Skip to main content

Wavelets in Circuit Simulation

  • Conference paper
  • First Online:
Scientific Computing in Electrical Engineering SCEE 2008

Part of the book series: Mathematics in Industry ((TECMI,volume 14))

Abstract

Wavelet theory is a relatively recent area of scientific research, with a very successful application in a broad range of problems such as image, audio and signal processing, numerical analysis, electromagnetic scattering, data compression and denoising, stohastics, mathematics and physics, (bio)medicine, astronomy and many more. The key wavelet property contributing to its success in such a variety of disciplines is the capability of a simultaneous time and frequency representation of a signal embedded within a multi-resolution analysis (MRA) framework. The potential exploitation of this property for next-generation, wavelet-based techniques for analog circuit simulation is discussed in this paper.

Invited speaker at the SCEE 2008 conference

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Günther, M., Feldmann, U., ter Maten, J.: Modelling and discretization of circuit problems. In: W. Schilders, E. ter Maten (eds.) Numerical Analysis in Electromagnetics, Spec. Vol. of Handbook of Numerical Analysis, vol. XIII, pp. 523–659. Elsevier, Amsterdam (2005)

    Google Scholar 

  2. Vladimirescu, A., Charlot, J.J.: Challenges of MOS analog circuit simulation with SPICE. Proc. IEE Colloquium on SPICE: Surviving Problems in Circuit Evaluation pp. 9/1–9/5 (1993)

    Google Scholar 

  3. Denk, G.: Circuit simulation for nanoelectronics. In: A. Anile, G. Al, G. Mascali (eds.) Scientific Computing in Electrical Engineering, vol. 9. Springer, Berlin Heidelberg (2006)

    Chapter  Google Scholar 

  4. Kundert, K.: Why SPICE won’t cut it for analog anymore. Online document (1999). URL http://www.designers-guide.org/Perspective/end-of-spice.pdf. Cited 10 Sep 2008

  5. Kundert, K.: Simulation methods for RF integrated circuits. Proceedings of IEEE/ACM international conference on computer-aided design pp. 752–765 (1997)

    Google Scholar 

  6. Daubechies, I.: Orthonormal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics 41, 909–996 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  7. Daubechies, I.: Ten lectures on wavelets. SIAM (1992)

    Google Scholar 

  8. Grossmann, A., Morlet, J.: Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal of Mathematical Analysis 15, 723–736 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Donoho, D.: Unconditional bases are optimal bases for data compression and for statistical estimation. Applied and computational harmonic analysis 1, 100–115 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Coifman, R., Wickerhauser, M.: Entropy based algorithms for best basis selection. IEEE Trans. on Information Theory 38, 713–718 (1992)

    Article  MATH  Google Scholar 

  11. Meyer, Y.: Wavelets: Algorithms and Applications. SIAM (1993)

    Google Scholar 

  12. Mallat, S.: A wavelet tour of signal processing. Academic Press (1998)

    MATH  Google Scholar 

  13. Misiti, M., Misiti, Y., Oppenheim, G., Poggi, J.M.: Wavelet Toolbox 4. Mathworks (2008)

    Google Scholar 

  14. Young, R.: Wavelet theory and its applications. Kluwer Academic Publishers (1993)

    Google Scholar 

  15. Pan, G.: Wavelets in electromagnetics and device modelling. Wiley-Interscience (2003)

    Book  Google Scholar 

  16. Vetterli, M., Kovacevic, J.: Wavelets and subband coding. Prentice Hall (1995)

    MATH  Google Scholar 

  17. Kaiser, G.: A friendly guide to wavelets. Birkhäuser (1994)

    MATH  Google Scholar 

  18. Le Maitre, O., Najm, H., Ghanem, R., Knio, O.: Multi-resolution analysis of wiener-type uncertainty propagation schemes. J. Comput. Phys. 197, 502–531 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  19. Zhou, D., Cai, W.: A fast wavelet collocation method for high-speed circuit simulation. IEEE Trans. Circuit and Systems 46, 920–930 (1999)

    Article  MATH  Google Scholar 

  20. Soveiko, N., Gad, E., Nakhla, M.: A wavelet-based approach for steady-state analysis of nonlinear circuits with widely separated time scales. IEEE Microwave and Wireless Components Letters 17, 451–453 (2007)

    Article  Google Scholar 

  21. Christoffersen, C., Steer, M.: State-variable-based transient circuit simulation using wavelets. IEEE Microwave and Wireless Components Letters 11, 161–163 (2001)

    Article  Google Scholar 

  22. Dautbegovic, E., Condon, M., Brennan, C.: An efficient nonlinear circuit simulation technique. IEEE Transactions on Microwave Theory and Techniques 53, 548–555 (2005)

    Article  Google Scholar 

  23. Bartel, A., Knorr, S., Pulch, R.: Wavelet-based adaptive grids for multirate partial differential-algebraic equations. submitted to Appl. Numer. Math. (2007)

    Google Scholar 

  24. Polikar, R.: The wavelet tutorial. Online document (2001). URL http://users.rowan.edu/~polikar/WAVELETS/WTtutorial.htm Cited 16 May 2004

  25. Chen, Y., Cao, Q., Mittra, R.: Multiresolution time domain scheme for electromagnetic engineering. Wiley (2005)

    Google Scholar 

  26. Sarkar, T., Salazar-Palma, M., Wicks, M.: Wavelet applications in engineering electromagnetics. Artech House (2002)

    Google Scholar 

  27. Wang, J., Zeng, X., Cai, W., Chiang, C., Tong, J., Zhou, D.: Frequency domain wavelet method with GMRES for large-scale linear circuit simulations. Proc. ISCAS 5, 321–324 (2004)

    Google Scholar 

  28. Soveiko, N., Nakhla, M.: Wavelet harmonic balance. IEEE Microwave and Wireless Components Letters 15, 384–386 (2003)

    Article  Google Scholar 

  29. Li, X., Hu, B., Ling, X., Zeng, X.: A wavelet balance approach for steady-state analysis of nonlinear circuits. Proc. ISCAS 3, 73–76 (2001)

    Google Scholar 

  30. Dahmen, W.: Wavelet methods for PDEs—some recent developments. J. Comput. Appl. Math 128, 133–185 (1999)

    Article  MathSciNet  Google Scholar 

  31. Jansen, M.: Noise reduction by wavelet thresholding. Springer (2001)

    MATH  Google Scholar 

  32. Vidakovic, B.: Nonlinear wavelet shrinkage with bayes rules and bayes factors. Journal of the American Statistical Association 93, 173–179 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Donoho, D., Johnstone, I.: Adapting to unknown smoothness via wavelet shrinkage. Journal of the American Statistical Association 90, 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  34. Nason, G.: Wavelet shrinkage using cross-validation. J. R. Statist. Soc. B. 58, 463–479 (1996)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emira Dautbegovic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dautbegovic, E. (2010). Wavelets in Circuit Simulation. In: Roos, J., Costa, L. (eds) Scientific Computing in Electrical Engineering SCEE 2008. Mathematics in Industry(), vol 14. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12294-1_18

Download citation

Publish with us

Policies and ethics