Skip to main content

Choosing Parameters for Random Subspace Ensembles for fMRI Classification

  • Conference paper
Multiple Classifier Systems (MCS 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5997))

Included in the following conference series:

Abstract

Functional magnetic resonance imaging (fMRI) is a non-invasive and powerful method for analysis of the operational mechanisms of the brain. fMRI classification poses a severe challenge because of the extremely large feature-to-instance ratio. Random Subspace ensembles (RS) have been found to work well for such data. To enable a theoretical analysis of RS ensembles, we assume that only a small (known) proportion of the features are important to the classification, and the remaining features are noise. Three properties of RS ensembles are defined: usability, coverage and feature-set diversity. Their expected values are derived for a range of RS ensemble sizes (L) and cardinalities of the sampled feature subsets (M). Our hypothesis that larger values of the three properties are beneficial for RS ensembles was supported by a simulation study and an experiment with a real fMRI data set. The analyses suggested that RS ensembles benefit from medium M and relatively small L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Norman, K.A., Polyn, A.M., Detre, G.J., Haxby, J.V.: Beyond mind-reading: multi-voxel pattern analysis of fMRI data. Trends in Cognitive Sciences 10, 424–430 (2006)

    Article  Google Scholar 

  2. Pereira, F., Mitchell, T., Botvinick, M.: Machine learning classifiers and fMRI: a tutorial overview. NeuroImage 45(1, suppl. 1), 199–209 (2009)

    Article  Google Scholar 

  3. Cox, D.D., Savoy, R.L.: Functional magnetic resonance imaging (fMRI): detecting and classifying distributed patterns of fMRI activity in human visual cortex. NeuroImage 19(2), 261–270 (2003)

    Article  Google Scholar 

  4. LaConte, S., Strother, S., Cherkassky, V., Anderson, J., Hu, X.: Support vector machines for temporal classification of block design fMRI data. NeuroImage 26(2), 317–329 (2005)

    Article  Google Scholar 

  5. Mourao-Miranda, J., Bokde, A.L., Born, C., Hampel, H., Stetter, M.: Classifying brain states and determining the discriminating activation patterns: Support Vector Machine on functional MRI data. NeuroImage 28(4), 980–995 (2005)

    Article  Google Scholar 

  6. Wang, Z., Childress, A.R., Wang, J., Detre, J.A.: Support vector machine learning-based fMRI data group analysis. NeuroImage 36(4), 1139–1151 (2007)

    Article  Google Scholar 

  7. Ku, S.-p., Gretton, A., Macke, J., Logothetis, N.K.: Comparison of pattern recognition methods in classifying high-resolution BOLD signals obtained at high magnetic field in monkeys. Magnetic Resonance Imaging 26(7), 1007–1014 (2008)

    Article  Google Scholar 

  8. Kuncheva, L.I., Rodríguez, J.J.: Classifier ensembles for fMRI data analysis: An experiment. Magnetic Resonance Imaging (to appear)

    Google Scholar 

  9. Ho, T.K.: The random space method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)

    Article  Google Scholar 

  10. Skurichina, M., Duin, R.P.W.: Bagging, boosting and the random subspace method for linear classifiers. Pattern Analysis & Applications 5, 121–135 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Lai, C., Reinders, M.J., Wessels, L.: Random subspace method for multivariate feature selection. Pattern Recognition Letters 27(10), 1067–1076 (2006)

    Article  Google Scholar 

  12. Zhu, Y., Liu, J., Chen, S.: Semi-random subspace method for face recognition. Image and Vision Computing 27(9), 1358–1370 (2009)

    Article  Google Scholar 

  13. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (eds.): Statistical Parametric Mapping: The Analysis of Functional Brain Images. Academic Press, London (2007)

    Google Scholar 

  14. De Martino, F., Valente, G., Staeren, N., Ashburner, J., Goebel, R., Formisano, E.: Combining multivariate voxel selection and support vector machines for mapping and classification of fMRI spatial patterns. NeuroImage 43(1), 44–58 (2008)

    Article  Google Scholar 

  15. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. Journal of Machine Learning Research 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

  16. Kuncheva, L.I.: Combining Pattern Classifiers. Methods and Algorithms. John Wiley and Sons, New York (2004)

    Book  MATH  Google Scholar 

  17. Brown, G.: Ensemble learning. In: Sammut, C., Webb, G. (eds.) Encyclopedia of Machine Learning. Springer, Heidelberg (2009)

    Google Scholar 

  18. Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: a survey and categorisation. Information Fusion 6(1), 5–20 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuncheva, L.I., Plumpton, C.O. (2010). Choosing Parameters for Random Subspace Ensembles for fMRI Classification. In: El Gayar, N., Kittler, J., Roli, F. (eds) Multiple Classifier Systems. MCS 2010. Lecture Notes in Computer Science, vol 5997. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12127-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12127-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12126-5

  • Online ISBN: 978-3-642-12127-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics