Skip to main content

An Algorithm to Decompose n-Dimensional Rotations into Planar Rotations

  • Conference paper
Computational Modeling of Objects Represented in Images (CompIMAGE 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6026))

Abstract

In this paper, we present an algorithm that decomposes an n-dimensional rotation into planar rotations. The input data are n points and their images by the rotation to be decomposed. An evaluation of the existing methods and numerical examples are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aragon-Gonzalez, G., Aragon, J., Rodriguez-Andrade, M., Verde-Star, L.: Reflections, rotations, and pythagorean numbers. Advances in Applied Clifford Algebra 19(1), 1–14 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Audin, M.: Geometry. Springer, Heidelberg (2003)

    Google Scholar 

  3. Charneau, S.: Étude et Application des Algèbres Géométriques pour le Calcul de la Visibilité Globale dans un Espace Projectif de Dimension n ≥ 2. Ph.D. Thesis, Université de Poitiers, France (2007)

    Google Scholar 

  4. Charneau, S., Aveneau, L., Fuchs, L.: Exact, robust and efficient full visibility computation in the Plücker space. The Visual Computer Journal 23, 773–782 (2007)

    Article  Google Scholar 

  5. Cheng, P.: Joint rotation between two attitudes in the spherical rotation coordinate system. Journal of Biomechanics 37(10), 1475–1482 (2004)

    Article  Google Scholar 

  6. Cheng, P., Nicol, A., Paul, J.: Determination of axial rotation angles of limb segments – a new method. Journal of Biomechanics 33(7), 837–843 (2000)

    Article  Google Scholar 

  7. Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object-Oriented Approach to Geometry. Morgan Kauffmann Publishers, San Francisco (2007)

    Google Scholar 

  8. Dorst, L., Mann, S., Bouma, T.: Gable: A Matlab Tutorial for Geometric Algebra (2003)

    Google Scholar 

  9. Golub, G., Van Loan, C.: Matrix Computations, 3rd edn. Johns Hopkins Studies in Mathematical Sciences (1996)

    Google Scholar 

  10. Gower, J.C., Dijksterhuis, G.B.: Procrustes Problems. Oxford University Press, Oxford (2004)

    Book  MATH  Google Scholar 

  11. Hestenes, D., Sobczyk, G.: Clifford Algebra to Geometric Calculus: A Unified Language for Mathematics and Physics. D.Reidel Pub. Co., Dordrecht (1984)

    MATH  Google Scholar 

  12. Hildebrand, D., Fontijne, D., Perwass, C., Dorst, L.: Geometric algebra and its application to computer graphics. In: 25th Annual Conference of the European Association for Computer Graphics – Interacting with Virtual Worlds (2004)

    Google Scholar 

  13. The Calm Language, http://www.ocaml.org

  14. Mebius, J.: The Four-dimensional Rotation Group SO(4) (2008), http://www.xs4all.nl/~jemebius/so4-wiki.pdf

  15. Perwass, C., Sommer, G.: Numerical evaluation of versors with Clifford Algebra. In: Dorst, L., Doran, C., Lasenby, J. (eds.) Applications of Geometric Algebra in Computer Science and Engineering, pp. 341–350. Birkhauser, Boston (2002)

    Google Scholar 

  16. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice-Hall, Englewood Cliffs (2001)

    Google Scholar 

  17. Sommer, G.: Geometric Computing with Clifford Algebra. Springer, Heidelberg (2001)

    Google Scholar 

  18. Thibault, Y., Kenmochi, Y., Sugimoto, A.: Computing upper and lower bounds of rotation angles from digital images. Pattern Recognition 42(8), 1708–1717 (2009)

    Article  MATH  Google Scholar 

  19. Watson, G.: Computing Helmert transformations. Journal of Computational and Applied Mathematics 197 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Richard, A., Fuchs, L., Charneau, S. (2010). An Algorithm to Decompose n-Dimensional Rotations into Planar Rotations. In: Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Natal Jorge, R.M., Tavares, J.M.R.S. (eds) Computational Modeling of Objects Represented in Images. CompIMAGE 2010. Lecture Notes in Computer Science, vol 6026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12712-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12712-0_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12711-3

  • Online ISBN: 978-3-642-12712-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics