Skip to main content

Tropospheric Corrections for Coastal Altimetry

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

The altimeter range should be corrected for tropospheric path delays due to atmospheric pressure at sea level and atmospheric humidity. Over open ocean, these corrections are performed with enough accuracy using the microwave radiometer for the wet path delay and meteorological model analyses for the dry path delay. In coastal areas, specific studies are needed to assess the quality of the standard products and to propose specific processing if necessary. For the wet tropospheric correction, new promising approaches are presented based on optimal combination of radiometer, meteorological model, GNSS and land information. For the dry tropospheric correction, an assessment of the accuracy of the model-based estimation is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2T:

2-meter Temperature

COASTALT:

ESA development of COASTal ALTimetry

CorSSH:

corrected Sea Surface Height

dB:

Decibel

DLM:

Dynamically Linked Model

ECMWF:

European Centre for Medium-Range Weather Forecasts

EPN:

EUREF Permanent Network

ESA:

European Space Agency

GDR:

Geophysical Data Record

GFO:

Geosat Follow-On

GMF:

Global Mapping Functions

GNSS:

Global Navigation Satellite System

GPD:

GNSS-derived Path Delay

GPS:

Global Positioning System

IGS:

International GNSS Service

MWR:

Microwave Radiometer

NCEP:

U.S. National Centers for Environmental Prediction

NWM:

Numerical Weather Model

PD:

Path Delay

SSM/I:

Special Sensor Microwave Imager

STD:

Slant Total Delay

T/P:

TOPEX/Poseidon

TB:

Brightness Temperature

TCWV:

Total Column Water Vapour

TMR:

TOPEX Microwave Radiometer

VMF1:

Vienna Mapping Functions 1

ZHD:

Zenith Hydrostatic Delays

ZWD:

Zenith Wet Delays

References

  • Askne J, Nordius H (1987) Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci 22:379–386

    Article  Google Scholar 

  • AVISO (2005) Archiving, validation and interpretation of satellite oceanographic data. AVISO DT-CorSSH data are http://www.aviso.oceanobs.com/index.php?id=1267. Accessed June 2008

  • Bai Z, Feng Y (2003) GPS water vapor estimation using interpolated surface meteorological data from Australian automatic weather stations. J Global Position Syst 2(2):83–89

    Article  Google Scholar 

  • Bar-Sever YE, Kroger PM, Borjesson JA (1998) Estimating horizontal gradients of tropospheric path delay with a single GPS receiver. J Geophys Res 103(B3):5019–5035

    Google Scholar 

  • Bennartz R (1999) On the use of SSM/I measurements in coastal regions. J Atmos Ocean Technol 16:417–431

    Article  Google Scholar 

  • Bevis M, Businger S, Herring TA, Rocken C, Anthes RA, Ware RH (1992) GPS meteorology: remote sensing of atmospheric water vapor using the global positioning system. J Geophys Res 97(D14):15787–15801

    Google Scholar 

  • Boehm J, Schuh H (2004) Vienna mapping functions in VLBI analyses. Geophys Res Lett 31(L01603). doi:10.1029/2003GL018984

    Google Scholar 

  • Boehm J, Niell A, Tregoning P, Schuh H (2006) Global mapping functions (GMF): a new empirical mapping function based on numerical weather model data. Geophys Res Lett 33(L07304). doi:10.1029/2005GL025546

    Google Scholar 

  • Bosser P, Bock O, Pelon J, Thom C (2007) An improved mean-gravity model for GPS hydrostatic delay calibration. IEEE Geosci Remote Sens Lett 4(1):3–7

    Article  Google Scholar 

  • Bretherton FP, Davis RE, Fandry CB (1976) A technique for objective analysis and design of oceanographic experiment applied to MODE-73. Deep-Sea Res 23:559–582

    Google Scholar 

  • Chelton DB, Ries JC, Haines BJ, Fu LL, Callahan PS (2001) Satellite altimetry. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences. International Geophysics Series, vol 69. Academic, pp 1–131, ISBN: 0-12-269543-3

    Google Scholar 

  • Dach R, Hugentobler U, Fridez P, Meindl M (eds) (2007) Bernese GPS software - version 5.0. Astronomical Institute, University of Bern

    Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modelling errors on estimates of baseline length. Radio Sci 20(6):1593–1607

    Article  Google Scholar 

  • Desai SD, Haines BJ (2004) Monitoring measurements from the Jason-1 microwave radiometer and independent validation with GPS. Mar Geod 27(1):221–240. doi:10.1080/01490410490465337

    Article  Google Scholar 

  • Desportes C, Obligis E, Eymard L (2007) On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans Geosci Remote Sensing 45(7):2139–2149

    Article  Google Scholar 

  • Dow JM, Neilan RE, Gendt G (2005) The international GPS service (IGS): celebrating the 10th anniversary and looking to the next decade. Adv Space Res 36 (3):320–326, 2005. doi:10.1016/j.asr.2005.05.125

    Google Scholar 

  • ECMWF (2009) http://www.ecmwf.int/products/catalogue/pseta.html

  • Edwards S, Moore P, King M (2004) Assessment of the Jason-1 and TOPEX/Poseidon microwave radiometer performance using GPS from offshore sites in the North Sea. Mar Geod 27(3):717–727. doi:10.1080/01490410490883388

    Article  Google Scholar 

  • Fernandes MJ, Bastos L, Antunes M (2003) Coastal satellite altimetry – methods for data recovery and validation. In: Tziavo IN (ed) Proceedings of the 3rd meeting of the international gravity & geoid commission (GG2002), Editions ZITI, pp 302–307

    Google Scholar 

  • Hagemann S, Bengtsson L, Gendt G (2003) On the determination of atmospheric water vapor from GPS measurements. J Geophys Res 108(D21):4678. doi:10.1029/2002JD003235

    Google Scholar 

  • Haines BJ, Bar-Sever YE (1998) Monitoring the TOPEX microwave radiometer with GPS: stability of columnar water vapour measurements. Geophysic Res Lett 25(19):3563–3566

    Article  Google Scholar 

  • Hauser D et al. (2003) The FETCH experiment: an overview. J Geophys Res 108(C3):8053. doi:10.1029/2001JC001202

    Google Scholar 

  • Herring T, King R, McClusky S (2006) GAMIT reference manual – GPS analysis at MIT – Release 10.3. Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology

    Google Scholar 

  • Hopfield HS (1971) Tropospheric effect on electromagnetic measured range: prediction from surface weather data. Radio Sci 6:357–367

    Article  Google Scholar 

  • Karbou F, Prigent C, Eymard L, Pardo JR (2005) Microwave land emissivity calculations using AMSU measurements. IEEE Trans Geosci Remote Sensing 43(5):948–959

    Article  Google Scholar 

  • Kouba J (2008) Implementation and testing of the gridded Vienna mapping function 1 (VMF1). J Geod 82:193–205. doi:10.1007/s00190-007-0170-0

    Article  Google Scholar 

  • Leeuwenburgh O (2000), Covariance modelling for merging of multi-sensor ocean surface data, methods and applications of inversion. In: Hansen PC, Jacobsen BH, Mosegaard H (eds) Lecture notes in earth sciences, vol 92. Springer, pp 203–216. doi:10.1007/BFb0010278 is Berlin/Heidelberg

    Google Scholar 

  • Liebe HJ (1985) An updated model for milimeter wave propagation in moist air. Radio Sci 20(5):1069–1089

    Article  Google Scholar 

  • Marini JW (1972) Correction of satellite tracking data for an arbitrary tropospheric profile. Radio Sci 7(2):223–231

    Article  Google Scholar 

  • Mendes VB, Prates G, Santos L, Langley RB (2000) An Evaluation of the accuracy of models of the determination of the weighted mean temperature of the atmosphere. In: Proceedings of ION, 2000 national technical meeting, January 26–28, 2000, Pacific Hotel Disneyland, Anaheim, CA

    Google Scholar 

  • Mercier F (2004) Amélioration de la correction de troposphère humide en zone côtière. Rapport Gocina, CLS-DOS-NT-04-086

    Google Scholar 

  • Mercier F, Ablain M, Carrère L, Dibarboure G., Dufau C, Labroue S, Obligis E, Sicard P, Thibaut P, Commien L, Moreau T, Garcia G, Poisson JC, Rahmani A, Birol F, Bouffard J, Cazenave A, Crétaux JF, Gennero MC, Seyler F, Kosuth P, Bercher N (2008) A CNES initiative for improved altimeter products in coastal zone: PISTACH. http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2008/Mercier_PISTACH.pdf

  • Moore P, Edwards E, King M (2005) Radiometric path delay calibration of ERS-2 with application to altimetric range. In: Proceedings of the 2004 Envisat & ERS symposium, Salzburg, Austria 6–10 September 2004

    Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101(B2):3277–3246

    Google Scholar 

  • Niell AE (2001) Preliminary evaluation of atmospheric mapping functions based on numerical weather models. Phys Chem Earth 26:475–480

    Article  Google Scholar 

  • Niell AE, Coster AJ, Solheim FS, Mendes VB, Toor PC, Langley RB, Upham CA (2001) Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J Atmos Ocean Technol 18:830–850

    Google Scholar 

  • Ruf C (1999) Jason microwave radiometer – land contamination of path delay retrieval. Technical note for the Jason project

    Google Scholar 

  • Ruf C, Keihm S, Janssen MA (1995) TOPEX/Poseidon microwave radiometer (TMR): I. Instrument description and antenna temperature calibration. IEEE Trans Geosci Remote Sensing 33(1):125–137

    Article  Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for troposphere and stratosphere in radio ranging of satellites. In: Henriksen S, Mancini A, Chovitz B (eds) The use of artificial satellites for geodesy, vol 15. Geophysics Monograph Series, AGU, Washington, DC, pp 247–251

    Google Scholar 

  • Scharroo R, Lillibridge JL, Smith WHF, Schrama EJO (2004) Cross-calibration and long-term monitoring of the microwave radiometers of ERS, TOPEX, GFO, Jason and Envisat. Mar Geod 27:279–297

    Article  Google Scholar 

  • Schüler T (2001) On ground-based gps tropospheric delay estimation. PhD thesis, Universität der Bundeswehr München, Studiengang Geodäsie und Geoinformation available at http://ub.unibw-muenchen.de/dissertationen/ediss/schueler-torben/inhalt.pdf. Accessed 13 January 2009

  • Smith EK, Weintraub S (1953) The constants in the equation for atmospheric refractive index at radio frequencies. Proc Inst Radio Eng 41(8):1035–1037

    Google Scholar 

  • Snajdrova K, Boehm J, Willis P, Haas R, Schuh H (2006) Multi-technique comparison of tropospheric zenith delays derived during the CONT02 campaign. J Geod 79:613–623. doi:10.1007/s00190-005-0010-z

    Article  Google Scholar 

  • Thayer GD (1974) An improved equation for the radio refractive index of air. Radio Sci 9(10):803–807

    Article  Google Scholar 

  • Wang J, Zhang L, Dai A, Van Hove T, Van Baelen J (2007) A near-global, 2-hourly data set of atmospheric precipitable water from ground-based GPS measurements. J Geophys Res 112(D11107). doi:10.1029/2006JD007529

    Google Scholar 

  • Webb FH, Zumberge JF (1995) An introduction to GIPSY/OASIS-II. JPL Publication D-11088, Jet Propulsion Laboratory, Pasadena

    Google Scholar 

Download references

Acknowledgements

Studies presented in this chapter have been funded by the CNES research and technology program, by ESA-funded project COASTALT (ESA/ESRIN Contract No. 21201/08/I-LG) and by FCT project POCUS (PDCTE/CTA/50388/2003). Authors would like to acknowledge the European Centre for Medium-Range Weather Forecasts (ECMWF) for providing the reanalysis data on the single-level atmospheric fields of the Deterministic Atmospheric Model.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Obligis, E., Desportes, C., Eymard, L., Fernandes, M.J., Lázaro, C., Nunes, A.L. (2011). Tropospheric Corrections for Coastal Altimetry. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_6

Download citation

Publish with us

Policies and ethics