Skip to main content

Structure Learning and Optimisation in a Markov Network Based Estimation of Distribution Algorithm

  • Chapter
Exploitation of Linkage Learning in Evolutionary Algorithms

Part of the book series: Evolutionary Learning and Optimization ((ALO,volume 3))

Abstract

Linkage learning has been a focus of research interest since the early days of evolutionary computation. There is a strong connection between linkage learning and the concept of structure learning, which is a crucial component of a multivariate Estimation of Distribution Algorithm. Structure learning determines the interactions between variables in the probabilistic model of an EDA, based on analysis of the fitness function or a population. In this chapter we apply three different approaches to structure learning in an EDA based on Markov networks and use measures from the information retrieval community (precision, recall and the F-measure) to assess the quality of the structures learned. We present observations and analysis of the impact that structure learning has on optimisation performance and fitness modelling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Springer, Heidelberg (2006)

    Google Scholar 

  2. Holland, J.H.: Adaptation in natural and artificial systems. MIT Press, Cambridge (1992)

    Google Scholar 

  3. Mitchell, M., Holland, J.H., Forrest, S.: When will a Genetic Algorithm Outperform Hillclimbing? In: Cowan, J.D., Tesauro, G., Alspector, J. (eds.) Advances in Neural Information Processing Systems, vol. 6. Morgan-Kaufmann, San Francisco (1994)

    Google Scholar 

  4. Greffenstette, J.J.: Predictive Models using Fitness Distributions of Genetic Operators. In: Foundations of Genetic Algorithms, vol. 3. Morgan Kauffmann, San Francisco (1995)

    Google Scholar 

  5. Mühlenbein, H., Schlierkamp-Voosen, D.: Predictive Models for the Breeder Genetic Algorithm. Evolutionary Computation 1(1), 25–49 (1993)

    Article  Google Scholar 

  6. Vose, M.D.: The Simple Genetic Algorithm: Foundations and Theory. The MIT Press, Cambridge (1999)

    MATH  Google Scholar 

  7. Baluja, S., Caruana, R.: Removing the genetics from the standard genetic algorithm, pp. 38–46. Morgan Kaufmann Publishers, San Francisco (1995)

    Google Scholar 

  8. Mühlenbein, H., Paß, G.: From recombination of genes to the estimation of distributions I. Binary Parameters. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 178–187. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  9. Lauritzen, S.L.: Graphical models, vol. 17. Clarendon Press, New York; Oxford University Press, Oxford (1996)

    Google Scholar 

  10. Larrañaga, P., Lozano, J.A.: Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation. Kluwer Academic Publishers, Boston (2002)

    MATH  Google Scholar 

  11. Jordan, M.I. (ed.): Learning in Graphical Models. NATO Science Series. Kluwer Academic Publishers, Dordrecht (1998)

    MATH  Google Scholar 

  12. Besag, J.: Spatial Interaction and the Statistical Analysis of Lattice Systems. Journal of the Royal Statistical Society 36(2), 192–236 (1974)

    MATH  MathSciNet  Google Scholar 

  13. Li, S.Z.: Markov Random Field Modeling in Computer Vision. Springer, London (1995)

    Google Scholar 

  14. Hammersley, J.M., Clifford, P.: Markov Fields on Finite Graphs and Lattices (1971) (unpublished manuscript)

    Google Scholar 

  15. Santana, R.: A Markov network based factorized distribution algorithm for optimization. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.) ECML 2003. LNCS (LNAI), vol. 2837, pp. 337–348. Springer, Heidelberg (2003)

    Google Scholar 

  16. Santana, R.: Probabilistic modeling based on undirected graphs in estimation of distribution algorithms, Ph.D. dissertation, Institute of Cybernetics, Mathematics and Physics, Havana, Cuba (2003)

    Google Scholar 

  17. Santana, R.: Estimation of distribution algorithms with Kikuchi approximations. Evolutionary Computation 13(1), 67–97 (2005)

    Article  Google Scholar 

  18. Shakya, S.K., McCall, J.A.W., Brown, D.F.: Solving the Ising spin glass problem using a bivariate EDA based on Markov random fields. In: Proceedings of IEEE Congress on Evolutionary Computation. IEEE Press, Los Alamitos (2006)

    Google Scholar 

  19. Wright, A.H., Pulavarty, S.: On the convergence of an estimation of distribution algorithm based on linkage discovery and factorization. In: GECCO 2005: Proceedings of the 2005 Conference on Genetic and Evolutionary Computation, pp. 695–702. ACM Press, New York (2005)

    Chapter  Google Scholar 

  20. Heckendorn, R.B., Wright, A.H.: Efficient linkage discovery by limited probing. Evolutionary computation 12(4), 517–545 (2004)

    Article  Google Scholar 

  21. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd edn. Morgan Kaufmann Series in Data Management Sys. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  22. Pelikan, M., Goldberg, D.: Hierarchical BOA solves Ising spin glasses and MAXSAT. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1271–1282. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  23. Pelikan, M.: Bayesian optimization algorithm: from single level to hierarchy. Ph.D. dissertation, University of Illinois at Urbana-Champaign, Urbana, IL (2002)

    Google Scholar 

  24. Pelikan, M., Ocenasek, J., Trebst, S., Troyer, M., Alet, F.: Computational complexity and simulation of rare events of Ising spin glasses. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 36–47. Springer, Heidelberg (2004)

    Google Scholar 

  25. Brownlee, A.E.I., McCall, J.A.W., Brown, D.F.: Solving the MAXSAT prob-lem using a multivariate EDA based on Markov networks. In: GECCO 2007: Proceedings of the 2007 GECCO Conference on Genetic and Evolutionary computation, pp. 2423–2428. ACM, New York (2007)

    Chapter  Google Scholar 

  26. Mühlenbein, H., Höns, R.: The estimation of distributions and the minimum relative entropy principle. Evolutionary Computation 13(1), 1–27 (2005)

    Article  Google Scholar 

  27. Zhang, Q.: On stability of fixed points of limit models of univariate marginal distribution algorithm and factorized distribution algorithm. IEEE Transactions in Evolutionary Computation 8(1), 80–93 (2004)

    Article  Google Scholar 

  28. Kallel, L., Naudts, B., Reeves, R.: Properties of fitness functions and search landscapes. In: Kallel, L., Naudts, B., Rogers, A. (eds.) Theoretical Aspects of Evolutionary Computing, pp. 177–208. Springer, Heidelberg (2000)

    Google Scholar 

  29. Hauschild, M., Pelikan, M., Lima, C.F., Sastry, K.: Analyzing probabilistic models in hierarchical BOA on traps and spin glasses. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and Evolutionary Computation, pp. 523–530. ACM, New York (2007)

    Chapter  Google Scholar 

  30. Mühlenbein, H., Mahnig, T.: Evolutionary optimization using graphical models. New Gen. Comput. 18(2), 157–166 (2000)

    Article  Google Scholar 

  31. Santana, R., Larrañaga, P., Lozano, J.A.: Challenges and open problems in discrete EDAs. Department of Computer Science and Artificial Intelligence, University of the Basque Country, Tech. Rep. EHU-KZAA-IK-1/07 (October 2007), http://www.sc.ehu.es/ccwbayes/technical.htm

  32. Shakya, S.K., McCall, J.A.W., Brown, D.F.: Updating the probability vector using MRF technique for a univariate EDA. In: Proceedings of STAIRS 2004, pp. 15–25. IOS Press, Amsterdam (2004)

    Google Scholar 

  33. Shakya, S.K., McCall, J.A.W., Brown, D.F.: Estimating the distribution in an EDA. In: Proceedings of the International Conference on Adaptive and Natural computing Algorithms (ICANNGA 2005), pp. 202–205. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Shakya, S.K., McCall, J.A.W., Brown, D.F.: Incorporating a Metropolis method in a distribution estimation using Markov random field algorithm. In: Proceedings of IEEE Congress on Evolutionary Computation, pp. 2576–2583. IEEE, Los Alamitos (2005)

    Chapter  Google Scholar 

  35. Brownlee, A., McCall, J., Zhang, Q., Brown, D.: Approaches to selection and their effect on fitness modelling in an estimation of distribution algorithm. In: Zurada, J.M., Yen, G.G., Wang, J. (eds.) Computational Intelligence: Research Frontiers. LNCS, vol. 5050. Springer, Heidelberg (2008)

    Google Scholar 

  36. Lucey, T.: Quantatitive Techniques: An Instructional Manual, Eastleigh, Hampshire. D. P. Publications, UK (1984)

    Google Scholar 

  37. Brownlee, A.E., Pelikan, M., McCall, J.A., Petrovski, A.: An application of a multivariate estimation of distribution algorithm to cancer chemotherapy. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and evolutionary computation, pp. 463–464. ACM, New York (2008)

    Chapter  Google Scholar 

  38. Pelikan, M., Sastry, K., Goldberg, D.E.: iBOA: The incremental Bayesian optimization algorithm. In: GECCO 2008: Proceedings of the 10th annual conference on Genetic and Evolutionary Computation, pp. 455–462. ACM, New York (2008)

    Chapter  Google Scholar 

  39. Zhang, Q., Sun, J., Tsang, E.: An evolutionary algorithm with guided mutation for the maximum clique problem  9(2), 192–200 (2005)

    Google Scholar 

  40. Pelikan, M., Sastry, K.: Fitness inheritance in the Bayesian optimization algorithm. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3103, pp. 48–59. Springer, Heidelberg (2004)

    Google Scholar 

  41. Lima, C.F., Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E., Lobo, F.G.: Substructural neighborhoods for local search in the Bayesian optimization algorithm. In: Runarsson, T.P., Beyer, H.-G., Burke, E.K., Merelo-Guervós, J.J., Whitley, L.D., Yao, X. (eds.) PPSN 2006. LNCS, vol. 4193, pp. 232–241. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  42. Sastry, K., Lima, C., Goldberg, D.E.: Evaluation relaxation using substructural information and linear estimation. In: Proceedings of the 8th annual Conference on Genetic and Evolutionary Computation GECCO-2006, pp. 419–426. ACM Press, New York (2006)

    Chapter  Google Scholar 

  43. Orriols-Puig, A., Bernadó-Mansilla, E., Sastry, K., Goldberg, D.E.: Substructural surrogates for learning decomposable classification problems: implementation and first results. In: GECCO 2007: Proceedings of the 2007 GECCO Conference on Genetic and Evolutionary Computation, pp. 2875–2882. ACM, New York (2007)

    Chapter  Google Scholar 

  44. Ochoa, A., Soto, M.R.: Linking entropy to estimation of distribution algorithms. In: Lozano, J.A., Larrañaga, P., Inza, I., Bengoetxea, E. (eds.) Towards a New Evolutionary Computation: Advances on Estimation of Distribution Algorithms, pp. 1–38. Springer, Heidelberg (2006)

    Google Scholar 

  45. Handa, H.: Estimation of distribution algorithms with mutation. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 112–121. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  46. Mahnig, T., Mühlenbein, H.: Optimal mutation rate using Bayesian priors for estimation of distribution algorithms. In: Steinhöfel, K. (ed.) SAGA 2001. LNCS, vol. 2264, pp. 33–48. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  47. Branke, J., Lode, C., Shapiro, J.L.: Addressing sampling errors and diversity loss in UMDA. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 508–515. ACM, New York (2007)

    Chapter  Google Scholar 

  48. Posik, P.: Preventing premature convergence in a simple EDA via global step size setting. In: Rudolph, G., Jansen, T., Lucas, S., Poloni, C., Beume, N. (eds.) PPSN 2008. LNCS, vol. 5199, pp. 549–558. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  49. Dong, W., Yao, X.: Niching EDA: Utilizing the diversity inside a population of EDAs for continuous optimization. In: IEEE World Congress on Computational Intelligence 2008 (CEC 2008), pp. 1260–1267 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brownlee, A.E.I., McCall, J.A.W., Shakya, S.K., Zhang, Q. (2010). Structure Learning and Optimisation in a Markov Network Based Estimation of Distribution Algorithm. In: Chen, Yp. (eds) Exploitation of Linkage Learning in Evolutionary Algorithms. Evolutionary Learning and Optimization, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12834-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12834-9_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12833-2

  • Online ISBN: 978-3-642-12834-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics