Skip to main content

The Neglected Side of the Coin: Non-adaptive Radiations in Spring Snails (Bythinella spp.)

  • Chapter
  • First Online:
Evolution in Action

Abstract

Recently, there has been increased scientific interest among evolutionary biologists in both causes and consequences of radiations. Whereas one form of radiation – adaptive radiation – has been studied extensively, another form – non-adaptive radiation – is discussed controversially and is poorly understood. In fact, the concept of non-adaptive radiation (i.e., rapid diversification of species not accompanied by adaptation into various niches and resulting in a group of allopatric taxa) is rejected by some workers.

Therefore, the present paper aims to review patterns and processes of radiation(s) in a model taxon – the stenoecious spring snail genus Bythinella – within the theoretical framework of adaptive versus non-adaptive radiations. Based on a taxon-wide phylogeny, several methods for identifying radiations are applied, including a new pragmatic approach based on the species flock concept and a temporal frame of rapid speciation. Then, the criteria of non-adaptive radiations are assessed and the driving forces discussed both in general and specifically for Bythinella spp. Based on eight identified radiations as well as ecological, morphological, and distribution data for up to 50 species, the presence of non-adaptive radiations is suggested in this taxon. Driving forces for these radiations might be genetic drift in small sub-divided populations, though natural selection may be involved as well. Moreover, it is shown that adaptive and non-adaptive radiations might not be entirely discrete in space and time. The present study underlines the need for a better understanding of the underlying mechanisms of adaptive and non-adaptive radiations and for a judicious use of these epithets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abouheif E (1999) A method for testing the assumption of phylogenetic independence in comparative data. Evol Ecol Res 1:895–909

    Google Scholar 

  • Albertson RC, Markert JA, Danley PD, Kocher TD (1999) Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci USA 96:5107–5110

    PubMed  CAS  Google Scholar 

  • Albrecht C, Wilke T (2008) Lake Ohrid: biodiversity and evolution. Hydrobiologia 615:103–140

    Google Scholar 

  • Albrecht C, Trajanovski S, Kuhn K, Streit B, Wilke T (2006) Rapid evolution of an ancient lake species flock: freshwater limpets (Gastropoda: Ancylidae) in the Balkan lake Ohrid. Org Divers Evol 6:294–307

    Google Scholar 

  • Attwood SW, Ambu S, Meng X-H, Upatham ES, Xu F-S, Southgate VR (2003) The phylogenetics of triculine snails (Rissooidea: Pomatiopsidae) from south-east Asia and southern China: historical biogeography and the transmission of human schistosomiasis. J Molluscan Stud 69:263–271

    Google Scholar 

  • Barraclough TG, Nee S (2001) Phylogenetics and speciation. Trends Ecol Evol 16:391–399

    PubMed  Google Scholar 

  • Benke M, Brändle M, Albrecht C, Wilke T (2009) Pleistocene phylogeography and phylogenetic concordance in cold-adapted spring snails (Bythinella spp.). Mol Ecol 18:890–903

    PubMed  CAS  Google Scholar 

  • Bichain J-M, Gaubert P, Samadi S, Boisselier-Dubayle M-C (2007a) A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae). Mol Phylogenet Evol 45:927–941

    PubMed  CAS  Google Scholar 

  • Bichain J-M, Boisselier-Dubayle M-C, Bouchet P, Samadi S (2007b) Species delimitation in the genus Bythinella (Mollusca: Caenogastropoda: Rissooidea): a first attempt combining molecular and morphometrical data. Malacologia 49:293–311

    Google Scholar 

  • Boeters HD (1968) Die Hydrobiidae Badens, der Schweiz und der benachbarten französischen Departements. Mitt Bad Landesver Naturk Naturschutz Freiburg 9:755–778

    Google Scholar 

  • Bolnick DI (2006) Multi-species outcomes in a common model of sympatric speciation. J Theor Biol 241:734–744

    PubMed  Google Scholar 

  • Brändle M, Westermann I, Brandl R (2005) Gene flow between populations of two invertebrates in springs. Freshw Biol 50:1–9

    Google Scholar 

  • Brooks DR, O’Grady RT, Glen DR (1985) Phylogenetic analysis of the Digenea (Platyhelminthes; Cercomeria) with comments on their adaptive radiation. Can J Zool 63:411–443

    Google Scholar 

  • Cameron RAD, Cook LM, Hallows JD (1996) Land snails on Porto Santo: adaptive and non-adaptive radiation. Philos Trans R Soc Lond B 351:309–327

    Google Scholar 

  • Chan KMA, Moore BR (2004) SymmeTree: whole-tree analysis of differential diversification rates. Bioinformatics 21:1709–1710

    PubMed  Google Scholar 

  • Clark SA, Miller AC, Ponder WF (2003) A revision of the snail genus Austropyrgus (Gastropoda: Hydrobiidae): a morphostatic radiation of freshwater gastropods in southeastern Australia. Rec Aust Mus 28(Suppl):1–109

    Google Scholar 

  • Colgan DJ, Ponder WF (1994) The evolutionary consequences of restrictions in gene flow: examples from hydrobiid snails. Nautilus 2(Suppl):25–43

    Google Scholar 

  • Comes HP, Tribsch A, Bittkau C (2008) Plant speciaton in continental island floras as exemplified by Nigella in the Aegean Archipelago. Philos Trans R Soc Lond B 363:3083–3096

    Google Scholar 

  • Cook LM (2008) Species richness in Madeiran land snails, and its causes. J Biogeogr 35:647–653

    Google Scholar 

  • Davis GM (1993) Evolution of prosobranch snails transmitting asian Schistosoma; coevolution with Schistosoma: A Review. Prog Clin Parasitol 3:145–204

    PubMed  CAS  Google Scholar 

  • Davis GM (1994) Molecular genetics and taxonomic discrimination. Nautilus Suppl 2:3–23

    Google Scholar 

  • Davis GM, Chen CE, Wu C, Kuang TF, Xing XG, Li L, Liu WJ, Yan YL (1992) The Pomatiopsidae of Hunan, China (Gastropoda: Rissoacea). Malacologia 34:143–342

    Google Scholar 

  • Davison A, Chiba S (2006) Labile ecotypes accompany rapid cladogenesis in an adaptive radiation of Mandarina (Bradybaenidae) land snails. Biol J Linn Soc 88:269–282

    Google Scholar 

  • Dieckmann U, Doebeli M, Metz JAJ, Tautz D (2004) Adaptive speciation. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Eldredge N (2000) Species, speciation and the environment. http://www.actionbioscience.org/evolution/ eldredge.html. Cited 6 Feb 2009

  • Eldredge N (2003) The sloshing bucket: how the physical realm controls evolution. In: Crutchfield J, Schuster P (eds) Evolutionary dynamics: exploring the interplay of selection, accident, neutrality, and function (SFI Studies in the Sciences of Complexity Series). Oxford University Press, New York, pp 3–32

    Google Scholar 

  • Eldredge N, Thompson JN, Brakefield PM, Gavrilets S, Jablonski D, Jackson JBC, Lenski RE, Lieberman BS, McPeek MA, Miller W (2005) The dynamics of evolutionary stasis. Paleobiology 31(sp 5):133–145

    Google Scholar 

  • Falniowski A (1992) Genus Bythinella Moquin-Tandon, 1855, in Poland (Gastropoda, Prosobranchia, Hydrobiidae). In: Gittenberger E, Goud J (eds) Proceedings of the ninth international malacological congress, Edinburgh, 1986. Unitas Malacologica, Leiden, pp 135–138

    Google Scholar 

  • Falniowski A, Szarowska M, Fiałkowski W, Mazan K (1998) Unusual geographic pattern of interpopulation variation in a spring snail Bythinella (Gastropoda: Prosobranchia). J Nat Hist 32:605–616

    Google Scholar 

  • Fauna Europaea Web Service (2004) Fauna Europaea Version 1.1. http://faunaeur.org. Cited 4 Nov 2008

  • Fisher RA, Ford EB (1950) The “Sewall Wright effect”. Heredity 4:117–119

    PubMed  CAS  Google Scholar 

  • Foote M (1996) Models of morphological diversification. In: Jablonski D, Erwin DH, Lipps JH (eds) Evolutionary paleobiology. University of Chicago Press, Chicago, IL, pp 62–86

    Google Scholar 

  • Freckleton RP, Harvey PH (2006) Detecting non-Brownian trait evolution in adaptive radiations. PLoS Biol 4:2104–2111

    CAS  Google Scholar 

  • Futuyma D (1998) Evolutionary biology. Sinauer, Massachusetts

    Google Scholar 

  • Gavrilets S, Losos JB (2009) Adaptive radiation: contrasting theory with data. Science 323:732–737

    PubMed  CAS  Google Scholar 

  • Gavrilets S, Vose A (2005) Dynamic patterns of adaptive radiation. Proc Natl Acad Sci USA 102:18040–18045

    PubMed  CAS  Google Scholar 

  • Gittenberger E (1991) What about non-adaptive radiation? Biol J Linn Soc 43:263–272

    Google Scholar 

  • Gittenberger E (2004) Radiation and adaptation, evolutionary biology and semantics. Org Divers Evol 4:135–136

    Google Scholar 

  • Gittenberger E (2007) Islands from a snail’s perspective. Top Geobiol 29:347–364

    Google Scholar 

  • Gittenberger E, Hausdorf B (2004) The Orculella species of the South Aegean island arc, a neglected radiation (Gastropoda, Pulmonata, Orculidae). Basteria 68:93–124

    Google Scholar 

  • Giusti F, Pezzoli E (1977) Primo contributo alla revisione del genere Bythinella in Italia. Natura Bresciana, Ann Mus Civ St Nat Brescia 14:3–66

    Google Scholar 

  • Givnish TJ (1997) Adaptive radiation and molecular systematics: issues and approaches. In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New York, pp 1–54

    Google Scholar 

  • Greenwood PH (1984) What is a species flock? In: Echelle AA, Kornfield I (eds) Evolution of fish species flocks. Orono, Maine, pp 13–19

    Google Scholar 

  • Guyer C, Slowinski JB (1993) Adaptive radiation and the topology of large phylogenies. Evolution 47:253–263

    Google Scholar 

  • Haase M, Wilke T, Mildner P (2007) Identifying species of Bythinella (Caenogastropoda: Rissooidea): a plea for an integrative approach. Zootaxa 1563:1–16

    Google Scholar 

  • Haldane JBS (1949) Suggestions as to quantitative measurement of rates of evolution. Evolution 3:51–56

    PubMed  CAS  Google Scholar 

  • Hebert PDN (1998) Variable environments and evolutionary diversification in inland waters. In: Carvalho GR (ed) Advances in molecular ecology. IOS Press, Amsterdam, pp 175–195

    Google Scholar 

  • Hodges SA (1997) Rapid radiation due to a key innovation in colombines (Ranunculaceae: Aquilegia). In: Givnish TJ, Sytsma KJ (eds) Molecular evolution and adaptive radiation. Cambridge University Press, New York, pp 391–405

    Google Scholar 

  • Jungbluth JH (1972) Die Verbreitung und Ökologie des Rassenkreises Bythinella dunkeri (Frauenfeld, 1856) (Mollusca: Prosobranchia). Arch Hydrobiol 70:230–273

    Google Scholar 

  • Kapralov MV, Filatov DA (2006) Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea. PLoS ONE 1(1):e8

    PubMed  Google Scholar 

  • Klemm M, Schlegel M (1989) Genetic differentiation in Bythinella dunkeri and Bythinella badensis from Black Forest (SW Germany). (Prosobranchia, Bythinellidae). In: Abstracts of the 10th international malacological congress, Tübingen, 1989. Unitas Malacologica, p 133

    Google Scholar 

  • Kozak KH, Wiens JJ (2006) Does niche conservatism promote speciation? A case study in North American salamanders. Evolution 60:2604–2621

    PubMed  Google Scholar 

  • Kozak KH, Weisrock DW, Larson A (2006) Rapid lineage accumulation in a non-adaptive radiation: phylogeographic analysis of diversification rates in eastern North American woodland salamanders (genus Plethodon). Proc R Soc Lond B 273:539–546

    CAS  Google Scholar 

  • Leander BS, Keeling PJ (2003) Morphostasis in alveolate evolution. Trends Ecol Evol 18:395–402

    Google Scholar 

  • Liu H-P, Hershler R, Clift K (2003) Mitochondrial DNA sequences reveal extensive cryptic diversity within a western American springsnail. Mol Ecol 12:2771–2782

    PubMed  CAS  Google Scholar 

  • Losos JB, Miles DB (2002) Testing the hypothesis that a clade has adaptively radiated: iguanid lizard clades as a case study. Am Nat 160:147–157

    PubMed  Google Scholar 

  • Mayr E (1963) Animal species and evolution. Harvard University Press, Cambridge, Mass

    Google Scholar 

  • Mazan K, Szarowska M (2000) Morphological and allozymic variation within and between populations of Bythinella Moquin-Tandon, 1855 (Gastropoda, Prosobranchia). III. Phylogenetic analysis. Folia Malacologica 8:257–269

    Google Scholar 

  • Minkoff EC (1983) Evolutionary biology. Addison-Wesley, Reading, MA

    Google Scholar 

  • Moline AB, Shuster SM, Hendrickson DA, Marks JC (2004) Genetic variation in a desert aquatic snail (Nymphophilus minckleyi) from Cuatro Cienegas, Coahuila, Mexico. Hydrobiologia 522:179–192

    Google Scholar 

  • Montgomery R, Givnish T (2008) Adaptive radiation of photosynthetic physiology in the Hawaiian lobeliads: dynamic photosynthetic responses. Oecologia 155:455–467

    PubMed  Google Scholar 

  • Nitecki MH, Nitecki DV (1990) Evolutionary innovations. University of Chicago Press, Chicago

    Google Scholar 

  • O’Brien C, Blinn DW (1999) The endemic spring snail Pyrgulopsis montezumensis in a high CO2 environment: importance of extreme chemical habitats as refugia. Freshw Biol 42:225–234

    Google Scholar 

  • Oliver PM, Adams M, Lee MSY, Hutchinson MN, Doughty P (2009) Cryptic diversity in invertebrates: molecular data double estimates of species diversity in a radiation of Australian lizards (Diplodactylus, Gekkota). Proc R Soc Lond B 276:2001–2007

    Google Scholar 

  • Osborn HF (1918) The origin and evolution of life. Scribner’s, New York

    Google Scholar 

  • Perez KE, Ponder WF, Colgan DJ, Clark SA, Lydeard C (2005) Molecular phylogeny and biogeography of spring-associated hydrobiid snails of the Great Artesian Basin, Australia. Mol Phylogenet Evol 34:545–556

    PubMed  CAS  Google Scholar 

  • Pinceel J, Jordaens K, Van Houtte N, De Winter AJ, Backeljau T (2004) Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental north-west Europe. Biol J Linn Soc 83:23–38

    Google Scholar 

  • Ponder WF, Colgan DJ (2002) What makes a narrow-range taxon? Insights from Australian freshwater snails. Invertebr Syst 16:571–582

    Google Scholar 

  • Ponder WF, Eggler P, Colgan DJ (1996) Genetic differentiation of aquatic snails (Gastropoda: Hydrobiidae) in artesian springs in arid Australia. Biol J Linn Soc 56:553–596

    Google Scholar 

  • Ponder WF, Wilke T, Zhang W-H, Golding RE, Fukuda H, Mason RAB (2008) Edgbastonia alanwillsi n. gen & n. sp. (Tateinae: Hydrobiidae s.l.: Rissooidea: Caenogastropoda); a snail from an artesian spring group in western Queensland, Australia, convergent with some Asian Amnicolidae. Mol Res 28:89–106

    CAS  Google Scholar 

  • Purvis A, Nee S, Harvey PH (1995) Macroevolutionary inferences from primate phylogeny. Proc R Soc Lond B 260:329–333

    CAS  Google Scholar 

  • Pybus OG, Harvey PH (2000) Testing macro-evolutionary models using incomplete molecular phylogenies. Proc R Soc Lond B 267:2267–2272

    CAS  Google Scholar 

  • Pybus OG, Rambaut A, Holmes EC, Harvey PH (2002) New inferences from tree shape: numbers of missing taxa and population growth rates. Syst Biol 51:881–888

    PubMed  CAS  Google Scholar 

  • Radoman P (1976) Speciation within the family Bythinellidae on the Balkans and Asia Minor. Z Zool Syst Evol 14:130–152

    Google Scholar 

  • Radoman P (1983) Hydrobioidea a superfamily of Prosobranchia (Gastropoda). I. Systematics. Serbian Academy of Sciences and Arts, Belgrade, Serbia

    Google Scholar 

  • Ree RH (2005) Detecting the historical signature of key innovations using stochastic models of character evolution and cladogenesis. Evolution 59:257–265

    PubMed  Google Scholar 

  • Rundell RJ, Price TD (2009) Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends Ecol Evol 24:394–399

    PubMed  Google Scholar 

  • Salzburger W (2009) The interaction of sexually and naturally selected traits in the adaptive radiations of cichlid fishes. Mol Ecol 18:169–185

    PubMed  Google Scholar 

  • Sanderson MJ (1998) Reappraising adaptive radiations. Am J Bot 85:1650–1655

    Google Scholar 

  • Sauer J, Hausdorf B (2009) Sexual selection is involved in speciation in a land snail radiation on Crete. Evolution 63:2535–2546

    PubMed  CAS  Google Scholar 

  • Schluter D (1994) Experimental evidence that competition promotes divergence in adaptive radiation. Science 266:798–801

    PubMed  CAS  Google Scholar 

  • Schluter D (1998) Ecological causes of speciation. In: Howard D, Berlocher S (eds) Endless forms: species and speciation. Oxford University Press, Oxford, pp 114–129

    Google Scholar 

  • Schluter D (2000) The ecology of adaptive radiation. Oxford University Press, Oxford

    Google Scholar 

  • Schön I, Martens K (2004) Adaptive, pre-adaptive and non-adaptive components of radiations in ancient lakes: a review. Org Divers Evol 4:137–156

    Google Scholar 

  • Schultheiß R, Van Bocxlaer B, Wilke T, Albrecht C (2009) Old fossils–young species: evolutionary history of an endemic gastropod assemblage in Lake Malawi. Proc R Soc Lond B 276:2837–2846

    Google Scholar 

  • Schwoerbel J (1999) Einführung in die Limnologie. Gustav Fischer, Stuttgart

    Google Scholar 

  • Seehausen O (2000) Explosive speciation rates and unusual species richness in haplochromine cichlid fishes: effects of sexual selection. In: Rossiter A, Kawanabe H (eds) Adv Ecol Res. Ancient lakes: biodiversity, ecology and evolution. Academic, San Diego, pp 237–274

    Google Scholar 

  • Seehausen O (2002) Patterns in fish radiation are compatible with Pleistocene desiccation of Lake Victoria and 14600 year history for its cichlid species flock. Proc R Soc Lond B 269:491–497

    Google Scholar 

  • Seehausen O (2004) Hybridization and adaptive radiation. Trends Ecol Evol 19:198–207

    PubMed  Google Scholar 

  • Seehausen O (2006) African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond B 273:1987–1998

    Google Scholar 

  • Seehausen O (2007) Chance, historical contingency and ecological determinism jointly determine the rate of adaptive radiation. Heredity 99:361–363

    PubMed  CAS  Google Scholar 

  • Seehausen O, Van Alphen JJM, Witte F (1997) Cichlid fish diversity threatened by eutrophication that curbs sexual selection. Science 277:1808–1811

    CAS  Google Scholar 

  • Seehausen O, Van Alphen JJM, Witte F (1999) Can ancient colour polymorphisms explain why some cichlid lineages speciate rapidly under disruptive sexual selection? Belg J Zool 129:43–60

    Google Scholar 

  • Shaw KL (1995) Biogeographic patterns of two independent Hawaiian cricket radiations (Laupala and Prognathogryllus). In: Wagner WL, Funk VA (eds) Hawaiian biogeography: evolution on a hot spot archipelago. Smithsonian Institution Press, Washington, pp 39–56

    Google Scholar 

  • Simpson GG (1949) The meaning of evolution, a study of the history of life and of its significance for man. Yale University Press, New Haven

    Google Scholar 

  • Simpson GG (1953) The major features of evolution. Columbia University Press, New York

    Google Scholar 

  • Stelkens R, Seehausen O (2009) Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63:884–897

    PubMed  Google Scholar 

  • Streelman JT, Danley PD (2003) The stages of vertebrate evolutionary radiation. Trends Ecol Evol 18:126–131

    Google Scholar 

  • Sturmbauer C, Baric S, Salzburger W, Ruber L, Verheyen E (2001) Lake level fluctuations synchronize genetic divergences of cichlid fishes in African lakes. Mol Biol Evol 18:144–154

    PubMed  CAS  Google Scholar 

  • Sudhaus W (2004) Radiation within the framework of evolutionary ecology. Org Divers Evol 4:127–134

    Google Scholar 

  • Szarowska M (2000) Environmental threats and stability of Bythinella populations in South Poland (Gastropoda: Prosobranchia: Hydrobioidea). Malakol Abh (Dresd) 20:93–986

    Google Scholar 

  • Szarowska M, Wilke T (2004) Sadleriana pannonica (Frauenfeld, 1865): a lithoglyphid, hydrobiid, or amnicolid taxon? J Molluscan Stud 70:49–57

    Google Scholar 

  • Szarowska M, Falniowski A, Fiałkowski W, Mazan K (1998) Adaptive significance of glucose phosphate isomerase (GPI) allozymes in the spring snail Bythinella? J Molluscan Stud 64:257–261

    Google Scholar 

  • Van Oppen MJH, Turner G, Hewitt GM (2000) Extensive homoplasy, nonstepwise mutations, and shared ancestral polymorphism at a complex microsatellite locus in Lake Malawi cichlids. Mol Biol Evol 17:489–498

    PubMed  Google Scholar 

  • von Rintelen T, Wilson AB, Meyer A, Glaubrecht M (2004) Escalation and trophic specialization drive adaptive radiation of freshwater gastropods in ancient lakes on Sulawesi, Indonesia. Proc R Soc Lond B 271:2541–2549

    Google Scholar 

  • Wake DB (2006) Problems with species: patterns and processes of species formation in salamanders. Ann Mo Bot Gard 93:8–23

    Google Scholar 

  • Whittaker RJ, Fernández-Palacios JM (2007) Island biogeography: ecology, evolution, and conservation. Oxford University Press, New York

    Google Scholar 

  • Wiens JJ (2004) Speciation and ecology revisited: phylogenetic niche conservatism and the origin of species. Evolution 58:193–197

    PubMed  Google Scholar 

  • Wilke T (2004) How dependable is a non-local molecular clock? A reply to Hausdorf et al. (2003). Mol Phylogenet Evol 30:835–840

    PubMed  Google Scholar 

  • Wilke T, Duncan N (2004) Phylogeographical patterns in the American Pacific Northwest: lessons from the arionid slug Prophysaon coeruleum. Mol Ecol 13:2303–2315

    PubMed  CAS  Google Scholar 

  • Wilke T, Pfenninger M (2002) Separating historic events from recurrent processes in cryptic species: phylogeography of mud snails (Hydrobia spp.). Mol Ecol 11:1439–1451

    PubMed  CAS  Google Scholar 

  • Wilke T, Pfenninger M, Davis GM (2002) Anatomical variation in cryptic mudsnail species: statistical discrimination and evolutionary significance. Proc Acad Nat Sci Phila 152:45–66

    Google Scholar 

  • Wilke T, Albrecht C, Anistratenko VV, Sahin SK, Yildirim MZ (2007) Testing biogeographical hypotheses in space and time: faunal relationships of the putative ancient Lake Egirdir in Asia Minor. J Biogeogr 34:1807–1821

    Google Scholar 

  • Wilke T, Schultheiß R, Albrecht C (2009) As time goes by: a simple fool’s guide to molecular clock approaches in invertebrates. In: Symposium of “Molluscs as models in evolutionary biology: from local speciation to global radiation” presented at the World Congress of Malacology, held from 15 to 20 July 2007 in Antwerp, Belgium. Am Malac Bull 47:25–45

    Google Scholar 

  • Wright S (1929) The evolution of dominance. Comment on Doctor Fisher’s reply. Am Nat 63:556–561

    Google Scholar 

  • Wright S (1931) Statistical theory of evolution. Am Stat J 26(Suppl):201–208

    Google Scholar 

  • Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection in evolution. In: Proceedings of sixth international congress of genetics, pp 356–366

    Google Scholar 

  • Wright S (1982) The shifting balance theory and macromutation. Ann Rev Genet 16:1–19

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We sincerely thank V. Anistratenko, H. Blatterer, M. Bodon, U. Bößneck, M. Colling, Z. Erõss, A. Falniowski, Z. Fehér, P. Glöer, M. Haase, B. Hausdorf, H. J. Hirschfelder, P. Mildner (†), V. Pešić, C. Renker, D. Reum, S. K. Şahin, M. Szarowska, and Z. Yildirim for kindly providing samples of Bythinella spp. and two anonymous referees for their comments. E. Gittenberger and G. Davis are acknowledged for inspiring our work on non-adaptive radiations. This study was financially supported by DFG grants WI 1902/5-1 (T. Wilke) and BR 1967/6-1 (M. Brändle), as well as by a stipend of the Fazit-Foundation to M. Benke.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Wilke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wilke, T., Benke, M., Brändle, M., Albrecht, C., Bichain, JM. (2010). The Neglected Side of the Coin: Non-adaptive Radiations in Spring Snails (Bythinella spp.). In: Glaubrecht, M. (eds) Evolution in Action. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12425-9_25

Download citation

Publish with us

Policies and ethics