Skip to main content

Post-processing Altimeter Data Towards Coastal Applications and Integration into Coastal Models

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

Altimetry missions in the last 16 years (TOPEX/Poseidon, ERS-1/2, GFO, Jason-1 and ENVISAT) and the recently-launched Jason-2 mission have resulted in great advances in deep ocean research and operational oceanography. However, oceanographic applications using satellite altimeter data have become very challenging over regions extending from near-shore to the continental shelf and slope (Cipollini et al. 2008). In these regions, intrinsic difficulties in the corrections (e.g., the high frequency ocean response to tidal and atmospheric loading, the mean sea level, etc.) and issues of land contamination in the radar altimeter and radiometer footprints result in systematic flagging and rejection of these data. Forthcoming altimeter missions (SARAL/AltiKa, SWOT, Sentinel-3, etc.) are designed to be better-suited for use in the coastal ocean. However, a number of studies have dealt with the problem of re-analysing, improving and exploiting the existing archive to monitor coastal dynamics. The early encouraging results (Vignudelli et al. 2005; Bouffard et al. 2008, Birol et al. submitted J Mar Syst 2009) support the need for continued research in coastal altimetry, with the opportunity of providing input and recommendations for future missions.

This chapter reviews the current status of the X-TRACK processing application (Roblou et al. 2007), whose objectives are to improve both the quantity and quality of altimeter sea surface height (SSH) estimates in coastal regions by reprocessing a posteriori (the standard Geophysical Data Records) (GDR) as delivered by operational centres, i.e. by improving the post-processing stage. Latest improvements on along-track spatial resolution (high rate data streams and removal of large-scale errors) that promise improved monitoring of coastal dynamics are also detailed. In addition, with a view to integrating coastal-oriented altimeter datasets into models for coastal ocean state analysis, methodologies for matching models with observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Tidal atlases are freely available on request on the SIROCCO web site: http://sirocco.omp.obs-mip.fr/outils/Tugo/Produits/TugoProduits.htm

  2. 2.

    Coastal-oriented data sets are computed over several coastal regions and made freely available through the CTOH/LEGOS website: http://ctoh.legos.obs-mip.fr/products/coastal-products

  3. 3.

    In essence, the Nyquist-Shannon sampling theorem asserts that an analog signal that has been sampled can be reconstructed from the samples if the sampling rate exceeds 2N samples per second, where N is the highest frequency in the original signal. In the case of the T/P satellite, 1 Hz sampling along the satellite ground track represents 6–7 km spatial sampling (depending on the latitude of the satellite), meaning that only scales greater than about 13 km can be reconstructed from the samples.

Abbreviations

ALBICOCCA:

ALtimeter-Based Investigations in COrsica, Capraia and Contiguous Areas

ASI:

Agenzia Spaziale Italiana

AVISO:

Archivage, Validation et Interprétation des données des Satellites Océanographiques

CLS:

Collecte Localisation Satellites

CNES:

Centre National d’Études Spatiales

COASTALT:

ESA development of COASTal ALTimetry

CTOH:

Centre de Topographie des Océans et de l’Hydrosphère

DUACS:

Data Unification and Altimeter Combination System

ENVISAT:

ENVIronmental SATellite

ESA:

European Space Agency

EU:

European Union

FES:

Finite Element Solution

GDR:

Geophysical data record

GEOSAT:

GEodetic & Oceanographic SATellite

GFO:

GEOSAT Follow-On

GMES:

Global Monitoring for Environment and Security

GOCE:

Gravity field and steady-state Ocean Circulation Explorer

GODAE:

Global Ocean Data Assimilation Experiment

GOT:

Global Ocean Tide

IB:

Inverted Barometer

IMBER:

Integrated Marine Biogeochemistry and Ecosystem Research

LA:

Laboratoire d’Aérologie

LEGOS:

Laboratoire d’Études en Géophysique et Océanographie Spatiales

LPC:

Liguro-Provençal-Catalan

LSER:

Large-scale error reduction

MARINA:

MARgin INtegrated Approach

MDT:

Mean dynamic topography

MERSEA:

Marine Environment and Security for the European Area

MFSTEP:

Mediterranean Forecasting System Toward Environmental Prediction

Mog2D:

Modèle d’Ondes de Gravité 2D

MSS:

Mean Sea Surface

NWMED:

North-Western MEDiterranean

OGCM:

Ocean General Circulation Model

OSTST:

Ocean Surface Topography Science Team

PISTACH:

Prototype Innovant de Système de Traitement pour l’Altimétrie Côtière et l’Hydrologie

SARAL:

Satellite with ARgos and ALtika

SLA:

Sea Level Anomaly

SSALTO:

Segment Sol multimissions d’ALTimétrie, d’Orbitographie et de locali-sation précise

SSH:

Sea Surface Height

SST:

Sea Surface Temperature

SVD:

Singular Value Decomposition

SWOT:

Surface Water and Ocean Topography

TOPEX:

TOPography EXperiment

TOSCA:

Terre, Ocean, Surfaces Continentales, Atmosphère

T-UGOm:

Toulouse Unstructured Grid Ocean Model

UNESCO:

United Nations Educational, Scientific and Cultural Organization

References

  • Andersen OB (1999) Shallow water tides on the northwest European shelf from TOPEX/POSEIDON altimetry. J Geophys Res 104:7729–7741

    Article  Google Scholar 

  • Andersen OB, Knudsen P (2000) The role of satellite altimetry in gravity field modelling in coastal areas. Phys Chem Earth, Part A: Solid Earth Geodesy 25(1): pp 17–24

    Google Scholar 

  • Antonov JI, Levitus S, Boyer TP (2002) Steric sea level variations during 1957–1994: importance of salinity. J Geophys Res 107(C12):8013

    Google Scholar 

  • Anzenhofer M, Shum CK, Rentsh M (1999) Coastal altimetry and applications, Tech. Rep. n. 464, Geodetic Science and Surveying, The Ohio State University, Columbus, USA

    Google Scholar 

  • Arakawa A, Suarez MJ (1983) Vertical differencing of the primitive equations in sigma coordinates. Mon Wea Rev 111:34–45

    Article  Google Scholar 

  • Archiving, Validation, and Interpretation of Satellite Oceanographic Data (AVISO) (1996) In: Aviso Handbook for Merged TOPEX/Poseidon products, 3rd edn. Toulouse, France

    Google Scholar 

  • Berry PAM, Garlick JD, Freeman JA, Mathers EL (2005) Global inland water monitoring from multi-mission altimetry. Geophys Res Lett 32(16):1–4

    Article  Google Scholar 

  • Birol F, Cancet M, Estournel C (2010) Aspects of the seasonal variability of the Northern Current (NW Mediterranean Sea) observed by altimetry. J Mar Syst 81(4):297–311

    Google Scholar 

  • Bouffard J, Roblou L, Ménard Y, Marsaleix P, De Mey P (2006) Observing the ocean variability in the western Mediterranean Sea by using coastal multi-satellite data and models. In: Proceedings of the Symposium on 15 years of Progress on Radar Altimetry, March 13–18, 2006, ESA SP-614, July 2006

    Google Scholar 

  • Bouffard J, Vignudelli S, Herrmann M, Lyard F, Marsaleix P, Ménard Y, Cipollini P (2008a) Comparison of ocean dynamics with a regional circulation model and improved altimetry in the Northwestern Mediterranean. Terr Atmos Ocean Sci 19:117–133

    Article  Google Scholar 

  • Bouffard J, Vignudelli S, Cipollini P, Ménard Y (2008b) Exploiting the potential of an improved multimission altimetric data set over the coastal ocean. Geophys Res Lett 35:L10601

    Article  Google Scholar 

  • Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25:67–74

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations. Geophys Res Lett 30(6):1275. doi:10.1029/2002GL016473

    Article  Google Scholar 

  • Carton JA, Giese BS, Grodsky SA (2005) Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. J Geophys Res 110:C09006

    Article  Google Scholar 

  • Chelton DB (2001) Report of the High-Resolution Ocean Topography Science Working Group Meeting, Oregon State

    Google Scholar 

  • Chelton DB, deSzoeke RA, Schlax MG, Naggar KE, Siwertz N (1998) Geographical variability of the first baroclinic Rossby Radius of deformation. J Phys Oceanogr 28:433–460

    Article  Google Scholar 

  • Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry. In: Fu L, Cazenave A (eds) Satellite altimetry and earth sciences, Int. Geophys. Ser., vol. 69. Elsevier, New York, pp 1–131

    Google Scholar 

  • Church JA, Godfrey JS, Jackett DR, Mc-Dougall TJ (1991) A model of sea level rise caused by ocean thermal expansion. J Clim 4:438–444

    Article  Google Scholar 

  • Cipollini P, Gomez-Enri J, Gommenginger C, Martin-Puig C, Vignudelli S, Woodworth P, Benveniste J (2008a) Developing radar altimetry in the oceanic coastal zone: the COASTALT project. In: paper presented at General Assembly 2008, European Geoscience Union, Vienna, April 17–18

    Google Scholar 

  • Cipollini P, Vignudelli S, Lyard F, Roblou L (2008b) 15 years of altimetry at various scales over the Mediterranean. In: Vittorio Barale (JRC Ispra) and Martin Gade (Universitat Amburgo) (eds) Remote sensing of European Seas. Springer, Heidelberg/Germany, pp 295–306

    Google Scholar 

  • Coppens D, Bijac S, Prunet P, Jeansou E (2007) Improvement of sea surface brightness temperature retrieval in coastal areas for the estimation of the wet tropospheric path delay. In: Paper presented at the Ocean Surface Topography Science Team meeting, Hobart, Australia

    Google Scholar 

  • Deng XL, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res. doi:10.1029/2005JC003039

    Google Scholar 

  • Desportes C, Obligis E, Eymard L (2007) On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans Geosci Remote Sensing 45(7):2139–2149

    Article  Google Scholar 

  • Dufau-Julliand C, Marsaleix P, Petrenko A, Dekeyser I (2004) Three-dimensional modelling of the Gulf of Lion’s hydrodynamics (northwest Mediterranean) during January 1999 (MOOGLI3 Experiment) and late winter 1999: Western Mediterranean Intermediate Water’s (WIW’s) formation and its cascading over the shelf break. J Geophys Res. doi:10.1029/2003JC002019

    Google Scholar 

  • Durand F, Shankar D, Birol F, Shenoi SSC (2008) Estimating boundary currents from satellite altimetry: a case study for the east coast of India. J Oceanogr 64:831–845

    Article  Google Scholar 

  • Estournel C, Kondrachoff V, Marsaleix P, Vehil R (1997) The plume of the Rhône: numerical simulation and remote sensing. Cont Shelf Res 17:899–924

    Article  Google Scholar 

  • Estournel C, Durrieu de Madron X, Marsaleix P, Auclair F, Julliand C, Vehil R (2003) Observation and modelisation of the winter coastal oceanic circulation in the Gulf of Lions under wind conditions influenced by the continental orography (FETCH experiment). J Geophys Res 108(C3):1–18

    Google Scholar 

  • Estournel C, Auclair F, Lux M, Nguyen C, Marsaleix P (2007) “Scale Oriented” embedded modelling of the North-Western Mediterranean in the frame of MFSTEP. Ocean Sci Discuss 4:145–187

    Article  Google Scholar 

  • Fernandes MJ, Bastos L, Antunes M (2003) Coastal satellite altimetry – methods for data recovery and validation. In: Tziavo IN (ed) Proceedings of the 3rd Meeting of the International Gravity & Geoid Commission (GG2002), Editions ZITI, pp 302–307

    Google Scholar 

  • Fernandes MJ, Bastos L, Antunes M (2003) Coastal satellite altimetry – methods for data recovery and validation. In: Tziavo IN (ed) Proceedings of the 3rd meeting of the International Gravity & Geoid Commission (GG2002), Editions ZITI, pp 302–307

    Google Scholar 

  • Fu LL, Cazenave A (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Int Geophys Ser, vol 69. Elsevier, New York

    Google Scholar 

  • Gaspar P, Ponte RM (1997) Relation between sea level and barometric pressure determined from altimeter data and model simulations. J Geophys Res 102(C1):961–971

    Google Scholar 

  • Gatti J, Petrenko A, Devenon JL, Leredde Y, Ulses C (2006) The Rhone river dilution zone present in the northeastern shelf of the Gulf of Lion in December 2003. Cont Shelf Res 26:1794–1805

    Article  Google Scholar 

  • Gregory JM (1993) Sea level changes under increasing atmospheric CO2 in a transient coupled ocean-atmosphere GCM experiment. J Clim 6(12):2247–2262

    Article  Google Scholar 

  • Greatbatch RJ (1994) A note on the representation of steric sea levels in models that conserve volume rather than mass. J Geophys Res 99(12):767–771

    Google Scholar 

  • Guizien K, Brochier T, Duchène JC, Koh BS, Marsaleix P (2006) Dispersal of owenia fusiformis larvae by wind-driven currents: turbulence, swimming behaviour and mortality in a three-dimensional stochastic model. Mar Ecol Prog Ser 311:47–66

    Article  Google Scholar 

  • Han G, Tang CL, Smith PC (2002) Annual variations of sea surface elevation and currents over the Scotian Shelf and Slope. J Phys Ocean 32:1794–1819

    Article  Google Scholar 

  • Herrmann M, Somot S, Sevault F, Estournel C, Déqué M (2008) Modelling the deep convection in the northwestern Mediterranean Sea using an eddy-permitting and an eddy-resolving model: case study of winter 1986–1987. J Geophys Res. doi:10.1029/2006JC003991

    Google Scholar 

  • Hernandez F, Calvez MH, Dorandeu J, Faugère Y, Mertz F, Schaeffer P (2000) Surface Moyenne Océanique: Support scientifique à la mission altimétrique Jason-1, et à une mission micro-satellite altimétrique. Contrat Ssalto 2945 – Lot 2 – A.1. Rapport d’avancement. Rapport n° CLS/DOS/NT/00.313, published by CLS, Ramonville St Agne, pp 40

    Google Scholar 

  • Hirose N, Fukumori I, Zlotnicki V (2001) Modelling the high frequency barotropic response of the ocean to atmospheric disturbances: sensitivity to forcing, topography and friction. J Geophys Res 106(C12):30987–30995

    Google Scholar 

  • Ishii M, Kimoto M, Sakamoto K, Iwasaki SI (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J Oceanogr 62(2):155–170

    Article  Google Scholar 

  • Jan G, Ménard Y, Faillot M, Lyard F, Jeansou E, Bonnefond P (2004) Offshore absolute calibration of space borne radar altimeters. Mar Geod. Special issue on Jason-1 calibration/validation, Part 3, 27:3–4, 615–629

    Google Scholar 

  • Jorda G, Comerma E, Bolaños R, Espino M (2007) Impact of forcing errors in the CAMCAT oil spill forecasting system. A sensitivity study. J Mar Syst 65:134–157

    Article  Google Scholar 

  • Köhl A, Stammer D (2008) Variability of the meridional overturning in the North Atlantic from the 50-year GECCO state estimation. J Phys Oceanogr 38:1913–1930

    Article  Google Scholar 

  • Labroue S, Gaspar P, Dorandeu J, Zanifé OZ, Mertz F, Vincent P, Choquet P (2004) Non parametric of the sea states bias for Jason 1 radar altimeter. Mar Geod 27:453–481

    Article  Google Scholar 

  • Lambin J, Lombard A, Picot N (2008) CNES initiative for altimeter processing in coastal zone: PISTACH. In: Paper presented at the First altimeter workshop, Silver Spring, MD, February 5–7

    Google Scholar 

  • Le Hénaff M, Roblou L, Bouffard J (2010) Characterizing the Navidad Current interannual variability using coastal altimetry. Ocean Dyn (in press)

    Google Scholar 

  • Le Provost C (2001) Ocean tides. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences: a handbook of techniques and applications. Int Geophys Ser, vol 69. Academic, San Diego, CA, pp 267–303

    Google Scholar 

  • Le Traon PY, Ogor F (1998) ERS-1/2 orbit improvement using TOPEX/POSEIDON: the 2cm challenge. J Geophys Res 103:8045–8057

    Article  Google Scholar 

  • Lombard A, Cazenave A, Le Traon PY, Guinehut S, Cabanes C (2006) Perspectives on present day sea level change: a tribute to Christian Le Provost. Ocean Dyn 56:445–451

    Article  Google Scholar 

  • Lombard A, Garric G, Penduff T (2009) Regional patterns of observed sea level change: insights from a ¼° global ocean/sea-ice hindcast. Ocean Dyn. doi:10.1007/s10236-008-0161-6

    Google Scholar 

  • Lyard F, Lefevre F, Letellier T, Francis O (2006) Modelling the global ocean tides: modern insights from FES2004. Ocean Dyn. doi:10.1007/s10236-006-0086-x

    Google Scholar 

  • Lyard F, Roblou L, Mangiarotti S, Marsaleix P (2003) En route to coastal oceanography from altimetric data: some ALBICOCCA project insight. In: Paper presented at the Ocean surface topography science team meeting, Arles, France

    Google Scholar 

  • Lyard F, Roblou L (2009) Robust methods for high accuracy tidal modelling in coastal and shelf seas. In: Paper presented at the Ocean Surface Topography Science Team meeting, Seattle, Washington, DC, USA

    Google Scholar 

  • Lyard F, Roblou L, De Mey P, Lamouroux J (2009) Ocean high frequency dynamics at global and regional scales. In: Paper presented at the first SARAL/AltiKa scientific workshop, Ahmedabad, India

    Google Scholar 

  • Lynch DR, Gray WG (1979) A wave equation model for finite element tidal computations. Comput Fluids 7:207–228

    Article  Google Scholar 

  • Mangiarotti S, Lyard F (2008) Surface pressure and wind stress effects on sea level change estimations from TOPEX/Poseidon satellite altimetry in the Mediterranean Sea. J Atmos Ocean Technol 25:464–474

    Article  Google Scholar 

  • Mantripp D (1996) Radar altimetry. In: Fancey NE, Gardiner ID, Vaughan RA (eds) The determination of geophysical parameters from space. Scottish Universities Summer School in Physics and Institute of Physics Publishing, Bristol/Philadelphia

    Google Scholar 

  • Manzella GMR, Borzelli GL, Cipollini P, Guymer TH, Snaith HM, Vignudelli S (1997) Potential use of satellite data to infer the circulation dynamics in a marginal area of the Mediterranean Sea. In: Proceedings of 3rd ERS Symposium – Space at the Service of our Environment, Florence (Italy), 17–21 March 1997, Vol 3, pp 1461–1466, European Space Agency Special Publication ESA SP-414

    Google Scholar 

  • Manzella GMR, Borzelli GL, Cipollini P, Guymer TH, Snaith HM, Vignudelli S (1997) Potential use of satellite data to infer the circulation dynamics in a marginal area of the Mediterranean Sea. In: Proceedings of 3rd ERS symposium – space at the service of our environment, Florence (Italy), 17–21 March 1997, vol 3, pp 1461–1466, European Space Agency Special Publication ESA SP-414

    Google Scholar 

  • Maraldi C, Galton-Fenzi B, Lyard F, Testut L, Coleman R (2007) Barotropic tides of the Southern Indian Ocean and the Amery Ice Shelf cavity. Geophys Res Lett. doi:10.1029/2007GL030900

    Google Scholar 

  • Marsaleix P, Auclair F, Estournel C (2006) Considerations on open boundary conditions for regional and coastal ocean models. J Atmos Ocean Technol 23:1604–1613

    Article  Google Scholar 

  • Marsaleix P, Auclair F, Floor JW, Herrmann MJ, Estournel C, Pairaud I, Ulses C (2008) Energy conservation issues in sigma-coordinate free-surface ocean models. Ocean Model 20:61–89

    Article  Google Scholar 

  • Millot C (1987) Mesoscale and seasonal variabilities of circulation in western Mediterranean. Dyn Atmos Ocean 15:179–214

    Article  Google Scholar 

  • Millot C (1991) Circulation in the western Mediterranean. Oceanol Acta 10:143–149

    Google Scholar 

  • Morrow R, Valladeau G, Sallee JB (2008) Observed subsurface signature of Southern Ocean sea level rise. Prog Oceanogr 77(4):351–366. A new view of water masses after WOCE. A special edition for Professor Matthias Tomczak

    Google Scholar 

  • Ollivier A, Le Bihan N, Lacoume JL, Zanife OZ (2005) Improving speckle filtering with SVD to extract ocean parameters from altimetry radar echos. In: Proceeding of PSIP 2005, Toulouse

    Google Scholar 

  • Pairaud I, Lyard L, Auclair F, Letellier T, Marsaleix P (2008) Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 1: barotropic tides. Cont Shelf Res. doi:10.1016/j.csr.2008.03.004

    Google Scholar 

  • Pascual A, Faugère Y, Larnicol G, Le Traon PY (2006) Improved description of the mesoscale variability by combining four satellite altimeters. J Geophys Res. doi:10.1029/2005GL024633

    Google Scholar 

  • Pattullo J, Munk W, Revelle R, Strong E (1955) The seasonal oscillation in sea level. J Mar Res 14:88–156

    Google Scholar 

  • Petrenko A, Leredde Y, Marsaleix P (2005) Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: in-situ and modelling data. Cont Shelf Res 25:7–27

    Article  Google Scholar 

  • Quesney A, Jeansou E, Lambin J, Picot N (2007) A new altimeter waveform retracking algorithm based on neural networks. In: Paper presented at the Ocean surface topography science team meeting, Hobart, Australia

    Google Scholar 

  • Roblou L (2004) Validation des solutions de marée en Mer Méditerranée: comparaisons aux observations. Technical Report, POC-TR-02-04, 67pp, Pôle d’Océanographie Côtière, Toulouse, France

    Google Scholar 

  • Roblou L, Lyard F, Le Hénaff M, Maraldi C (2007) X-TRACK, a new processing tool for altimetry in coastal ocean. In: ESA ENVISAT Symposium, Montreux, Switzerland, April 23–27, 2007, ESA SP-636, July 2007

    Google Scholar 

  • Ruf CS, Keihm SJ, Subramanya B, Janssen MA (1994) TOPEX/Poseidon microwave radiometer performance and in-flight calibration. J Geophys Res 99(C12):24915–24926

    Google Scholar 

  • Service d’Altimétrie et de Localisation Précise (SALP) (1996) Minutes of the ocean surface topography science team meeting, Venice, Italy, March 16–18, 2006, SALP-CR-MA-EA-15640-CNES, Y. Ménard (ed), CNES, p 90

    Google Scholar 

  • Stammer D, Wunsch C, Ponte RM (2000) De-aliasing of global high frequency barotropic motions in altimeter observations. Geophys Res Lett 27(8):1175–1178

    Article  Google Scholar 

  • Tai CK (1989) Accuracy assessment of widely used orbit error approximations in satellite altimetry. J Atmos Ocean Technol 6:147–150

    Article  Google Scholar 

  • Tai CK (1991) How to observe the gyre to global-scale variability in satellite altimetry: signal attenuation by orbit error removal. J Atmos Ocean Technol 8:271–288

    Article  Google Scholar 

  • Tournadre J (2006) Improved level-3 oceanic rainfall retrieval from dual-frequency spaceborne radar altimeter systems. J Atmos Ocean Technol. doi:10.1175/JTECH1897.1

    Google Scholar 

  • Tomczak M, Godfrey JS (1994) Regional oceanography: an introduction. Pergamon, New York

    Google Scholar 

  • Ulses C, Grenz C, Marsaleix P, Schaaff E, Estournel C, Meulé S, Pinazo C (2005) Circulation in a semi enclosed bay under the influence of strong fresh water input. J Mar Syst 56:113–132

    Article  Google Scholar 

  • UNESCO, ICES, SCOR, IAPSO (1981) Background papers and supporting data on the international equation of state of seawater, 1980, UNESCO technical papers in Mar Science. Nr. 38, UNESCO

    Google Scholar 

  • Vignudelli S, Cipollini P, Astraldi M, Gasparini GP, Manzella GMR (2000) Integrated use of altimeter and in situ data for understanding the water exchanges between the Tyrrhenian and Ligurian Seas. J Geophys Res 105(19):649–663

    Google Scholar 

  • Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini GP, Manzella G, Astraldi M (2005) Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea). Geophys Res Lett. doi:10.1029/2005GL022602

    Google Scholar 

  • Volkov DL, Larnicol G, Dorandeu J (2007) Improving the quality of satellite altimetry data over continental shelves. J Geophys Res. doi:10.1029/2006JC003765

    Google Scholar 

  • Wunsch C, Ponte R, Heimbach P (2007) Decadal trends in sea level patterns: 1993–2004. J Clim 20:5889–5911

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the entire staff at the Centre de Topographie des Océans et de l’Hydrosphère (CTOH) at LEGOS for access to the altimeter data bases (http://ctoh.legos.obs-mip.fr/) and its expertise. This paper was significantly improved by comments from Rosemary Morrow. Very special thanks are due to Stefano Vignudelli and Paolo Cipollini for strong interactions on the coastal altimetry issue since the ALBICOCCA project. The ALBICOCCA project was funded by CNES in the framework of TOSCA programme and ASI. The SYMPHONIE model data come from the outcome of the MFSTEP project, funded by the European Commission 5th Framework Programme on Energy, Environment and Sustainable Development (EU contract number EVK3-CT-2002-00075). This work has been partially carried out in the framework of the “GOCE Gravity Improvement of Continental Slope and Shelf Ocean Circulation Modelling” study, funded by the European Space Agency (ESA contract number 19740/06/NL/HE). This work was carried out as a contribution to the MARINA (MARgin INtegrated Approach) project, funded by CNES in the framework of the Ocean Surface Topography Science Team investigation plan (CNES/EUMETSAT/NASA/NOAA).

In addition, the authors would like to honour the warmth and kind guidance of a pioneer, colleague and friend, Dr. Yves Ménard. This chapter is dedicated to his memory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Roblou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Roblou, L. et al. (2011). Post-processing Altimeter Data Towards Coastal Applications and Integration into Coastal Models. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_9

Download citation

Publish with us

Policies and ethics