Skip to main content

Anatomy and Physiology of the Retina

  • Chapter
  • First Online:
Pediatric Retina

Abstract

The retina remains the best studied part of the human brain. Embryologically part of the central nervous system [1–5], but readily accessible to examination, it can be investigated with relative ease by both scientists and clinicians. Moreover, an estimated 80% of all sensory information in humans is thought to be of retinal origin [6], indicating the importance of retinal function for the ability to interact with the outside world. In this chapter, we examine the retina’s unique cytoarchitecture and how it is assembled to give rise to its sophisticated neurocircuitry. Most of our knowledge is based on studies in primates and adult humans, but reference is made to the development of the retina wherever possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bach, L., Seefelder, R.: Atlas zur Entwicklungsgeschichte des menschlichen Auges. Verlag von Wilhelm Engelmann, Leipzig (1914)

    Google Scholar 

  2. Dejean, C.H., Hervouët, F.R., Leplat, G.: L’embryologie de l’oeil et sa tératologie. Société Française d’Ophtalmologie. Paris: Masson. Libraire de l’Académie de Médicine, pp. 1–728. (1958)

    Google Scholar 

  3. Mann, I.: The Development of the Human Eye, 3rd edn. British Medical Association, Tavistock Square, London (1964)

    Google Scholar 

  4. Duke-Elder, S., Cook, C.: Normal and abnormal development. Part 1. Embryology. In: Duke-Elder, S. (ed.) System of Ophthalmology, vol 3, pp. 190–201. Henry Kimpton, London (1963)

    Google Scholar 

  5. Cook, C., Sulik, K.K., Wright, K.W.: Embryology. In: Wright, K.W., Spiegel, P.H. (eds.) Pediatric Ophthalmology and Strabismus, 2nd edn, pp. 3–38. Springer, Berlin (2003)

    Google Scholar 

  6. Sharma, R.K., Ehinger, B.E.J.: Development and structure of the retina. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 319–347. Mosby, St Louis (2003)

    Google Scholar 

  7. Kincaid, M.C., Green, W.R.: Anatomy of the vitrous, retina and choroid. In: Regillo, C.D., Brown, G.C., Flynn, H.W. (eds.) Vitreoretinal Disease, pp. 11–24. Thieme, New York, Stuttgart (1999)

    Google Scholar 

  8. Williams, T.D., Wilkinson, J.M.: Position of the fovea centralis with respect to the optic nerve head. Optom. Vis. Sci. 69, 369–377 (1992)

    PubMed  CAS  Google Scholar 

  9. Oyster, C.: Retinal III: regional variation and spatial organization (Chapter 15). In: Oyster, C. (ed.) The Human Eye – Structure and Function, pp. 649–700. Sinauer Associates, Sunderland, Massachusetts (1999)

    Google Scholar 

  10. Curcio, C.A., Sloan, K.R., Kalina, R.E., Hendrickson, A.E.: Human photoreceptor topography. J. Comp. Neurol. 292, 497–523 (1990)

    PubMed  CAS  Google Scholar 

  11. Hendrickson, A.E.: Morphological development of the primate retina. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 287–295. Oxford University, New York, Oxford (1993)

    Google Scholar 

  12. Hendrickson, A.E.: Primate foveal development: A microcosm of current questions in neurobiology. Recent developments. Invest. Ophthalmol. Vis. Sci. 35, 3129–3133 (1994)

    PubMed  CAS  Google Scholar 

  13. Provis, J.M., Diaz, C.M., Dreher, B.: Ontogeny of the primate fovea: a central issue in retinal development. Prog. Neurobiol. 54, 549–580 (1998)

    PubMed  CAS  Google Scholar 

  14. Seefelder, R.: Die Entwicklung des menschlichen Auges. In: Schieck, F., Brückner, A. (eds.) Kurzes Handbuch der Ophthalmologie, pp. 476–518. Springer, Berlin (1930)

    Google Scholar 

  15. Wolfensberger, T.J.: The historical discovery of the retinal pigment epithelium. In: Marmor, M.F., Wolfensberger, T.J. (eds.) The Retinal Pigment Epithelium, pp. 13–22. Oxford University, Oxford (1998)

    Google Scholar 

  16. Panda-Jonas, S., Jonas, J.B., Jakobczk-Zmija, M.: Retinal pigment epithelial cell count, distribution and correlations in normal human eyes. Am. J. Ophthalmol. 121, 181–189 (1996)

    PubMed  CAS  Google Scholar 

  17. Boulton, M., Dayhaw-Barker, P.: The role of the retinal epithelium: topographical variation and ageing changes. Eye 15, 384–389 (2001)

    PubMed  CAS  Google Scholar 

  18. La Cour, M.: The retinal pigment epithelium. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 348–357. Mosby, St Louis (2003)

    Google Scholar 

  19. Schnaudigel, O.: Die Vitalfärbung mit Trypanblau am Auge. Albrecht von Graefes Arch. Ophthalmol. 86, 93–97 (1913)

    Google Scholar 

  20. Cunha-Vaz, J.G.: The blood-ocular barriers. Surv. Ophthalmol. 23, 279–296 (1979)

    PubMed  CAS  Google Scholar 

  21. Cunha-Vaz, J.G.: The blood-retinal barriers system. Basic concepts and clinical evaluation. Review. Exp. Eye Res. 78, 715–721 (2004)

    PubMed  CAS  Google Scholar 

  22. Davson, H.: The aqueous humour and the intraocular pressure (chapter 1). In: Davson, H. (ed.) Physiology of the Eye, 5th edn, pp. 3–95. MacMillan, London (1990)

    Google Scholar 

  23. Thumann, G., Hoffmann, S., Hinton, D.R.: Cell biology of the retinal pigment epithelium. In: Ryan, S.J. (ed). Retina, 4th (ed), pp. 137–152. Elsevier-Mosby, St. Louis (2006)

    Google Scholar 

  24. Strauss, O.: The retinal pigment epithelium in visual function. Physiol. Rev. 85, 845–881 (2005)

    PubMed  CAS  Google Scholar 

  25. Kanski, J.J., Milewski, S.A.: Introduction. In: Kanski, J.J., Milewski, S.A. (eds.) Diseases of the Macula, pp. 1–18. Mosby, St Louis (2002)

    Google Scholar 

  26. Burke, J.M.: Determinants of retinal pigment epithelial cell phenotype and polarity. In: Marmor, M.F., Wolfensberger, T.J. (eds.) The Retinal Pigment Epithelium, pp. 86–102. Oxford University, Oxford (1998)

    Google Scholar 

  27. Hughes, B.A., Gallemore, R.P., Miller, S.S.: Transport mechanisms in the retinal pigment epithelium. In: Marmor, M.F., Wolfensberger, T.J. (eds.) The Retinal Pigment Epithelium, pp. 103–134. Oxford University, Oxford (1998)

    Google Scholar 

  28. Marmor, M.F.: Retinal and retinal pigment epithelial physiology. In: Regillo, C.D., Brown, G.C., Flynn, H.W. (eds.) Vitreoretinal Disease, pp. 25–38. Thieme, New York, Stuttgart (1999)

    Google Scholar 

  29. Newman, E.A.: Müller cells and the retinal pigment epithelium. In: Albert, D.A., Jakobiec, F.A. (eds.) Principles and Practice of Ophthalmology, 2nd edn, pp. 1763–1785. Saunders, Philadelphia (2000)

    Google Scholar 

  30. Dowling, J.E.: Retinal neurophysiology. In: Albert, D.A., Jakobiec, F.A. (eds.) Principles and Practice of Ophthalmology, 2nd edn, pp. 1713–1729. Saunders, Philadelphia (2000)

    Google Scholar 

  31. Kincaid, M.C.: Pathology of the retina. In: Sassani, J.W. (ed.) Ophthalmic Pathology with Clinical Correlations, pp. 269–291. Lippincott-Raven, Philadelphia (1997)

    Google Scholar 

  32. Levin, L.A.: Optic nerve. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 603–638. Mosby, St Louis (2003)

    Google Scholar 

  33. Tessier-Lavigne, M.: Visual processing by the retina. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science, 4th edn, pp. 507–522. McGraw-Hill, New York (2000)

    Google Scholar 

  34. Wurtz, R.H., Kandel, E.R.: Central visual pathways. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science, 4th edn, pp. 523–547. McGraw-Hill, New York (2000)

    Google Scholar 

  35. Roof, D.J., Makino, C.L.: The structure and function of retinal photoreceptors. In: Albert, D.A., Jakobiec, F.A. (eds.) Principles and Practice of Ophthalmology, 2nd edn, pp. 1624–1673. Saunders, Philadelphia (2000)

    Google Scholar 

  36. Radius, R.H., Anderson, D.R.: The histology of retinal nerve fiber layer bundles and bundle defects. Arch. Ophthalmol. 97, 948–950 (1979)

    PubMed  CAS  Google Scholar 

  37. Minckler, D.S.: The organization of nerve fiber bundles in the primate optic nerve head. Arch. Ophthalmol. 98, 1630–1636 (1980)

    PubMed  CAS  Google Scholar 

  38. Ogden, T.E.: Nerve fiber layer of the macaque retina: retinotopic organization. Invest. Ophthalmol. Vis. Sci. 24, 85–98 (1983)

    PubMed  CAS  Google Scholar 

  39. Fitzgibbon, T., Taylor, S.F.: Retinotopy of the human retinal nerve fibre layer and optic nerve head. J. Comp. Neurol. 375, 238–251 (1996)

    PubMed  CAS  Google Scholar 

  40. Fitzgibbon, T.: The human fetal retinal nerve fiber layer and optic nerve head: a DiI and DiA tracing study. Vis. Neurosci. 14, 433–447 (1997)

    PubMed  CAS  Google Scholar 

  41. Provis, J.M., Penfold, P.L., Cornish, E.E., Sandercoe, T.M., Madigan, M.C.: Anatomy and development of the macula: specialisation and the vulnerability to macular degeneration. Clin. Exp. Optometry 88, 269–281 (2005)

    Google Scholar 

  42. Callaway, E.M.: Structure and function of parallel pathways in the primate early visual system. J. Physiol. 566, 13–19 (2005)

    PubMed  CAS  Google Scholar 

  43. Davson, H.: Retinal structure and organization (chapter 5). In: Davson, H. (ed.) Physiology of the Eye, 5th edn, pp. 205–218. MacMillan, London (1990)

    Google Scholar 

  44. Oyster, C.: Blood supply and drainage (Chapter 6). In: Oyster, C. (ed.) The Human Eye – Structure and Function, pp. 247–289. Sinauer Associates, Sunderland, Massachusetts (1999)

    Google Scholar 

  45. Harris, A., Gingaman, D.P., Ciulla, T.A., Martin, B.J.: Retinal and choroidal blood flow in health and disease. In: Ryan, S.J. (ed.) The Retina, 3rd edn, pp. 68–88. Mosby, St Louis (2001)

    Google Scholar 

  46. Saint-Geniez, M., D’Amore, P.A.: Development and pathology of the hyaloid, choroidal and retinal vasculature. Int. J. Dev. Biol. 48, 1045–1058 (2004)

    PubMed  Google Scholar 

  47. Cioffi, G.A., Granstam, E., Alm, A.: Ocular circulation (Chapter 33). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 747–784. Mosby, St Louis (2003)

    Google Scholar 

  48. Provis, J.M.: Development of the primate retinal vasculature. Prog. Ret. Eye Res. 20, 799–821 (2001)

    CAS  Google Scholar 

  49. Curcio, C.A., Sloan, K.R., Packer, O., Hendrickson, A.E., Kalina, R.E.: Distribution of cones in human and monkey retina: individual variability and radial asymmetry. Science 236, 579–582 (1987)

    PubMed  CAS  Google Scholar 

  50. Olver, J.M., McCartney, A.C.E.: Orbital and ocular micro-vascular corrosion casting in man. Eye 3, 588–596 (1989)

    PubMed  Google Scholar 

  51. Olver, J.M., Spalton, D.J., McCartney, A.C.E.: Microvascular study of the retrolaminar optic nerve in man: The possible significance on anterior ischaemic optic neuropathy. Eye 4, 7–24 (1990)

    PubMed  Google Scholar 

  52. Alm, A., Bill, A., Young, F.A.: The effects of pilocarpine and neostigmine on the blood flow through the anterior uvea in monkeys: a study with radioactively labelled microspheres. Exp. Eye Res. 15, 31 (1973)

    PubMed  CAS  Google Scholar 

  53. Alm, A., Bill, A.: Ocular and optic nerve blood flow at normal and increased intraocular pressures in monkeys (Macaca irus): a study with radioactively labelled microspheres including flow determinations in brain and some other tissues. Exp. Eye Res. 15, 15 (1973)

    PubMed  CAS  Google Scholar 

  54. Zhu, M., Madigan, M.C., Van Driel, D., Maslim, J., Billson, F., Provis, J.M., Penfold, P.L.: The human hyaloid system: cell death and vascular regression. Exp. Eye Res. 70, 767–776 (2000)

    PubMed  CAS  Google Scholar 

  55. Anderson, D.R., Quigley, H.A.: The optic nerve. In: Hart Jr., W.M. (ed.) Adler’s Physiology of the Eye, 9th edn, pp. 616–639. Mosby, St. Louis (1992)

    Google Scholar 

  56. Hogan, M.J., Alvarado, J.A., Weddell, J.E.: Retina. In: Histology of the Human Eye. An Atlas and Textbook, pp. 393–521. Saunders: Philadelphia (1971)

    Google Scholar 

  57. Newell, F.: Anatomy and embryology. In: Newell, F. (ed.) Ophthalmology. Principles and Concepts, 8th edn, pp. 3–73. St. Mosby, Louis (1996)

    Google Scholar 

  58. Chaine, G., Imbs, J.L.: Rappel anatomo-physiologique des particularités de la circulation oculaire. In: Flament, J., Storck, D. (eds.) Œil et pathologie générale. Société Française d’Ophtalmolgie, pp. 127–138. Masson, Paris (1997)

    Google Scholar 

  59. Olver, J.M.: Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroid. Eye 4, 262–272 (1990)

    PubMed  Google Scholar 

  60. Sebag, J.: The vitreous. In: Hart Jr., W.M. (ed.) Adler’s Physiology of the Eye, 9th edn, pp. 268–347. Mosby, St. Louis (1992)

    Google Scholar 

  61. Quinn, G.E., Young, T.L.: Retina and vitreous (chapter 28). In: Isenberg, S.J. (ed.) The Eye in Infancy, 2nd edn, pp. 392–412. Mosby, St. Louis (1994)

    Google Scholar 

  62. Wright, K.W.: Lens abnormalities. In: Wright, K.W., Spiegel, P.H. (eds.) Pediatric Ophthalmology and Strabismus, 2nd edn, pp. 450–480. Springer, New York (2003)

    Google Scholar 

  63. Lambert, S.: Cataract and persistent hyperplastic primary vitreous (Chapter 47). In: Taylor, D., Hoyt, C.S. (eds) Pediatric Ophthalmology and Strabismus, 3rd ed. pp. 441–457. Elsevier Saunders, Edinburgh (2005)

    Google Scholar 

  64. Moore, A.T., Michaelides, M.: Vitreous (Chapter 49). In: Taylor, D., Hoyt, C.S. (eds) Pediatric Ophthalmology and Strabismus, 3rd ed, pp. 472–485. Elsevier Saunders, Edinburgh (2005)

    Google Scholar 

  65. Fielder, A.R., Quinn, G.E.: Retinopathy of prematurity (chapter 51). In: Taylor, D., Hoyt, C.S. (eds) Pediatric Ophthalmology and Strabismus, 3rd ed, pp. 506–530. Elsevier Saunders Edinburgh (2005)

    Google Scholar 

  66. Gariano, R.F., Iruela-Arispe, M.L., Hendrickson, A.E.: Vascular development in primate retina: comparison of laminar plexus formation in monkey and human. Invest. Ophthalmol. Vis. Sci. 35, 3442–3455 (1994)

    PubMed  CAS  Google Scholar 

  67. Lutty, G.A., McLeod, D.S.: Retinal vascular development and oxygen-induced retinopathy: a role for adenosine. Prog. Ret. Eye Res. 22, 95–111 (2003)

    CAS  Google Scholar 

  68. McLeod, D.S., Lutty, G.A., Wajer, S.D., Flower, R.W.: Visualization of a developing vasculature. Microvasc. Res. 33, 257–269 (1987)

    PubMed  CAS  Google Scholar 

  69. Fruttiger, M., Calver, A.R., Kruger, W.H., Mudhar, H.S., Michalovich, D., Takakura, N., Nishikawa, S., Richardson, W.D.: PDGF mediates a neuron-astrocyte interaction in the developing retina. Neuron 17, 1117–1131 (1996)

    PubMed  CAS  Google Scholar 

  70. Fruttiger, M.: Development of the mouse retinal vasculature: angiogenesis versus vasculogenesis. Invest. Ophthalmol. Vis. Sci. 43, 522–527 (2002)

    PubMed  Google Scholar 

  71. Hardy, P., Dumont, I., Bhattacharya, M., Hou, X., Lachapelle, P., Varma, D.R., Chemtob, S.: Oxidants, nitric oxide and prostanoids in the developing ocular vasculature: a basis for ischemic retinopathy. Review. Cardiovasc. Res. 47, 489–509 (2000)

    PubMed  CAS  Google Scholar 

  72. Smith, L.E.H.: Pathogenesis of retinopathy of prematurity. Growth Horm. IGF Res. 14, S140–S144 (2004)

    PubMed  CAS  Google Scholar 

  73. Chow, L.C., Wright, K.W., Sola, A., The CSMC Oxygen Administration Study Group: Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111, 339–345 (2003)

    PubMed  Google Scholar 

  74. Wise, G.N., Dollery, C.T., Henkind, P.: Structure of retinal vessels (chapter 3). In: Wise, G.N., Dollery, C.T., Henkind, P. (eds.) The Retinal Circulation, pp. 33–54. Harper and Row, New York (1971)

    Google Scholar 

  75. Oyster, C.: The retina in vivo and the optic nerve (Chapter 16). In: Oyster, C. (ed.) The Human Eye – Structure and Function, pp. 701–751. Sinauer Associates, Sunderland, Massachusetts (1999)

    Google Scholar 

  76. Hayreh, S.S.: The optic nerve head circulation in health and disease. The 1994 Von Sallman Lecture. Exp. Eye Res. 61, 259–272 (1995)

    PubMed  CAS  Google Scholar 

  77. Hayreh, S.S., Zimmerman, M.B., Kimura, A., Sanon, A.: Central retinal artery occlusion. Retinal survival time. Exp. Eye Res. 78, 723–736 (2004)

    PubMed  CAS  Google Scholar 

  78. Hayreh, S.S.: Prevalent misconceptions about acute retinal vascular occlusive disorders. Prog. Ret. Eye Res. 24, 493–519 (2005)

    Google Scholar 

  79. Brown, G.C.: Arterial occlusive disease. In: Regillo, C.D., Brown, G.C., Flynn, H.W. (eds.) Vitreoretinal Disease, pp. 97–115. Thieme, New York, Stuttgart (1999)

    Google Scholar 

  80. Provis, J.M., Henrickson, A.E.: The foveal avascular region of developing human retina. Arch. Ophthalmol. 126, 507–511 (2008)

    PubMed  CAS  Google Scholar 

  81. Goldmann, E.E.: Vitalfärbung am Zentralnervensystem. Abhandl Königl Preuss Akad Wiss 1, 1–60 (1913)

    Google Scholar 

  82. Alm, A.: Ocular circulation. In: Hart Jr., W.M. (ed.) Adler’s Physiology of the Eye, 9th edn, pp. 198–227. Mosby, St. Louis (1992)

    Google Scholar 

  83. Harris, A., Ciulla, T.A., Chung, H.S., Martin, B.: Regulation of retinal and optic nerve blood flow. Arch. Ophthalmol. 116, 1491–1495 (1998)

    PubMed  CAS  Google Scholar 

  84. Funk, R.H.W.: Blood supply of the retina. Ophthalmic Res. 29, 320–325 (1997)

    PubMed  CAS  Google Scholar 

  85. Delaey, C., Van de Voorde, J.: Regulatory mechanisms in the retinal and choroidal circulation. Review. Ophthalmic Res. 32, 249–256 (2000)

    PubMed  CAS  Google Scholar 

  86. Murray, C.D.: The physiological principle of minimum work applied to the angle of branching of arteries. Proc. Nat. Acad. Sci. 12, 835–841 (1926)

    Google Scholar 

  87. Sherman, T.F.: On connecting large vessels to small. J. Gen. Physiol. 78, 431–453 (1981)

    PubMed  CAS  Google Scholar 

  88. Daxer, A.: The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr. Eye Res. 12, 1103–1109 (1993)

    PubMed  CAS  Google Scholar 

  89. Wilson, C., Theodorou, M., Cocker, K.D., Fielder, A.: The temporal retinal blood vessels and preterm birth. Br. J. Ophthalmol. 90(6), 702–704 (2006)

    PubMed  CAS  Google Scholar 

  90. Tsai, C.S., Zangwill, L., Gonzalez, C., Irak, I., Garden, V., Hoffman, R., Weinreb, R.N.: Ethnic differences in optic nerve head topography. J. Glaucoma 4(4), 248–257 (1995)

    PubMed  CAS  Google Scholar 

  91. Kanski, J.J., Nischal, K.K.: The optic disc. In: Ophthalmology. Clinical Signs and Differential Diagnosis, pp. 247–285. Mosby: St Louis (1999)

    Google Scholar 

  92. Jonas, J., Garway-Heath, T.: Primary glaucomas: optic disc features. In: Hitchings, R.A. (ed.) Glaucoma, pp. 29–38. BMJ books, London (2000)

    Google Scholar 

  93. Rimmer, S., Keating, C., Chou, T., Farb, M.D., Christenson, P.D., Foos, R.Y., Bateman, J.B.: Growth of the human optic disk and nerve during gestation, childhood, and early adulthood. Am. J. Ophthalmol. 116, 748–753 (1993)

    PubMed  CAS  Google Scholar 

  94. Fekrat, S., Finkelstein, D.: Venous occlusive disease. In: Regillo, C.D., Brown, G.C., Flynn, H.W. (eds.) Vitreoretinal Disease, pp. 117–132. Thieme, New York, Stuttgart (1999)

    Google Scholar 

  95. Anderson, D.R., Patella, V.M.: Automated Static Perimetry, 2nd edn. Mosby, St. Louis (1999)

    Google Scholar 

  96. Kline, L.B., Bajandas, F.J.: Visual fields. In: Kline, L.B., Bajandas, F.J. (eds.) Neurophthalmology. Review Manual, 5th edn, pp. 1–45. Slack, Thorofare (2004)

    Google Scholar 

  97. Miller, N.R., Newman, N.J.: Anatomy and physiology of the retina and optic nerve: Distinguishing retinal from optic nerve disease (chapter 2). Anomalies of the optic disc (chapter 3). Topical diagnosis of acquired optic nerve disorders (chapter 4). In: Miller, N.R., Newman, N.J. (eds.) Walsh and Hoyt’s Clinical Neuro-Ophthalmology. The essentials, 5th edn, pp. 59–166. Williams & Wilkins, Baltimore (1999)

    Google Scholar 

  98. Glaser, J.S.: Topical diagnosis: prechiasmal visual pathways. In: Glaser, J.S. (ed.) Neuro-Ophthalmology, 3rd edn, pp. 95–198. Lippincott Williams&Wilkins, Philadelphia (1999)

    Google Scholar 

  99. Liu, G.T., Volpe, N.J., Galetta, S.L.: Vision loss: retinal disorders of neuro-ophthalmic interest. In: Liu, G.T., Volpe, N.J., Galetta, S.L. (eds.) Neuro-Opthalmology. Diagnosis and Management, pp. 58–102. Saunders, Philadelphia (2001)

    Google Scholar 

  100. Spoor, T.C.: Atlas of Neurophthalmology, pp. 47–142. Taylor & Francis, London (2004)

    Google Scholar 

  101. Magoon, E.H., Robb, R.M.: Development of myelin in human optic nerve and tract: a light and electronic microscopic study. Arch. Ophthalmol. 99, 655 (1981)

    PubMed  CAS  Google Scholar 

  102. Sanes, J.R., Jessell, T.M.: The guidance of axons to their targets. In: Kandel, E.R., Schwartz, J.H., Jessell, T.M. (eds.) Principles of Neural Science, 4th edn, pp. 1063–1084. McGraw-Hill, New York (2000)

    Google Scholar 

  103. Guillery, R.W.: Developmental neurobiology: preventing midline crossings. Curr. Biol. 13, R871–R872 (2003)

    PubMed  CAS  Google Scholar 

  104. Oster, S.F., Deiner, M., Birgbauer, E., Sretavan, D.W.: Ganglion cell axon pathfinding in the retina and optic nerve. Semin. Cell Dev. Biol. 15, 125–136 (2004)

    PubMed  CAS  Google Scholar 

  105. Van Horck, F.P.G., Weinl, C., Holt, C.E.: Retinal axon guidance: novel mechanisms for steering. Curr. Opin. Neurobiol. 14, 61–66 (2004)

    PubMed  Google Scholar 

  106. Taylor, D.: Optic nerve axons: life and death before birth. The Bowman lecture. Eye 19, 499–527 (2005)

    PubMed  CAS  Google Scholar 

  107. Provis, J.M., Van Driel, D., Billson, F.A., Russell, P.: Human fetal optic nerve: overproduction and elimination of retinal axons during development. J. Comp. Neurol. 238, 92–100 (1985)

    PubMed  CAS  Google Scholar 

  108. Gonzalez-Fernandez, F.: Evolution of the visual cycle: the role of retinoid-binding proteins. J. Endocrinol. 175, 75–88 (2002)

    PubMed  CAS  Google Scholar 

  109. Oyster, C.: Retina I: photoreceptors and functional organization (Chapter 13). In: Oyster, C. (ed.) The Human Eye – Structure and Function, pp. 545–594. Sinauer Associates, Sunderland, Massachusetts (1999)

    Google Scholar 

  110. He, S., Dong, W., Deng, Q., Weng, S., Sun, W.: Seeing more clearly: recent advances in understanding retinal circuitry. Science 302, 408–411 (2003)

    PubMed  CAS  Google Scholar 

  111. Zeki, S.: A Vision of the Brain. Blackwell Science, Oxford (1993)

    Google Scholar 

  112. Mayer, D.L., Fulton, A.B.: Development of the human visual field. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 117–129. Oxford University, New York, Oxford (1993)

    Google Scholar 

  113. Teller, D.Y., Lindsey, D.T.: Infant color vision: OKN techniques and null plane analysis. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 143–162. Oxford University, New York, Oxford (1993)

    Google Scholar 

  114. Birch, E.E.: Stereopsis in infants and its developmental relation to visual acuity. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 224–236. Oxford University, New York, Oxford (1993)

    Google Scholar 

  115. Braddick, O.: Orientation- and motion-selective mechanisms in infants. In: Simons, K. (ed.) Early Visual Development, Normal and Abnormal, pp. 163–177. Oxford University, New York, Oxford (1993)

    Google Scholar 

  116. Green, D.G.: Visual acuity, color vision, and adaptation. In: Albert, D.A., Jakobiec, F.A. (eds.) Principles and Practice of Ophthalmology, 2nd edn, pp. 1673–1689. Saunders, Philadelphia (2000)

    Google Scholar 

  117. Regan, D.: Early visual processing of spatial form (chapter 18). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 470–483. Mosby, St Louis (2003)

    Google Scholar 

  118. McKendrick, A.M., Johnson, C.A.: Temporal properties of vision (chapter 20). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 511–530. Mosby, St Louis (2003)

    Google Scholar 

  119. Norcia, A.M., Manny, R.E.: Development of vision in infancy (chapter 21). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 531–551. Mosby, St Louis (2003)

    Google Scholar 

  120. Sakmar, T.P.: Color vision (chapter 23). In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 578–585. Mosby, St Louis (2003)

    Google Scholar 

  121. Peirson, S., Foster, R.G.: Melanopsin: another way of signaling light. Neuron 49, 331–339 (2006)

    PubMed  CAS  Google Scholar 

  122. Foster, R.G.: Bright blue times. Nature 433, 698–699 (2005)

    PubMed  CAS  Google Scholar 

  123. Foster, R.G., Wulff, K.: The rhythm of rest and excess. Nat. Rev. Neurosci. 6, 407–14 (2005)

    PubMed  CAS  Google Scholar 

  124. Berson, D.M.: Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci. 26, 314–320 (2003)

    PubMed  CAS  Google Scholar 

  125. Fu, Y., Liao, H.W., Do, M.T.H., Yau, K.W.: Non-image-forming ocular photoreception in vertebrates. Curr. Opin. Neurobiol. 15, 415–422 (2005)

    PubMed  CAS  Google Scholar 

  126. Foster, R.G.: Keeping an eye on the time. The Cogan lecture. Invest. Ophthalmol. Vis. Sci. 43, 1286–1298 (2002)

    PubMed  Google Scholar 

  127. Berson, D.M., Dunn, F.A., Takao, M.: Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002)

    PubMed  CAS  Google Scholar 

  128. Hannibal, J., Fahrenkrug, J.: Melanopsin: a novel photopigment involved in the photoentrainment of the brain’s biological clock? Ann. Med. 34, 401–407 (2002)

    PubMed  CAS  Google Scholar 

  129. Rollag, M.D., Berson, D.M., Provencio, I.: Melanopsin, ganglion-cell photoreceptors, and mammalian photoentrainment. J. Biol. Rhythms 18, 227–234 (2003)

    PubMed  Google Scholar 

  130. Lucas, R.J., Hattar, S., Takao, M., Berson, D.M., Foster, R.G., Yau, K.W.: Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299, 245–247 (2003)

    PubMed  CAS  Google Scholar 

  131. Qiu, X., Kumbalsiri, T., Carlson, S.M., Wong, K.Y., Krishna, V., Provencio, I., Berson, D.M.: Induction of photosensitivity by heterologous expression of melanopsin. Nature 433, 745–749 (2005)

    PubMed  CAS  Google Scholar 

  132. Melyan, Z., Tartellin, E.E., Bellingham, J., Lucas, R.J., Hankins, M.W.: Addition of human melanopsin renders mammalian cells photoresponsive. Nature 433, 741–745 (2005)

    PubMed  CAS  Google Scholar 

  133. Fu, Y., Zhong, H., Wang, M.H.H., Luo, D.G., Liao, H.W., Maeda, H., Hattar, S., Frishman, L.J., Yau, K.W.: Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin. PNAS 102, 10339–10344 (2005)

    PubMed  CAS  Google Scholar 

  134. Pepe, I.M.: Recent advances in our understanding of rhodopsin and phototransduction. Prog. Ret. Eye Res. 20, 733–759 (2001)

    CAS  Google Scholar 

  135. Burns, M.E., Baylor, D.A.: Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 24, 779–805 (2001)

    PubMed  CAS  Google Scholar 

  136. Arshavsky, V.Y., Lamb, T.D., Pugh Jr., E.N.: G proteins and phototransduction. Annu. Rev. Physiol. 64, 153–87 (2002)

    PubMed  CAS  Google Scholar 

  137. Hisatomi, O., Tokunaga, F.: Molecular evolution of proteins involved in vertebrate phototransduction. Comp. Biochem. Physiol. Part B 133, 509–522 (2002)

    Google Scholar 

  138. Burns, M.E., Arshavsky, V.Y.: Beyond counting photons: trials and trends in vertebrate visual transduction. Neuron 48, 387–401 (2005)

    PubMed  CAS  Google Scholar 

  139. Xiao, M., Hendrickson, A.: Spatial and temporal expression of short, long/medium, or both opsins in human fetal cones. J. Comp. Neurol. 425, 545–559 (2000)

    PubMed  CAS  Google Scholar 

  140. O’Brien, K.M.B., Schulte, D., Hendrickson, A.E.: Expression of photoreceptor-associated molecules during human fetal eye development. Mol. Vis. 9, 401–409 (2003)

    PubMed  Google Scholar 

  141. Cornish, E.E., Xiao, M., Yang, Z., Provis, J., Hendrickson, A.E.: The role of opsin expression and apoptosis in determination of cone types in human retina. Exp. Eye Res. 78, 1143–1154 (2004)

    PubMed  CAS  Google Scholar 

  142. Bessant, D.A.R., Ali, R.R., Bhattacharya, S.S.: Molecular genetics and prospects for therapy of the inherited dystrophies. Curr. Opin. Genet. Dev. 11, 307–316 (2001)

    PubMed  CAS  Google Scholar 

  143. Brown, J. Jr., Webster, A.R., Sheffield, V.C., Stone, E.M.: Molecular genetics of retinal disease. In: Ryan, S.J. (ed) Retina, 4th ed, pp. 373–394. Elsevier-Mosby, St. Louis (2006)

    Google Scholar 

  144. Weleber, R.G., Gregory-Evans, K.: Retinitis pigmentosa and allied disorders. In: Ryan, S.J. (ed) Retina, 4th ed, pp. 395–498. Elsevier-Mosby, St. Louis (2006)

    Google Scholar 

  145. Hargrave, P.A.: Rhodopsin structure, function, and topography. The Friedenwald Lecture. IOVS 42, 3–9 (2001)

    CAS  Google Scholar 

  146. Curcio, C.A., Allen, K.A.: Topography of ganglion cells in human retina. J. Comp. Neurol. 300, 5–25 (1990)

    PubMed  CAS  Google Scholar 

  147. Chalupa, L.M., Günhan, E.: Development of On and Off retinal pathways and retinogeniculate projections. Prog. Ret. Eye Res. 23, 31–51 (2004)

    Google Scholar 

  148. Yamazaki, S., Goto, M., Menaker, M.: No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J. Biol. Rhythms 14, 197–201 (1999)

    PubMed  CAS  Google Scholar 

  149. Freedman, M.S., Lucas, R.J., Soni, B., von Schantz, M., Munoz, M., David-Gray, Z., Foster, R.: Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284, 502–504 (1999)

    PubMed  CAS  Google Scholar 

  150. Menaker, M.: Circadian photoreception. Circadian rhythms. Science 299, 213–214 (2003)

    PubMed  CAS  Google Scholar 

  151. Lucas, R.J., Freedman, M.S., Munoz, M., Garcia-Fernandez, J.M., Foster, R.G.: Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284, 505–507 (1999)

    PubMed  CAS  Google Scholar 

  152. Foster, R.G., Hankins, M.W.: Non-rod, non-cone photoreception in the vertebrates. Prog. Ret. Eye Res. 21, 507–527 (2002)

    Google Scholar 

  153. Zaidi, F.H., Hulll, J.T., Peirson, S.N., Wulff, K., Aeschbach, D., Gooley, J.J., Brainard, G.C., Gregory-Evans, K., Rizzo III, J.F., Czeisler, C.A., Foster, R.G., Moseley, M.J., Lockley, S.W.: Short-wavelength light sensitivity of circadian, papillary, and visual awareness in humans lacking an outer retina. Curr. Biol. 17, 2122–2128 (2007)

    PubMed  CAS  Google Scholar 

  154. Van Gelder, R.N.: Non-visual photoreception: sensing light without sight. Curr. Biol. 18, R38–R39 (2008)

    PubMed  Google Scholar 

  155. Van Gelder, R.N.: Making (a) sense of non-visual ocular photoreception. Trends Neurosci. 26, 458–461 (2003)

    PubMed  Google Scholar 

  156. Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W., Gamlin, P.D.: Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749–754 (2005)

    PubMed  CAS  Google Scholar 

  157. Hannibal, J., Hindersson, P., Østergaard, J., Georg, B., Heegaard, S., Larsen, P.J., Fahrenkrug, J.: Melanopsin is expressed in PACAP-containing retinal ganglion cells of the human retinohypothalamic tract. IOVS 45, 4202–4209 (2004)

    Google Scholar 

  158. Hattar, S., Lucas, R.J., Mrosovsky, N., Thompson, S., Douglas, R.H., Hankins, M.W., Lem, J., Biel, M., Hofmann, F., Foster, R.G., Yau, K.Y.: Melanopsin and rod-cone photoreceptive systems account for all major accessory visual functions in mice. Nature 424, 76–81 (2003)

    PubMed  CAS  Google Scholar 

  159. Sekaran, S., Lupi, D., Jones, S.L., Sheely, C.J., Hattar, S., Yau, K.W., Lucas, R.J., Foster, R.G., Hankins, M.W.: Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr. Biol. 15, 1099–1107 (2005)

    PubMed  CAS  Google Scholar 

  160. Sernagor, E.: Retinal development: second sight comes first. Curr. Biol. 15, R556–R559 (2005)

    PubMed  CAS  Google Scholar 

  161. Davson, H.: Neurophysiology of perception: non-geniculostriate pathways and the neurones of their central stations (chapter 23). In: Davson, H. (ed.) Physiology of the Eye, 5th edn, pp. 628–643. MacMillan, London (1990)

    Google Scholar 

  162. Boyd, J.D., Gu, Q., Matsubara, J.A.: Overview of the central visual pathways. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 641–645. Mosby, St. Louis (2003)

    Google Scholar 

  163. Casagrande, V.A., Ichida, J.M.: The lateral geniculate nucleus. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 655–668. Mosby, St. Louis (2003)

    Google Scholar 

  164. Casagrande, V.A., Ichida, J.M.: The primary visual cortex. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 669–685. Mosby, St. Louis (2003)

    Google Scholar 

  165. Boyd, J.D., Matsubara, J.A.: Extrastriate visual cortex. In: Kaufman, P.L., Alm, A. (eds.) Adler’s Physiology of the Eye, 10th edn, pp. 686–696. Mosby, St. Louis (2003)

    Google Scholar 

  166. Dai, J., Van der Vliet, J., Swaab, D.F., Buijs, R.M.: Human retinohypothalamic tract as revealed by in vitro postmortem tracing. J. Comp. Neurol. 397, 357–370 (1998)

    PubMed  CAS  Google Scholar 

  167. Provis, J.M., Van Driel, D., Billson, F.A., Russell, P.: Development of the human retina: patterns of cell distribution and redistribution in the ganglion cell layer. J. Comp. Neurol. 233, 429–451 (1985)

    PubMed  CAS  Google Scholar 

  168. Turner, D.L., Cepko, C.L.: A common progenitor for neurons and glia persists in rat retina late in development. Nature 328, 131–136 (1987)

    PubMed  CAS  Google Scholar 

  169. Reh, T.A., Moshiri, A.: The development of the retina. In: Ryan, S.J. (ed) Retina, 4th ed, pp. 3–21. Elsevier-Mosby, St. Louis (2006)

    Google Scholar 

  170. Young, M.J.: Stem cells in the mammalian eye: a tool for retinal repair. APMIS 113, 845–57 (2005)

    PubMed  Google Scholar 

  171. Friedlander, M.: Stem cells. In: Ryan, S.J. (ed) Retina, 4th ed, pp. 23–32. Elsevier-Mosby, St. Louis (2006)

    Google Scholar 

  172. Eustis, H.S., Guthrie, M.E.: Postnatal development (chapter 2). In: Wight, K.W., Spiegel, P.H. (eds.) Pediatric Ophthalmology and Strabismus, 2nd edn, pp. 39–53. Springer, Berlin (2003)

    Google Scholar 

  173. Goddé-Jolly, D.: Développement de l’appareil visuel et de la vision. In: Goddé-Jolly, D., Dufier, J.L. (eds.) Ophtalmologie pédiatrique, pp. 1–21. Masson, Paris (1992)

    Google Scholar 

  174. Isenberg, S.J., Neumann, D., Cheong, P.Y.Y., Ling, Y.L.F., McCall, L.C., Ziffer, A.J.: Growth of the internal and external eye in term and preterm infants. Ophthalmology 102, 827–830 (1995)

    PubMed  CAS  Google Scholar 

  175. Blomdahl, S.: Ultrasonic measurements of the eye in the newborn infant. Acta. Ophthalmol. 57, 1048–1056 (1979)

    CAS  Google Scholar 

  176. Larsen, J.S.: The sagital growth of the eye. IV. Ultrasonic measurement of the axial length of the eye from birth to puberty. Acta. Ophthalmol. 49, 873–886 (1971)

    CAS  Google Scholar 

  177. Isenberg, S.J.: Physical and refractive characteristics of the eye at birth and during infancy. In: Isenberg, S.J. (ed.) The Eye in Infancy, 2nd edn, pp. 36–51. Mosby, St. Louis (1994)

    Google Scholar 

  178. Tucker, S.M., et al.: Corneal diameter, axial length, and intraocular pressure in premature infants. Ophthalmology 99, 1296 (1992)

    PubMed  CAS  Google Scholar 

  179. Robb, R.M.: Increase in retinal surface area during infancy and childhood. J. Paediatr. Ophthalmol. Strabismus 19, 16–20 (1982)

    CAS  Google Scholar 

  180. McLoone, E., O’Keefe, M., Donoghue, V., McLoone, S., Horgan, N., Lanigan, B.: RetCam image analysis of optic disc morphology in premature infants and its relation to ischaemic brain injury. Br. J. Ophthalmol. 90, 465–471 (2006)

    PubMed  CAS  Google Scholar 

  181. De Silva, D.J., Cocker, K.D., Lau, G., Clay, S.T., Fielder, A.R., Moseley, M.J.: Optic disk size and optic disk-to-fovea distance in preterm and full-term infants. IOVS 47, 4683–4686 (2006)

    Google Scholar 

  182. Teller, D.Y.: First glances: The vision of infants. Invest. Opthal. Vis. Sci. 38, 2183–2203 (1997)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alistair R. Fielder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Berlin Heidelberg

About this chapter

Cite this chapter

Hildebrand, G.D., Fielder, A.R. (2011). Anatomy and Physiology of the Retina. In: Reynolds, J., Olitsky, S. (eds) Pediatric Retina. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12041-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12041-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12040-4

  • Online ISBN: 978-3-642-12041-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics