Skip to main content

Retracking Altimeter Waveforms Near the Coasts

A Review of Retracking Methods and Some Applications to Coastal Waveforms

  • Chapter
  • First Online:
Coastal Altimetry

Abstract

There has been considerable interest in the past few years in addressing some of the long-term technical difficulties associated with retrieving valid measurements from satellite altimeters in coastal areas, where high levels of human activities are putting increasing demand for information about sea level, wind and wave conditions. Developments of altimeter waveform retracking techniques, together with the now-established practice of giving users access to altimeter waveform data, has led to rapid progress in our understanding of the challenges posed by waveform shapes in the vicinity of land. In this chapter, we present observational evidence of the huge diversity and complexity of waveforms seen by contemporary altimeters in coastal areas. We proceed with a review of waveform retracking methods, examining first empirical methods, then so-called physically-based methods, including discussion of some of their implementation intricacies. We proceed with providing examples of the application of waveform retracking methods to coastal altimeter waveforms in coastal regions around the world. Finally, we explore some of the new ideas on how it may be possible to exploit prior knowledge, for example about the statistics or the along-track evolution of ocean properties in the coastal domain, to improve the estimation of geophysical parameters. Innovative schemes, such as iterative retracking or simultaneous batch retracking, are discussed as new ways to yield unbiased parameter estimation for land-contaminated waveforms much closer to the land/water interface than is currently possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 179.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BOR:

Brown Ocean Retracker

CLS:

Collecte Localisation Satellites

CNES:

Centre National d’Études Spatiales

COASTALT:

ESA development of COASTal ALTimetry

COG:

Centre Of Gravity

DEM:

Digital Elevation Model

DIODE:

Détermination Immédiate d’Orbite par Doris Embarqué

DORIS:

Doppler Orbitography and Radiopositioning Integrated by Satellite

EGM:

Earth Gravitational Model

Envisat:

Environmental Satellite

ERS:

European Remote Sensing (satellites)

ESA:

European Space Agency

FSSR:

Flat Sea Surface Response

GDR:

Geophysical Data Record

Geosat:

GEOdetic SATellite

GFO:

Geosat Follow-On

GSFC:

Goddard Space Flight Center

LEP:

Leading Edge Position

MBS:

Mixed Brown Specular

MLE:

Maximum Likelihood Estimator

MMSE:

Minimum Mean Square Estimator

MSL:

Mean Sea Level

MT:

Median Tracker

NASA:

National Aeronautics and Space Administration

NOCS:

National Oceanography Centre, Southampton

OCOG:

Offset Centre Of Gravity

PDF:

Probability Density Function

PISTACH:

CNES Development of “Prototype Innovant de Système de Traitement pour les Applications Côtières et l’Hydrologie

PR:

Pulse Repetition Frequency

PTR:

Point Target Response

RMSE:

Root Mean Squared Error

SGT:

Split Gate Tracker

SSH:

Sea Surface Height

SWH:

Significant Wave Height

WLS:

Weighted Least Square

References

  • Abramowitz M, Stegun IA (1968) Handbook of mathematical functions. Dover Publications, Chap 9, 374pp.

    Article  Google Scholar 

  • Amarouche L, Thibaut P, Zanife OZ, Dumont J-P, Vincent P, Steunou N (2004) Improving the Jason-1 ground retracking to better account for attitude effects. Marine Geodesy 27:171–197

    Article  Google Scholar 

  • Bao L, Lu Y, Wang Y (2009) Improved retracking algorithm for oceanic altimeter waveforms. Prog Nat Sci. doi:10.1016/j.pnsc.2008.06.017

    Google Scholar 

  • Barrick DE (1972): Remote sensing of the sea state by radar. In: Derr VE (ed) Remote sensing of the troposphere, Chap 12. US Govt. Printing Office, Washington, DC

    Google Scholar 

  • Barrick DE, Lipa BJ (1985) Analysis and interpretation of altimeter sea echo. Adv Geophys 27:61–100

    Google Scholar 

  • Brown GS (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag AP-25(1):67–74

    Google Scholar 

  • Callahan PS, Rodriguez E (2004) Retracking Jason-1 Data. Mar Geod 27:391–407

    Article  Google Scholar 

  • Challenor PG, Srokosz MA (1989) The extraction of geophysical parameters from radar altimeter return from a non-linear sea surface. In: mathematics in remote sensing. Clarendon Press, Oxford, pp 257–268

    Google Scholar 

  • Chelton DB, Walsh E, MacArthur J (1989) Pulse compression and sea level tracking in satellite altimetry. J Atmos Ocean Technol 6:407–438

    Google Scholar 

  • Chelton DB, Ries JC, Haines BJ, Fu L-L, Callahan PS (2001) Satellite altimetry. In: Fu L-L, Cazenave A (eds) Satellite altimetry and Earth sciences: a handbook of techniques and applications. Academic, San Diego, USA, pp 1–132

    Chapter  Google Scholar 

  • Davis CH (1995) Growth of the Greenland ice sheet: a performance assessment of altimeter retracking algorithms. IEEE Trans Geosci Remote Sens 33(5):1108–1116

    Article  Google Scholar 

  • Davis CH (1997) A robust threshold retracking algorithm for measuring ice-sheet surface elevation change from satellite radar altimeter. IEEE Trans Geosci Remote Sensing 35(4):974–979

    Article  Google Scholar 

  • Deng X (2004) Improvement of geodetic parameter estimation in coastal regions from satellite radar altimetry. PhD thesis, Curtin University of Technology, Perth, Australia

    Google Scholar 

  • Deng X, Featherstone WE (2005) Improved determination of sea surface heights close to the Australian Coast from ERS-2 satellite radar altimetry. In: Sansò F (ed) A window on the future of geodesy. Springer, Berlin, pp 314–319

    Chapter  Google Scholar 

  • Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res 111:C06012. doi:10.1029/2005JC003039

    Article  Google Scholar 

  • Deng, X, Lee HK, Shum CK, Roesler C, Emery W (2008) Retracking of radar altimetry for coastal applications. http://www.coastalt.eu/pisaworkshop08/pres/. Accessed 14 January 2009

  • Dumont JP (1985) Estimation Optimale des Paramètres Altimétriques des Signaux Radar Poseidon, PhD thesis from Institut National Polytechnique de Toulouse, Toulouse, France

    Google Scholar 

  • Featherstone, WE, Kirby JF, Kearsley AHW, Gilliland JR, Johnston GM, Steed J, Forsberg R, Sideris MG (2001) The AUSGeoid98 geoid model of Australia: data treatment, computations and comparisons with GPS-levelling data. J Geod 75:13–330

    Google Scholar 

  • Fenoglio-Marc L (2008) Retracking in the North-Western Mediterranean Sea, Oral presentation during 2nd coastal altimetry workshop, Pisa, Italy, Nov 2008. Available from http://www.coastalt.eu/pisaworkshop08/pres/.

  • Fenoglio-Marc L, Fehlau M, Ferri L, Becker M, Gao Y, Vignudelli S (2009) Coastal sea surface heights from improved altimeter data in the Mediterranean Sea, Proceedings GGEO2008. Springer Verlag, IAG Symposia

    Google Scholar 

  • Gómez-Enri J, Gommenginger C, Srokosz M, Challenor PG, Drinkwater M (2006) Envisat radar altimeter tracker bias. Mar Geod 29:19–38

    Article  Google Scholar 

  • Gómez-Enri J, Vignudelli S, Quartly GD, Gommenginger CP, Cipollini PG, Challenor PG and Benveniste J (2010) Modeling Envisat RA-2 waveforms in the coastal zone: case-study of calm water contamination, IEEE Geosc. Remote Sens Lett 7(3): 474–478. doi:10.1109/LGRS.2009.2039193

    Google Scholar 

  • Gommenginger CP, Gleason S, Snaith H, Challenor P, Quartly G, Gomez-Enri J, COASTALT processor and products, Oral presentation during 2nd coastal altimetry workshop, Pisa, Italy, Nov 2008. Available from http://www.coastalt.eu/pisaworkshop08/pres/

  • Hayne GS (1980) Radar altimeter mean return waveform from near-normal-incidence ocean surface scattering, IEEE Trans Antennas Propag AP-28 (5):687–692

    Google Scholar 

  • Hwang C, Guo JY, Deng XL, Hsu HY, Liu YT (2006) Coastal gravity anomalies from retracked Geosat/GM altimetry: improvement, limitation and the role of airborne gravity data. J Geod 80:204–216

    Article  Google Scholar 

  • Lee Hyongki CK, Shum Y Yi, Brau A, Kuo C-Y (2008) Laurentia crustal motion observed using Topex/Poseidon radar altimetry over land. J Geodyn 46:182–193

    Article  Google Scholar 

  • Li, D. R. (1988), The error and reliability theory, 331pp Surv. and Mapp., Beijing, China.

    Google Scholar 

  • MacArthur JL (1978) Seasat, a radar altimeter design description, Rep. SDO-5232. Applied Physics Lab, Johns Hopkins University, Baltimore, MD

    Google Scholar 

  • Martin TV, Zwally HJ, Brenner AC et al (1983) Analysis and retracking of continental ice sheet radar altimeter waveforms. J Geophys Res 88:1608–1616

    Article  Google Scholar 

  • Maus S, Green CM, Fairhead JD (1998) Improved ocean-geoid resolution from retracked ERS-1 satellite altimeter waveforms. Geophys J Int 134(N1):243–253

    Google Scholar 

  • Mercier F (2008) Improved Jason-2 altimetry products for coastal zones and continental waters (Pistach project), OSTST Nice 2008. Poster available on http://www.aviso.oceanobs.com/fileadmin/documents/OSTST/2008/Mercier_PISTACH.pdf

  • Moore RK, Williams CS Jr (1957) Radar terrain return at near-vertical incidence. Proc IRE 45(2):228–238

    Google Scholar 

  • NASA GSFC (2006) The GSFC retracking algorithms. http://icesat4.gsfc.nasa.gov/data_processing/gsfcretrackdoc.960725.html. Last updated 12/11/2006

  • Powell RJ, Birks AR, Bradford WJ, Wrench CL, Biddiscombe J (1993) Using transponders with the ERS-1 altimeter to measure orbit altitude to ± 3 cm. In: Proceedings of the first ERS-1 symposium, 4–6 November 1992, Cannes, France, ESA SP-359, pp 511–516

    Google Scholar 

  • Quartly GD (1998) Determination of oceanic rain rate and rain cell structure from altimeter waveform data. Part I: Theory. J Atmos Ocean Technol 15(6):1361–1378

    Google Scholar 

  • Quartly GD (2009a) Optimizing σ0 information from the Jason-2 altimeter. IEEE Geosci Remote Sens Lett 6:398–402. doi:10.1109/LGRS.2009.2013973

    Article  Google Scholar 

  • Quartly GD (2009b) Improving the intercalibration of σ0 values for the Jason-1 and Jason-2 altimeters. IEEE Geosci Remote Sens Lett 6:538–542. doi:10.1109/LGRS.2009.2020921

    Article  Google Scholar 

  • Quartly GD, Srokosz MA, McMillan AC (2001) Analyzing altimeter artifacts: statistical properties of ocean waveforms. J Atmos Ocean Technol 18:2074–2091

    Article  Google Scholar 

  • Rodriguez E (1988) Altimetry for non-Gaussian oceans: height biases and estimation of parameters. J Geophys Res 93(C11):14107–14120

    Google Scholar 

  • Sandwell D, Smith W (2005) Retracking ERS-1 altimeter waveforms for optimal gravity field recovery. Geophys J Int. doi:10.1111/j.1365-246X.2005.02724.x

    Google Scholar 

  • Srokosz, MA, (1986) On the joint distribution of surface elevation and slopes for a nonlinear random sea, with an application to radar altimetry. J Geophys. Res 91:995– 1006.

    Google Scholar 

  • Thibaut P, Poisson JC (2008) Waveforms processing in Pistach project, Oral presentation during 2nd coastal altimetry workshop, Pisa, Italy, Nov 2008. Available from http://www.coastalt.eu/pisaworkshop08/pres/

  • Thibaut P, Amarouche L, Zanife OZ, Steunou N, Vincent P, Raizonville P (2004) Jason-1 altimeter ground processing look-up correction tables. Mar Geod 27:409–431

    Article  Google Scholar 

  • Tokmakian RT, Challenor PG, Guymer H, Srokosz MA (1994) The U.K. EODC ERS-1 altimeter oceans processing scheme. Int J Remote Sensing 15:939–962

    Google Scholar 

  • Tournadre J, Whitmer K, Girard-Ardhuin F (2008) Iceberg detection in open water by altimeter waveform analysis. J Geophys Res Oceans 113(C8):C08040

    Google Scholar 

  • Wingham DJ, Rapley CG, Griffiths H (1986) New techniques in satellite tracking system. In: Proceedings of IGARSS’ 86 symposium, Zurich, pp 1339–1344

    Google Scholar 

  • Zanifé O-Z, Vincent P, Amarouche L, Dumont J-P, Thibaut P, Labroue S (2003) Comparison of the Ku range noise level and the relative sea state bias of the Jason-1, Topex and Poseidon-1 radar altimeters. Marine Geodesy, Special Issue on Jason-1 Calibration/Validation 26(1):3–4

    Google Scholar 

  • Zwally HJ, Brenner AC (2001) Ice sheet dynamics and mass balance. In: Fu LL, Cazenave A (eds) Satellite altimetry and earth sciences: a handbook of techniques and applications. Elsevier, New York, pp 351–369

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Gommenginger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gommenginger, C. et al. (2011). Retracking Altimeter Waveforms Near the Coasts. In: Vignudelli, S., Kostianoy, A., Cipollini, P., Benveniste, J. (eds) Coastal Altimetry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12796-0_4

Download citation

Publish with us

Policies and ethics