Skip to main content

Dempster-Shafer Reasoning in Large Partially Ordered Sets: Applications in Machine Learning

  • Chapter
Integrated Uncertainty Management and Applications

Part of the book series: Advances in Intelligent and Soft Computing ((AINSC,volume 68))

Abstract

The Dempster-Shafer theory of belief functions has proved to be a powerful formalism for uncertain reasoning. However, belief functions on a finite frame of discernment \({\it \Omega}\) are usually defined in the power set 2Ω , resulting in exponential complexity of the operations involved in this framework, such as combination rules. When \({\it \Omega}\) is linearly ordered, a usual trick is to work only with intervals, which drastically reduces the complexity of calculations. In this paper, we show that this trick can be extrapolated to frames endowed with an arbitrary lattice structure, not necessarily a linear order. This principle makes it possible to apply the Dempster-Shafer framework to very large frames such as, for instance, the power set of a finite set \({\it \Omega}\), or the set of partitions of a finite set. Applications to multi-label classification and ensemble clustering are demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Annals of Mathematical Statistics 38, 325–339 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  2. Dempster, A.P.: Upper and lower probabilities generated by a random closed interval. Annals of Mathematical Statistics 39(3), 957–966 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  3. Denœux, T.: A k-nearest neighbor classification rule based on Dempster-Shafer theory. IEEE Trans. on Systems, Man and Cybernetics 25(05), 804–813 (1995)

    Article  Google Scholar 

  4. Denœux, T.: Inner and outer approximation of belief structures using a hierarchical clustering approach. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(4), 437–460 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Denœux, T.: Constructing belief functions from sample data using multinomial confidence regions. International Journal of Approximate Reasoning 42(3), 228–252 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Denoeux, T., Younes, Z., Abdallah, F.: Representing uncertainty on set-valued variables using belief functions (2009) (Submitted)

    Google Scholar 

  7. Dubois, D., Prade, H.: A set-theoretic view of belief functions: logical operations and approximations by fuzzy sets. International Journal of General Systems 12(3), 193–226 (1986)

    Article  MathSciNet  Google Scholar 

  8. Fred, A., Jain, A.: Data clustering using evidence accumulation. In: Proceedings of the 16th International Conference on Pattern Recognition, Quebec, Canada, pp. 276–228 (2002)

    Google Scholar 

  9. Fred, A., Lourenço, A.: Cluster ensemble methods: from single clusterings to combined solutions. Studies in Computational Intelligence (SCI) 126, 3–30 (2008)

    Article  Google Scholar 

  10. Grabisch, M.: Belief functions on lattices. International Journal of Intelligent Systems 24, 76–95 (2009)

    Article  MATH  Google Scholar 

  11. Hornik, K., Leisch, F.: Ensemble methods for cluster analysis. In: Taudes, A. (ed.) Adaptive Information Systems and Modelling in Economics and Management Science. Interdisciplinary Studies in Economics and Management, vol. 5, pp. 261–268. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Liu, L.: A theory of Gaussian belief functions. International Journal of Approximate Reasoning 14, 95–126 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Masson, M.-H., Denœux, T.: Belief functions and cluster ensembles. In: Sossai, C., Chemello, G. (eds.) ECSQARU 2009. LNCS, vol. 5590, pp. 323–334. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Masson, M.-H., Denœux, T.: Ensemble clustering in the belief functions framework. International Journal of Approximate Reasoning (2010) (submitted)

    Google Scholar 

  15. Monjardet, B.: The presence of lattice theory in discrete problems of mathematical social sciences. Why. Mathematical Social Sciences 46(2), 103–144 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Shafer, G.: A mathematical theory of evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  17. Shafer, G., Shenoy, P.P., Mellouli, K.: Propagating belief functions in qualitative Markov trees. International Journal of Approximate Reasoning 1, 349–400 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  18. Shenoy, P.P.: Binary joint trees for computing marginals in the Shenoy-Shafer architecture. International Journal of Approximate Reasoning 17, 239–263 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  19. Smets, P.: The combination of evidence in the Transferable Belief Model. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(5), 447–458 (1990)

    Article  Google Scholar 

  20. Smets, P.: Belief functions: the disjunctive rule of combination and the generalized Bayesian theorem. International Journal of Approximate Reasoning 9, 1–35 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Smets, P.: Belief functions on real numbers. International Journal of Approximate Reasoning 40(3), 181–223 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smets, P., Kennes, R.: The Transferable Belief Model. Artificial Intelligence 66, 191–243 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  23. Trohidis, K., Tsoumakas, G., Kalliris, G., Vlahavas, I.: Multi-label classification of music into emotions. In: Proc. 9th International Conference on Music Information Retrieval (ISMIR 2008), Philadephia, PA, USA (2008)

    Google Scholar 

  24. Yager, R.R.: Set-based representations of conjunctive and disjunctive knowledge. Information Sciences 41, 1–22 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Younes, Z., Abdallah, F., Denœux, T.: An evidence-theoretic k-nearest neighbor rule for multi-label classification. In: Godo, L., Pugliese, A. (eds.) SUM 2009. LNCS, vol. 5785, pp. 297–308. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  26. Zhang, M.-L., Zhou, Z.-H.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recognition 40(7), 2038–2048 (2007)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Denœux, T., Masson, MH. (2010). Dempster-Shafer Reasoning in Large Partially Ordered Sets: Applications in Machine Learning. In: Huynh, VN., Nakamori, Y., Lawry, J., Inuiguchi, M. (eds) Integrated Uncertainty Management and Applications. Advances in Intelligent and Soft Computing, vol 68. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11960-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11960-6_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11959-0

  • Online ISBN: 978-3-642-11960-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics