating rehabilitation (CAMR) for institutional, home, and educational late stroke programs. Top Stroke Rehabil 2002;8:1–10.

    Article  PubMed  Google Scholar 

  • Barmashenko G, Eysel UT, Mittmann T. Changes in intracellular calcium transients and LTP in the surround of visual cortex lesions in rats. Brain Res 2003;14:120–128.

    Article  Google Scholar 

  • Barreca S, Velikonja D, Brown L, Williams L, Davis L, Sigouin CS. Evaluation of the effectiveness of two clinical training procedures to elicit yes/no responses from patients with a severe acquired brain injury: a randomized single-subject design. Brain Inj 2003; 17:1065–1075.

    Article  PubMed  Google Scholar 

  • Boyeson MG, Feeney DM. Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury. Pharmacol Biochem Behav 1990;35:497–501.

    Article  PubMed  CAS  Google Scholar 

  • Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde: in ihren Principien dargestellt auf Grund des Zellenbaues. Leipzig: Johann Ambrosius Barth Verlag; 1909.

    Google Scholar 

  • Bruel-Jungerman E, Rampon C, Laroche S. Adult hippocampal neurogenesis, synaptic plasticity and memory: facts and hypotheses. Rev Neurosci 2007;18:93–114.

    PubMed  CAS  Google Scholar 

  • Buecker ED. Implantation of tumors in the hind limb field of the embryonic chick and the developmental response of the lumbosacral nervous system. Anat Rec 1984;102:369–390.

    Article  Google Scholar 

  • Carlson-Kuhta P, Villablanca JR, Loopuijt LD. Innervation of the caudate nucleus, thalamus and red nucleus by the remaining sensorimotor cortex in cats with fetal or neonatal unilateral frontal cortex removal. Brain Res 1997;8:234–46.

    Google Scholar 

  • Carmichael ST. Gene expression changes after focal stroke, traumatic brain and spinal cord injuries. Curr Opin Neuro 2003;16:699–704.

    Article  Google Scholar 

  • Castren E, Zafra F, Thoenen H, Lindholm D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc Natl Acad Sci USA 1992;89:9444–9448.

    Article  PubMed  CAS  Google Scholar 

  • Cellerino A, Maffei L. The action of neurotrophins in the development and plasticity of the visual cortex. Prog Neurobiol 1996;49:53–71.

    PubMed  CAS  Google Scholar 

  • Chen R, Cohen LG, Hallet M. Nervous system reorganization following injury. Neurosci 2002;111:761–773.

    Article  CAS  Google Scholar 

  • Chiaretti A, Barone G, Riccardi R, Antonelli A, Pezzotti P, Genovese O et al. NGF, DCX, and NSE upregulation correlates with severity and outcome of head trauma in children. Neurology 2009;72:609–616.

    Article  PubMed  CAS  Google Scholar 

  • Cohen LG, Celnik P, Pascual-Leone A, Corwell B, Falz L, Dambrosia J, Honda M, Sadato N, Gerloff C, Cataly MD, Hallett M. Functional relevance of cross-modal plasticity in blind humans. Nature 1997;389:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Colello RJ, Schwab ME. A role for oligodendrocytes in the stabilization of optic axon numbers. J Neurosci 1994;14:6446–6452.

    PubMed  CAS  Google Scholar 

  • Darian SC, Gilbert CD. Axonal sprouting accompanies functional reorganization in adult cat striate cortex. Nature 1994; 368:737–740.

    Article  Google Scholar 

  • Dechant G, Neumann H. Neurotrophins. Adv Exp Med Biol 2002; 513:303–334.

    PubMed  CAS  Google Scholar 

  • Devor M, Schneider GE. Neuroanatomical plasticity: The principle of conservation of total axonal arborization. In: Jeannerod M, Vital-Durand F (Hrsg). Aspects of Neural Plasticity/Plasticite Nerveuse. Paris: INSERM; 1975. Vol. 106. S. 49–72.

    Google Scholar 

  • Ding Y, Li J, Luan X, Ding YH, Lai Q, Rafols JA, Phillis JW, Clark JC, Diaz FG. Exercise pre-conditioning reduces brain damage in ischemic rats that may be associated with regional angiogenesis and cellular overexpression of neurotrophin. Neurosci 2004;124:583–591.

    Article  CAS  Google Scholar 

  • Elbert TC, Pantev C, Wienbruch C, Rockstroh B, Taub E. Increased cortical representation of the fingers of the left hand in string players. Science 1995;270 305–307.

    Google Scholar 

  • Eriksson PS, Perfilieva E, Björk-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH. Neurogenesis in the adult human hippocampus. Nat Med 1998; 4:1313–1317.

    Article  PubMed  CAS  Google Scholar 

  • Feeney DM, Gonzalez A, Law WA. Amphetamine, haloperidol and experience interact to affect rate of recovery after motor cortex injury. Science 1982;217:855–857.

    Article  PubMed  CAS  Google Scholar 

  • Feldman DE. Synaptic mechanisms for plasticity in neocortex. Annu Rev Neurosci 2009;32:33–55.

    Article  PubMed  CAS  Google Scholar 

  • Flint AC, Naley MC, Wright CN. Ataxic hemiparesis from strategic frontal white matter infarction with crossed cerebellar diaschisis. Stroke 2006;37:e1-e2.

    Article  PubMed  Google Scholar 

  • Fujinaka T, Kohmura E, Yuguchi T, Yoshimine T. The morphological and neurochemical effects of diffuse brain injury on rat central noradrenergic system. Neurol Res 2003;25:35–41.

    Article  PubMed  Google Scholar 

  • Galuske RA, Kim DS, Castren E, Thoenen H, Singer W. Brain-derived neurotrophic factor reversed experience-dependent synaptic modifications in kitten visual cortex. Eur J Neurosci 1996;8:1554–1559.

    Article  PubMed  CAS  Google Scholar 

  • GasparovicC, Arfai N, Smid N, Feeney DM. Decrease and recovery of N-acetylaspartate/creatine in rat brain remote from focal injury. J Neurotrauma 2001;18:241–246.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein LB. Neuropharmacology of TBI-induced plasticity. Brain Inj 2003;17:685–694.

    Article  PubMed  Google Scholar 

  • Goldstein LB. Amphetamine trials and tribulations. Stroke 2009; 40:133–135.

    Article  Google Scholar 

  • Gould E. How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 2007;8:481–488.

    Article  PubMed  CAS  Google Scholar 

  • Groth R, Aanonsen L. Spinal brain-derived neurotrophic factor (BNDF) produces hyperalgesia in normal mice while antisense directed against either BNDF or trkB, prevent inflammation-induced hyperalgesia. Pain 2002;100:171–181.

    Article  PubMed  CAS  Google Scholar 

  • Hamm RJH, Temple MD, O´Dell DM, Pike BR, Lyeth BG. Exposure to environmental complexity promotes recovery of cognitive function after traumatic brain injury. J Neurotrauma 1992; 13: 41–47.

    Article  Google Scholar 

  • Herring A, Ambree O, Tomm M, Habermann H, Sachser N, Paulus W, Keyvani K. Environmental enrichment enhances cellular plasticity in transgenic mice with Alzheimer-like pathology. Exp Neurol 2009;216:184–192.

    Article  PubMed  CAS  Google Scholar 

  • Holtmaat A, Wilbrecht L, Knott GW, Welker E, Svoboda K. Experiencedependent and cell-type-specific spine growth in the neocortex. Nature 2006;441:979–983.

    Article  PubMed  CAS  Google Scholar 

  • Ickes BR, Pham TM, Sanders LA, Albeck DS, Mohammed AH, Granholm AC. Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Exp Neurol 2000; 164:45–52.

    Article  PubMed  CAS  Google Scholar 

  • Iglesias S, Marchal G, Rioux P, Beaudouin V, Hauttement JL, de la Sayette V, Le Doze F, Derlon JM, Viader F, Baron JC. Do changes in oxygen metabolism on the unaffected cerebral hemisphere underlie early neurological recovery after stroke – a positron emission tomography study. Stroke 1996;27:1192–1199.

    PubMed  CAS  Google Scholar 

  • Irvine DR, Rajan R, Smith S. Effects of restricted cochlear lesions in adult cats on the frequency organization of the inferior colliculus. J Comp Neurol 2003;467:345–347.

    Article  Google Scholar 

  • Jaillard A, Martin CD, Garambois K, Lebas JF, Hommel M. Vicarious function within the human primary motor cortex? A longitudinal fMRI study. Brain 2005;128:1122–1138.

    Article  PubMed  Google Scholar 

  • Jenkins WM, Merzenich MM, Ochs MT, Allard T, Guic-Robles E. Functional reorganization of primary somatosensory cortex in adult owl monkeys after behaviorally controlled tactile stimulation. J Neurophysiol 1990;63:82–104.

    PubMed  CAS  Google Scholar 

  • Johansson BB. Environmental influence on outcome after experimental brain infarction. Acta Neurochirur Suppl 1996a;66:63–67.

    CAS  Google Scholar 

  • Johansson BB. Functional outcome in rats transferred to an enriched environment 15 days after focal brain ischemia. Stroke 1996b; 27:324–326.

    CAS  Google Scholar 

  • Johansson BB, Ohlsson AL. Environment, social interaction, and physical activity as determinants of functional outcome after cerebral infarction in the rat. Exp Neurol 1996;139:322–327.

    Article  PubMed  CAS  Google Scholar 

  • Kaas JH, Krubitzer LA, Chino YM, Langsont AL, Polley EH, Blair N. Reorganization of retinotopic cortical maps in adult mammals after lesion of the retina. Science 1990;248:229.

    Article  PubMed  CAS  Google Scholar 

  • Karni A, Meyer G, Jezzard P, Adams MM, Turner R, Ungerleider LG. Functional MRI evidence for adult motor cortex plasticity during motor skill learning. Nature 1995;377:155–158.

    Article  PubMed  CAS  Google Scholar 

  • Kawamata T, Speliotes EK, Finklestein SP. The role of polypeptide growth factors in recovery from stroke. Adv Neurol 1997;73:377–382.

    PubMed  CAS  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH. More hippocampal neurons in adult mice living in an enriched environment. Nature 1997; 386:493–495.

    Article  PubMed  CAS  Google Scholar 

  • Knecht S, Henningsen H, Deppe M, Osinska L, Diehl B, Stodieck S, Ringelstein EB. Persistent unihemispheric perceptual impairments in humans following focal seizures. Neurosci Letters 1996; 217:66–68.

    Article  CAS  Google Scholar 

  • Knott GW, Holtmaat A, Wilbrecht L, Welker E, Svoboda K. Spine growth precedes synapse formation in the adult neocortex in vivo. Nat Neurosci 2006;9:1117–1124.

    Article  PubMed  CAS  Google Scholar 

  • Komitova M, Perfilieva E, Mattsson B, Eriksson PS, Johansson BB. Enriched environment after focal cortical ischemia enhances the generation of astroglia and NG2 positive polydendrocytes in adult rat neocortex. Exp Neurol 2006;199:113–121.

    Article  PubMed  CAS  Google Scholar 

  • Kozorovitskiy Y, Gross CG, Kopil C, Battaglia L, McBreen M, Stranahan AM, Gould E. Experience induces structural and biochemical changes in the adult primate brain. Proc Natl Acad Sci USA 2005;102:17478–17482.

    Article  PubMed  CAS  Google Scholar 

  • Lessmann V, Gottmann K, Malcangio M. Neurotrophin secretion: current facts and future prospects. Prog Neurobiol 2003;69:341–374.

    Article  PubMed  CAS  Google Scholar 

  • Levi-Montalcini R, Booker B. Excessive growth of the sympathetic ganglia evoked by a protein isolated from mouse salivary glands. Proc Natl Acad Sci USA 1960;46:373–384.

    Article  PubMed  CAS  Google Scholar 

  • Lewin GR, Ritter AM, Mendell LM. Nerve growth factor-induced hyperalgesia in the neonatal and adult rat. J Neurosci 1993;13:2136–2148.

    PubMed  CAS  Google Scholar 

  • Lin DD, Kleinman JT, Wityk RJ, Gottesman RF, Hillis AE, Lee AW et al.. Crossed cerebellar diaschisis in acute stroke detected by dynamic susceptibility contrast MR perfusion imaging. AJNR 2009; 30:710–715.

    Article  PubMed  CAS  Google Scholar 

  • Lu B. Acute and long-term synaptic modulation by neurotrophins. Prog Brain Res 2004;146:137–150.

    PubMed  CAS  Google Scholar 

  • Martinsson L, Eksborg S. Drugs for stroke recovery: the example of amphetamines. Drugs Aging 2004;21:67–79.

    Article  PubMed  CAS  Google Scholar 

  • Merabet LB, Hamilton R, Schlaug G, Swisher JD, Kiriakopoulos ET, Pitskel NB et al.. Rapid and reversible recruitment of early visual cortex for touch. PLoS One 2008;3:e3046.

    Article  PubMed  Google Scholar 

  • Miyazawa N, Toyama K, Arbab AS, Koizumi K, Arai T, Nukui H. Evaluation of crossed cerebellar diaschisis in 30 patients with major cerebral artery occlusion by means of quantitative I-123 IMP SPECT. Ann Nucl Med 2001;15:513–519.

    Article  PubMed  CAS  Google Scholar 

  • Monfils MH, Plautz EJ, Kleim JA. In search of the motor engram: motor map plasticity as a mechanism for encoding motor experience. Neuroscientist 2005;11:471–483.

    Article  PubMed  Google Scholar 

  • Moreno MM, Linster C, Escanilla O, Sacquet J, Didier A, Mandairon N. Olfactory perceptual learning requires adult neurogenesis. Proc Natl Acad Sci USA 2009;Oct 7 (Epub ahead of print).

    Google Scholar 

  • Munk H. Zur Physiologie der Großhirnrinde. Berl Klin Wochenschr 1877;14:505–506.

    Google Scholar 

  • Murphy BA, Haavik Taylor H, Wilson SA, Knight JA, Mathers KM, Schug S. Changes in median nerve somatosensory transmission and motor output following transient deafferentation of the radial nerve in humans. Clin Neurophysiol 2003;114:1477–1488.

    Article  PubMed  CAS  Google Scholar 

  • Niclou SP, Franssen EH, Ehlert EM, Taniguchi M, Verhaagen J. Meningeal cell-derived semaphorin 3A inhibits neurite outgrowth. Mol Cell Neurosci 2003;24:902–12.

    Article  PubMed  CAS  Google Scholar 

  • Norris CM, Scheff S. Recovery of afferent function and synaptic strength in hippocampal CA1 following traumatic brain injury. J Neurotrauma 2009; Jul 15 (Epub ahead of print).

    Google Scholar 

  • Nudo R, Milliken GW, Jenkins WM, Merzenich MM. Use-dependent alterations of movement representationsin primary motor cortex pf adult squirrel monkeys. J Neurosci 1996a;16:785–807.

    CAS  Google Scholar 

  • Nudo R, Wise BM, SiFuentes F, Milliken G. Neural substrates for the effects of rehabilitative training on motor recovery after ischemic infarct. Science 1996b;272:1791–1794.

    Article  CAS  Google Scholar 

  • Ogawa T, Yoshida Y, Okudera T, Noguchi K, Kado H, Uemura K. Secondary thalamic degeneration after cerebral infarction in the middle cerebral artery distribution – evaluation with MR imaging. Radiology 1997;204:255–262.

    PubMed  CAS  Google Scholar 

  • Ohab JJ, Fleming S, Blesch A, Carmichael ST. A neurovascular niche for neurogenesis after stroke. J Neurosci 2006;26:13007–13016.

    Article  PubMed  CAS  Google Scholar 

  • Pascual-Leone A, Grafman J, Hallett M. Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science 1994;263:1286–1289.

    Article  Google Scholar 

  • Pearson AG, Gray CW, Pearson JF, Greenwood JM, During MJ, Dragunow M. ATF3 enhances c-Jun-mediated neurite sprouting. Brain Res Mol Brain Res 2003;12:38–45.

    Article  Google Scholar 

  • Rizzo M, Robin DA. Bilateral effects of unilateral visual cortex lesions in human. Brain 1996;119:951–963.

    Article  PubMed  Google Scholar 

  • Rosenstein, JM, Mani N, Khaibullina A, Krum JM. Neurotrophic effects of vascular endothelial growth factor on organotypic cortical explants and primary cortical neurons. J Neurosci 2003;23:11036–11044.

    PubMed  CAS  Google Scholar 

  • Saiguchi T, Ishii K, Aoki Y, Kan S, Utsuki S, Tanaka R, Fujii K, Hayakawa K. Bilateral crossed cerebello-cerebral diaschisis and mutism after surgery for cerebellar medulloblastoma. Ann Nucl Med 2001;15:157–160.

    Article  Google Scholar 

  • Scharff C, Kirn JR, Grossman M, Macklis JD, Nottebohm F. Targeted neuronal death affects neuronal replacement and vocal behavior in adult songbirds. Neuron 2000;25:481–492.

    Article  PubMed  CAS  Google Scholar 

  • Scheich H. Auditory cortex: comparative aspects of maps and plasticity. Curr Opin Neurobiol 1991;1:236–247.

    Article  PubMed  CAS  Google Scholar 

  • Schulte-Herbrüggen O, Braun A, Rochlitzer S, Jockers-Scherübl MC, Hellweg R. Neurotrophic factors – a tool for therapeutic strategies in neurological, neuropsychiatric and neuroimmunological diseases? Curr Med Chem 2007;14:2318–2329.

    Article  PubMed  Google Scholar 

  • Seitz RJ, Azari NP, Knorr U, Binkofski F, Herzog H, Freund HJ. The role of diaschisis in stroke recovery. Stroke 1999;30:1844–1850.

    PubMed  CAS  Google Scholar 

  • Sjöström PJ, Rancz EY, Roth A, Häusser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008;88:769–840.

    Article  PubMed  Google Scholar 

  • Spear PD. Behavioral and neurophysiological consequences of visual cortex damage. In: Sprague JM, Epstein AN (Hrsg). Progress in Psychobiology and Physiological Psychology, vol. 8. New York: Academic Press; 1977. S. 45–83.

    Google Scholar 

  • Stroemer RP, Kent TA, Huelsebosch CE. Neocortical neural sprouting, synaptogenesis, and behavioral recovery after neocortical infarction in rats. Stroke 1995;26:2135–2144.

    PubMed  CAS  Google Scholar 

  • Teather LA, Magnusson JE, Chow CM, Wurtman RJ. Environmental conditions influence hippocampus-dependent behaviours and brain levels of amyloid precursor protein in rats. Eur J Neurosci 2002;16:2405–2415.

    Article  PubMed  Google Scholar 

  • Theoret H, Merabet L, Pascual-Leone A. Behavioral and neuroplastic changes in the blind: evidence for functionally relevant crossmodal interactions. J Physiol Paris 2004;98:221–233.

    Article  PubMed  Google Scholar 

  • Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularisation after stroke. Stroke 2007;38:3032–3039.

    Article  PubMed  Google Scholar 

  • Thoenen H. Neurotrophins and neuronal plasticity. Science 1995;270:593–598.

    Article  PubMed  CAS  Google Scholar 

  • TMS of the occipital cortex induces tactile sensations in the fingers of blind Braille readers. Exp Brain Res Aug 24 (Epub ahead of print) 2007.

    Google Scholar 

  • von Monakow C. Gehirnpathologie. Wien: Holder; 1905. S. 240–248.

    Google Scholar 

  • Walker-Batson, D, Curtis S, Natarajan R, Ford J, Dronkers N, Salmeron E, Lai J, Unwin DH. A double-blind, placebo-controlled study of the use of amphetamine in the treatment of aphasia. Stroke 2001;32:2093–2098.

    Article  PubMed  CAS  Google Scholar 

  • Weiller C, Ramsay SC, Wise R. JS, Friston KJ, Frackowiak SJ. Individual patterns of functional reorganization in the human cerebral cortex after infarction. Ann Neurol 1993;33:181–189.

    Article  PubMed  CAS  Google Scholar 

  • Witte OW, Bidmon HJ, Schiene K, Redcker C, Hagemann G. Functional differentiation of multiple perilesional zones after focal cerebral ischemia. J Cereb Blood Flow Metab 2000;20:1149–1165.

    Article  PubMed  CAS  Google Scholar 

  • Woodruff RH, Franklin RJ. Growth factors and remyelination in the CNS. Histol & Histopathol 1997;12:459–66.

    CAS  Google Scholar 

  • Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. Neurophysiol 1998;79:2119–2148.

    CAS  Google Scholar 

  • Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F. Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 2005;193:411–419.

    Article  PubMed  CAS  Google Scholar 

  • Zahn, R, Drews E, Specht K, Kemeny S, Reith W, Willmes K, Schwarz M, Huber W. Recovery of semantic word processing in global aphasia: a functional MRI study. Brain Res Cogn Brain Res 2004;18:322–336

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ende-Henningsen, B., Henningsen, H. (2010). Neurobiologische Grundlagen der Plastizität des Nervensystems. In: NeuroRehabilitation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12915-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12915-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12914-8

  • Online ISBN: 978-3-642-12915-5

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics