Skip to main content

Production of Organic Acids by Filamentous Fungi

  • Chapter
  • First Online:
Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

This chapter summarizes current knowledge on the biochemical and physiological events leading to the massive accumulation of organic acids by filamentous fungi, particularly Aspergillus niger under industrially comparable conditions, thereby particularly emphasizing the roles of: (1) metabolic flux and its control and (2) critical fermentation variables. The value of genome information for metabolic analysis and genomic approaches in understanding these fermentations is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    5Fermentation is here used in a more general sense and means a “metabolic production process” as such and does not refer to an anaerobic sugar conversion process leading mainly to ethanol (see alcohol fermentation in Chapter 2).

References

  • Aiba S, Matsuoka M (1979) Identification of a metabolic model: citrate production from glucose by Candida lipolytica. Biotechnol Bioeng 1:1373–1386

    Google Scholar 

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973a) Induction and citric acid productivity of fluoroacetate-sensitive mutant strains of Candida lipolytica. Agric Biol Chem 37:879–884

    CAS  Google Scholar 

  • Akiyama S, Suzuki T, Sumino Y, Nakao Y, Fukuda H (1973b) Relationship between aconitate hydratase activity and citric acid productivity in fluoroacetate-sensitive mutant strain of Candida lipolytica. Agric Biol Chem 37:885–888

    CAS  Google Scholar 

  • Anastassiadis S, Rehm HJ (2006) Continuous gluconic acid production by the yeast-like Aureobasidium pullulans in a cascading operation of two bioreactors. Appl Microbiol Biotechnol 73:541–548

    CAS  Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C (2003) Continuous gluconic acid production by isolated yeast-like mould strains of Aureobasidium pullulans. Appl Microbiol Biotechnol 61:110–117

    CAS  Google Scholar 

  • Anastassiadis S, Aivasidis A, Wandrey C, Rehm HJ (2005) Process optimization of continuous gluconic acid fermentation by isolated yeast-like strains of Aureobadium pullulans. Biotechnol Bioeng 91:494–501

    CAS  Google Scholar 

  • Arisan-Atac I, Kubicek CP (1996) Glycerol is not an inhibitor of mitochondrial citrate oxidation in Aspergillus niger. Microbiology 142:2937–2942

    CAS  Google Scholar 

  • Arisan-Atac I, Wolschek MF, Kubicek CP (1996) Trehalose-6-phosphate synthase A affects citrate accumulation bv Aspergillus niger under conditions of high glycolytic flux. FEMS Microbiol Lett 140:77–83

    CAS  Google Scholar 

  • Arts E, Kubicek CP, Röhr M (1987) Regulation of phosphofructokinase-1 from Aspergillus niger: effect of fructose-2,6-bisphosphate on the action of citrate, ammonium ions and AMP. J Gen Microbiol 133:1195–1199

    CAS  Google Scholar 

  • Begum AA, Choudhury N, Islam MS (1990) Citric acid fermentation by gamma-ray induced mutants of Aspergillus niger in different carbohydrate media. J Ferment Bioeng 70:286–288

    CAS  Google Scholar 

  • Bentlev R, Thiessen CP (1957a) Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with C14-labeled substrates. J Biol Chem 226:673–687

    Google Scholar 

  • Bentlev R, Thiessen CP (1957b) Biosynthesis of itaconic acid in Aspergillus terreus. II. Early stages in glucose dissimilation and the role of citrate. J Biol Chem 226:689–701

    Google Scholar 

  • Bentlev R, Thiessen CP (1957c) Biosynthesis of itaconic acid in Aspergillus terreus. III.The properties and reaction mechanism of cis-aconitic acid decarboxylase. J Biol Chem 226:703–720

    Google Scholar 

  • Bercovitz A, Peleg Y, Battat E, Rokem JS, Goldberg I (1990) Localisation of pyruvate carboxylase in organic acid producing Aspergillus strains. Appl Environ Microbiol 56:1594–1597

    CAS  Google Scholar 

  • Berovic M (1999) Scale-up of citric acid fermentation by redox potential control. Biotechnol Bioeng 64:552–557

    CAS  Google Scholar 

  • Blom RH, Pfeifer VF, Mover AJ, Traufler DH, Conway HE, Crocker CK, Farison RE, Hannibal DV (1952) Sodium gluconate production. Fermentation with Aspergillus niger. Ind Eng Chem 44:435–140

    CAS  Google Scholar 

  • Bloom SJ, Johnson MJ (1962) The pyruvate carboxylase of Aspergillus niger. J Biol Chem 237:2718–2720

    CAS  Google Scholar 

  • Boddy LM, Berges T, Barreau C, Vainstain MH, Jobson MJ, Ballance DJ, Peberdy JF (1993) Purification and characterization of an Aspergillus niger invertase and its DNA sequence. Curr Genet 24:60–66

    CAS  Google Scholar 

  • Bohdziewicz J, Bodzek M (1994) Ultrafiltration preparation of pectinolytic enzymes from citric acid fermentation broth. Proc Biochem 29:99–107

    CAS  Google Scholar 

  • Bonnarme P, Gillet B, Sepulchre AM, Role C, Beloeil JC, Ducrocq C (1995) Itaconate biosynthesis in Aspergillus terreus. J Bacteriol 177:3573–3578

    CAS  Google Scholar 

  • Business Communication Co. (2004) World markets for fermentation ingredients. GA-103R. Business Communication Co., Norwalk

    Google Scholar 

  • Clark DS, Ito K, Tymchuk P (1965) Effect of potassium fer-rocyanide on the chemical composition of molasses mash used in the citric acid fermentation. Biotechnol Bioeng 7:269–278

    CAS  Google Scholar 

  • Clark DS, Ito K, Horitsu H (1966) Effect of manganese and other heavy metals on submerged citric acid fermentation of molasses. Biotechnol Bioeng 8:465–471

    CAS  Google Scholar 

  • Cleland WW, Johnson MJ (1954) Tracer experiments on the mechanism of citric acid formation bv Aspergillus niger. J Biol Chem 208:679–692

    CAS  Google Scholar 

  • Cornish-Bowden A, Hofmeyer JHS, Cardenas ML (1995) Strategies for manipulating metabolic fluxes in biotechnology. Bioorg Chem 23:439–449

    CAS  Google Scholar 

  • Crognale S, Petruccioli M, Fenice M, Federici F (2008) Fed-batch gluconic acid production from Penicillium variabile P16 under different feeding strategies. Enzyme Microb Technol 42:445–449

    CAS  Google Scholar 

  • Currie JN (1917) The citric acid fermentation by Aspergillus niger. J Biol Chem 31:15–37

    CAS  Google Scholar 

  • Dai Z, Mao X, Magnuson JK, Lasure LL (2004) Identification of genes associated with morphology in Aspergillus niger by using suppression subtractive hybridization. Appl Environ Microbiol 70:2474–2485

    CAS  Google Scholar 

  • Dawson MW, Maddox IS, Brooks JD (1986) Effect of interruptions to the air supply on citric acid production bv Aspergillus niger. Enzyme Microb Technol 8:37–40

    CAS  Google Scholar 

  • Dawson MW, Maddox IS, Boag IF, Brooks JD (1988) Application of fed-batch culture to citric acid production by Aspergillus niger. The effects of dilution rate and dissolved oxvgen tension. Biotechnol Bioeng 32:220–226

    CAS  Google Scholar 

  • de Jongh WA, Nielsen J (2008) Enhanced citrate production through gene insertion in Aspergillus niger. Metab Eng 10:87–96

    CAS  Google Scholar 

  • Dwiarti I, Yamane K, Yamatani H, Kahar P, Okabe M (2002) Purification and characterisation of cis-aconitic acid decarboxylase from Aspergillus terreus TN484-M1. J Biosci Bioeng 94:29–33

    CAS  Google Scholar 

  • Eikmeier H, Renin HJ (1984) Production of citric acid with immobilised Aspergillus niger. Appl Microbiol Biotechnol 20:365–370

    CAS  Google Scholar 

  • Federici F, Petruccioli M (1997) Immobilisation of filamentous fungi: a new frontier in the production of organic acids. Ital J Food Sci 9:171–182

    CAS  Google Scholar 

  • Feir HA, Suzuki I (1969) Pyruvate carboxylase of Aspergillus niger. Kinetic study of a biotin-containing enzyme. Can J Biochem 47:697–710

    CAS  Google Scholar 

  • Fiedurek J, Rogalski J, Ilczuk Z, Leonowicz A (1986) Screening and mutagenesis of moulds for the improvement of glucose oxidase production. Enzyme Microb Technol 8:734–736

    CAS  Google Scholar 

  • Finogenova TV, Shishkanova NV, Ermakova IT, Kataeva IA (1986) Properties of Candida lipolytica mutants with the modified glyoxylate cycle and their ability to produce citric and isocitric acid. II. Synthesis of citric and isocitric acid by C. lipolvtica mutants and peculiarities of their enzyme systems. Appl Microbiol Biotechnol 23:378–383

    CAS  Google Scholar 

  • Flipphi M, Sun J, Robellet X, Karaffa L, Fekete E, Zeng A-P, Kubicek CP (2009) Biodiversity and evolution of primary carbon metabolism in Aspergillus nidulans and other Aspergillus spp. Fungal Genet Biol 46:S19–S44

    CAS  Google Scholar 

  • Gerd W, Svetlana T, Jasmina Z, Draginja P, Vladimir L (2004) The chemical mechanism of action of glucose oxidase from Aspergillus niger. Mol Cell Biochem 260:69–83

    Google Scholar 

  • Gibson QH, Swoboda BEP, Massey V (1964) Kinetics and mechanism of action of glucose oxidase. J Biol Chem 239:3927–3934

    CAS  Google Scholar 

  • Gluszcz P, Ledakowicz S (1999) Downstream processing in citric acid production. In: Kristiansen B, Mattey M, Linden J (eds) Citric acid biotechnology. Taylor and Francis, London, pp 135–148

    Google Scholar 

  • Gupta S, Sharma CB (1995) Citric acid fermentation by the mutant strain of the Aspergillus niger resistant to manganese ions inhibition. Biotechnol Lett 17:269–274

    CAS  Google Scholar 

  • Gyamerah MH (1995) Oxygen requirement and energy relations of itaconic acid fermentation by Aspergillus terreus NRRL 1960. Appl Microbiol Biotechnol 44:20–26

    Google Scholar 

  • Harmsen H, Kubicek-Pranz EM, Visser J, Röhr M, Kubicek CP (1992) Regulation of 6-phosphofructo-2-kinase from the citric acid producing fungus Aspergillus niger. Appl Microbiol Biotechnol 37:784–787

    CAS  Google Scholar 

  • Hattori T, Kino K, Kirimura K (2009) Regulation of alternative oxidase at the transcription stage in Aspergillus niger under the conditions of citric acid production. Curr Microbiol 58:321–325

    CAS  Google Scholar 

  • Hecht HJ, Kalisz HM, Hendle J, Schmid RD, Schomburg D (1993) Crystal structure of glucose oxidase from Aspergillus niger refined at 2.3 A resolution. J Mol Biol 229:153–172

    CAS  Google Scholar 

  • Hesse SJA, Ruijter GJG, Dijkema C, Visser J (2000) Measurement of intracellular (compartmental) pH by "P NMR in Aspergillus niger. J Biotechnol 77:5–15

    CAS  Google Scholar 

  • Hockertz S, Schmid J, Auling G (1987) A specific transport system for manganese in the filamentous fungus Aspergillus niger. J Gen Microbiol 133:2515–3519

    Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991a) Intracellular organisation of citrate production in Aspergillus niger. Can J Microbiol 37:823–827

    CAS  Google Scholar 

  • Jaklitsch WM, Kubicek CP, Scrutton MC (1991b) The subcellular organisation of itaconate biosynthesis in Aspergillus terreus. J Gen Microbiol 137:533–539

    CAS  Google Scholar 

  • Jørgensen TR, van Kuyk PA, Poulsen BR, Ruijter GJ, Visser J, Iversen JJ (2007) Glucose uptake and growth of glucose-limited chemostat cultures of Aspergillus niger and a disruptant lacking MstA, a high-affinity glucose transporter. Microbiology 153:1963–1973

    Google Scholar 

  • Kanamasa S, Dwiarti L, Okabe M, Park EY (2008) Cloning and functional characterization of the cis-aconitic acid decarboxylase (CAD) gene from Aspergillus terreus. Appl Microbiol Biotechnol 80:223–229

    CAS  Google Scholar 

  • Karaffa L, Kubicek CP (2003) Aspergillus niger citric acid accumulation – do we understand this black box well? Appl Microbiol Biotechnol. 61:189–196

    CAS  Google Scholar 

  • Kirimura K, Hirowatari Y, Usami S (1987) Alterations of respiratory systems \n Aspergillus niger under the conditions of citric acid fermentation. Agric Biol Chem 51:1299–1303

    CAS  Google Scholar 

  • Kirimura K, Matsui T, Sugano S, Usami S (1996) Enhancement and repression of cyanide-insensitive respiration in Aspergillus niger. FE’MS Microbiol Lett 141:251–254

    CAS  Google Scholar 

  • Kirimura K, Yusa S, Rugsaseel S, Nakagawa H, Osumi M, Usami S (1999) Amylose-like polysaccharide accumulation and hyphal cell-surface structure in relation to citric acid production by Aspergillus niger in shake culture. Appl Microbiol Biotechnol 52:421–428

    CAS  Google Scholar 

  • Kisser M, Kubicek CP, Röhr M (1980) Influence of manganese on morphology and cell-wall composition of Aspergillus niger during citric acid fermentation. Arch Microbiol 128:26–33

    CAS  Google Scholar 

  • Kleppe K (1966) The effect of hydrogen peroxide on glucose oxidase from Aspergillus niger. Biochemistry 5:139–143

    CAS  Google Scholar 

  • Kontopidis G, Mattey M, Kristiansen B (1995) Citrate transport during the citric acid fermentation by Aspergillus niger. Biotechnol Lett 17:1101–1106

    CAS  Google Scholar 

  • Kriechbaum M, Heilmann HJ, Wientges FJ, Hahn M, Jany K-D, Gassen HG (1989) Cloning and DNA sequence analysis of the glucose oxidase gene from Aspergillus niger NRLL-3. FEBS Lett 255:63–66

    CAS  Google Scholar 

  • Kristiansen B, Sinclair CG (1979) Production of citric acid in continuous culture. Biotechnol Bioeng 21:297–315

    CAS  Google Scholar 

  • Kristiansen B, Mattey M, Linden J (eds) (1999) Citric acid biotechnology. Taylor and Francis, London

    Google Scholar 

  • Kubicek CP (1988) The role of the citric acid cycle in fungal organic acid fermentations. Biochem Soc Symp 54:113–126

    Google Scholar 

  • Kubicek CP, Karaffa L (2004) Organic acids. In: Ratledge C, Kristiansen B (eds) Basic biotechnology, 3rd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Kubicek CP, Röhr M (1977) Influence of manganese on enzyme synthesis and citric acid accumulation by Aspergillus niger. Eur J Appl Microbiol 4:167–173

    CAS  Google Scholar 

  • Kubicek CP, Röhr M (1985) Aconitase and citric acid accumulation in Aspergillus niger. Appl Environ Microbiol 50:1336–1338

    CAS  Google Scholar 

  • Kubicek CP, Röhr M (1986) Citric acid fermentation. Crit Rev Biotechnol 3:331–373

    CAS  Google Scholar 

  • Kubicek CP, Zehentgruber O, El-Kalak H, Röhr M (1980) Regulation of citric acid production by oxygen: effects of dissolved oxygen tension on adenylate levels and respiration in Aspergillus niger. Eur J Appl Microbiol Biotechnol 9:101–116

    CAS  Google Scholar 

  • Kubicek CP, Schreferl-Kunar G, Wohrer W, Röhr M (1988) Evidence for a cytoplasmic pathway of oxalate biosynthesis in Aspergillus niger. Appl Environ Microbiol 54:633–637

    CAS  Google Scholar 

  • Kubicek-Pranz EM, Mozelt M, Röhr M, Kubicek CP (1990) Changes in the concentration of fructose-2,6-bisphosphate in Aspergillus niger during stimulation of acidogenesis by elevated sucrose concentrations. Biochim Biophys Acta 1033:250–255

    CAS  Google Scholar 

  • La Nauze JM (1966) Aconitase and isocitric acid dehydrogenases in Aspergillus uiger in relation to citric acid accumulation. J Gen Microbiol 44:73–81

    CAS  Google Scholar 

  • Legisa M, Mattey M (1986) Glycerol as an initiator of citric acid accumulation in Aspergillus niger. Enzyme Microb Technol 8:607–609

    CAS  Google Scholar 

  • Legisa M, Bencina M (1994) Evidence for the activation of 6-phosphofructo-1-kinase by cAMP-dependent protein kinase in Aspergillus niger. FEMS Microbiol Lett 118:327–334

    CAS  Google Scholar 

  • Leskovacs V, Trivic S, Wohlfahrt G, Kandrac J, Pericin D (2005) Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors. Int J Biochem 37:731–750

    Google Scholar 

  • Levinson WE, Kurtzman CP, Kuo TM (2006) Production of itaconic acid by Pseudozyma antarctica NRRL Y-7808 under nitrogen-limited growth conditions. Enzyme Microb Technol 39:824–827

    CAS  Google Scholar 

  • Lu M, Brooks JD, Maddox IS (1997) Citric acid production by solid-state fermentation in a packed-bed reactor using Aspergillus niger. Enzyme Microb Technol 21:392–397

    CAS  Google Scholar 

  • Ma H, Kubicek CP, Röhr M (1985) Metabolic effects of manganese deficiency in Aspergillus niger: evidence for increased protein degradation. Arch Microbiol 141:266–268

    CAS  Google Scholar 

  • Markwell J, Frakes LG, Brott EC, Osterman J, Wagner FW (1989) Aspergillus niger mutants with increased glucose oxidase production. Appl Microbiol Biotechnol 30: 166–169

    CAS  Google Scholar 

  • Martin SM, Wilson PW (1951) Uptake of 14CO2 by Aspergillus niger in the formation of citric acid. Arch Biochem 27:150–157

    Google Scholar 

  • Mattey M (1992) The production of organic acids. CRC Crit Rev Biotechnol 12:87–132

    CAS  Google Scholar 

  • Mclntyre M, McNeil B (1997) Dissolved carbon dioxide effects on morphology, growth, and citrate production in Aspergillus niger A60. Enzyme Microb Technol 20:135–142

    Google Scholar 

  • Meixner O, Mischak H, Kubicek CP, Röhr M (1985) Effects of manganese deficiency on plasma membrane lipid composition and glucose uptake in Aspergillus niger. FEMS Microbiol Lett 26:271–274

    CAS  Google Scholar 

  • Mesojednik S, Legisa M (2005) Posttranslational modification of 6-phosphofructo-1-kinase in Aspergillus niger. Appl Environ Microbiol 71:1425–1432

    CAS  Google Scholar 

  • Miall LM (1978) Organic acids. In: Rose AH (ed) Economic microbiology, vol 2: primary products of metabolism. Academic, London, pp 47–119

    Google Scholar 

  • Moyer AJ (1953) Effect of alcohols on the mycological production of citric acid in surface and submerged culture. I. Nature of the alcohol effect. Appl Microbiol 1:1–6

    CAS  Google Scholar 

  • Nabeshima S, Tanaka A, Fului S (1977) Effects of carbon sources on the levels of glyoxylate enzymes in n-alkane utilizable yeasts. Agric Biol Chem 41:275–285

    CAS  Google Scholar 

  • Netik A, Torres NV, Riol J-M, Kubicek CP (1997) Uptake and export of citric acid by Aspergillus niger is reciprocally regulated by manganese ions. Biochim Biophys Acta 1326:287–294

    CAS  Google Scholar 

  • Osumi M, Miwa N, Teranishi Y, Tanaka A, Fului S (1974) Ultrastructure of Candida yeast grown on N-alkanes: appearance of microbodies and its relationship to high catalase activity. Arch Microbiol 99:181–200

    CAS  Google Scholar 

  • Panneman H, Ruijter GIG, Van den Broeck HC, Driever ETM, Visser J (1996) Cloning and biochemical characterisation of an Aspergillus niger glucokinase. Evidence for the presence of separate glucokinase and hexokinase enzymes. Eur J Biochem 240:518–525

    CAS  Google Scholar 

  • Panneman H, Ruijter GIG, Van den Broeck HC, Visser J (1998) Cloning and biochemical characterisation of Aspergillus niger hexokinase. The enzyme is strongly inhibited by physiological concentrations of trehalose 6-phosphate. Eur J Biochem 258:223–232

    CAS  Google Scholar 

  • Pedersen H, Hjort C, Nielsen J (2000) Cloning and characterization of oah. the gene encoding oxaloacetate hydrolase in Aspergillus niger. Mol Gen Genet 263:281–286

    CAS  Google Scholar 

  • Peksel A, Torres NV, Liu J, Juneau G, Kubicek CP (2002) 13C-NMR analysis of glucose metabolism during citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 58:157–163

    CAS  Google Scholar 

  • Pel HJ, de Winde JH, Archer DB, Dyer PS, Hofmann G, Schaap PJ, Turner G, de Vries RP, Albang R, Albermann K, Andersen MR, Bendtsen JD, Benen JA, van den Berg M, Breestraat S, Caddick MX, Contreras R, Cornell M, Coutinho PM, Danchin EG, Debets AJ, Dekker P, van Dijck PW, van Dijk A, Dijkhuizen L, Driessen AJ, d’Enfert C, Geysens S, Goosen C, Groot GS, de Groot PW, Guillemette T, Henrissat B, Herweijer M, van den Hombergh JP, van den Hondel CA, van der Heijden RT, van der Kaaij RM, Klis FM, Kools HJ, Kubicek CP, van Kuyk PA, Lauber J, Lu X, van der Maarel MJ, Meulenberg R, Menke H, Mortimer MA, Nielsen J, Oliver SG, Olsthoorn M, Pal K, van Peij NN, Ram AF, Rinas U, Roubos JA, Sagt CM, Schmoll M, Sun J, Ussery D, Varga J, Vervecken W, van de Vondervoort PJ, Wedler H, Wösten HA, Zeng AP, van Ooyen AJ, Visser J, Stam H (2007) Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88. Nat Biotechnol 25:221–231

    Google Scholar 

  • Petruccioli M, Piccioni P, Dederici F, Polsineli M (1995) Glucose oxidase overproducing mutants of Penicillium variabile (P16). FEMS Microbiol Lett 128:107–112

    CAS  Google Scholar 

  • Ramachandran S, Fontanille P, Pandey A, Larroche C (2006) Gluconic acid: properties, applications and microbial production. Food Technol Biotechnol 44:185–195

    CAS  Google Scholar 

  • Reuss M, Frohlich S, Kramer B, Messerschmidt K, Pommerening G (1986) Coupling of microbial kinetics and oxygen transfer for analysis and optimization of gluconic acid production with Aspergillus niger. Bioproc Eng 1:79–91

    Google Scholar 

  • Röhr M, Kubicek CP, Zehentgruber O, Orthofer R (1987) Accumulation and partial re-consumption of polyols during citric acid fermentation by Aspergillus niger. Appl Microbiol Biotechnol 27:235–239

    Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1996a) Citric acid. In: Rehm HJ Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 308–345

    Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1996b) Gluconic acid. In: Rehm HJ, Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 347–362

    Google Scholar 

  • Röhr M, Kubicek CP, Kominek J (1996c) Further organic acids. In: Rehm HJ Reed G (eds) Biotechnology, vol 6: products of primary metabolism. Verlag Chemie, Weinheim, pp 364–379

    Google Scholar 

  • Rugsaseel S, Kirimura K, Usami S (1993) Selection of mutants of Aspergillus niger showing enhanced productivity of citric acid from starch in shaking culture. J Ferment Bioeng 75:226–228

    CAS  Google Scholar 

  • Ruijter GIG, Panneman H, Visser J (1997) Overexpression of phosphofructokinase-1 and pyruvate kinase in citric acid producing Aspergillus niger. Biochim Biophys Acta 1334:317–326

    CAS  Google Scholar 

  • Ruijter GJG, Van de Vondervoort PJI, Visser J (1999) Oxalic acid accumulation by Aspergillus niger. An oxalate non-producing mutant accumulates citric acid at pH 5 and in the presence of manganese. Microbiology 145:2569–2576

    CAS  Google Scholar 

  • Sarangbin S, Watanapokasin Y (1999) Yam bean starch: a novel substrate for citric acid production by the protease-negative mutant of Aspergillus niger. Carbohydr Polym 38:219–224

    CAS  Google Scholar 

  • Schreferl-Kunar G, Grotz M, Röhr M, Kubicek CP (1989) Increased citric acid production by mutants of Aspergillus niger with increased glycolytic capacity. FEMS Microbiol Lett 59:297–300

    CAS  Google Scholar 

  • Shankaranand VS, Lonsane BK (1994) Ability of Aspergillus niger to tolerate metal ions and minerals in a solid-state fermentation system for the production of citric acid. Proc Biochem 29:29–37

    CAS  Google Scholar 

  • Shu P, Johnson MJ (1948a) Citric acid production by submerged fermentation with Aspergillus niger. Ind Eng Chem 40:1202–1205

    CAS  Google Scholar 

  • Shu P, Johnson MJ (1948b) The interdependence of medium constituents in citric acid production by submerged fermentation. J Bacteriol 56:577–585

    CAS  Google Scholar 

  • Singh OV, Kumar R (2007) Biotechnological production of gluconic acid: future implications. Appl Microbiol Biotechnol 75:713–722

    CAS  Google Scholar 

  • Sokolov DM, Sharyshev AA, Finogenova TV (1995) Subcellular location of enzymes mediating glucose metabolism in various groups of yeasts. Biochemistry (Moscow) 60:1325–1331

    Google Scholar 

  • Sun J, Lu X, Rinas U, Zeng AP (2007) Metabolic peculiarities of Aspergillus niger disclosed by comparative metabolic genomics. Genome Biol 8:R182

    Google Scholar 

  • Suzuki A, Sarangbin S, Kirimura K, Usami S (1996) Direct production of citric acid from starch by a 2-deoxyglucose-resistant mutant strain of Aspergillus niger. J Ferment Bioeng 81:320–323

    CAS  Google Scholar 

  • Swart K, van de Vondervoort PJI, Witteveen CFB, Visser J (1990) Genetic localization of a series of genes affecting glucose oxidase levels in Aspergillus niger. Curr Genet 18:435–439

    CAS  Google Scholar 

  • Szczodrak J, Ilczuk Z (1985) Effect of iron on the activity of aconitate hydratase and synthesis of citric acid by Aspergillus niger. Zentralbl Mikrobiol 140:567–574

    CAS  Google Scholar 

  • Tabuchi T, Hara S (1970) Conversion of citrate fermentation to polyol fermentation in Candida lipolytica. J Agric Chem Soc Jpn 47:485–489

    Google Scholar 

  • Torres NV (1994a) Modelling approach to control of carbohydrate metabolism during citric acid accumulation by Aspergillus niger. I. Model definition and stability of the steady-state. Biotechnol Bioeng 44:104–111

    CAS  Google Scholar 

  • Torres NV (1994b) Modelling approach to control of carbohydrate metabolism during citric acid accumulation bv Aspergillus niger. II. Sensitivity analysis. Biotechnol Bioeng 44:112–118

    CAS  Google Scholar 

  • Torres N, Riol J-M, Wolschek M, Kubicek CP (1996a) Glucose transport by Aspergillus niger: the low affinity carrier is only formed during growth on high glucose concentrations. Appl Microbiol Biotechnol 44:790–794

    CAS  Google Scholar 

  • Torres NV, Voit EO, Gonzalez-Alcon C (1996b) Optimisation of nonlinear biotechnological processes with linear programming: application to citric acid production by Aspergillus niger. Biotechnol Bioeng 49:247–258

    CAS  Google Scholar 

  • Tran CT, Mitchell DA (1995) Pineapple waste – a novel substrate for citric acid production by solid-state fermentation. Biotechnol Lett 17:1107–1110

    CAS  Google Scholar 

  • Van der Werf MJ, Caspers MPM, van Luijk N, Punt PJ (2009) Production of itaconic acid. European Patent Application EP2017344

    Google Scholar 

  • Vankuyk PA, Diderich JA, MacCabe AP, Hererro O, Ruijter GJ, Visser J (2004) Aspergillus niger mstA encodes a high-affinity sugar/H+ symporter which is regulated in response to extracellular pH. Biochem J. 379:375–383

    CAS  Google Scholar 

  • Wayman FM, Mattey M (2000) Simple diffusion is the primary mechanism for glucose uptake during the production phase of the Aspergillus niger citric acid process. Biotechnol Bioeng 67:451–456

    Google Scholar 

  • Weibel MK, Bright HJ (1971) The glucose oxidase mechanism. J Biol Chem 246:2734–2744

    CAS  Google Scholar 

  • Werpy T, Petersen G (2004) Results of screening for potential candidates from sugars and synthesis gas. Top value added chemicals from biomass, vol. I. NREL Tech Rep NREL/TP-510-35523. http://www.osti.gov/bridge

  • Whittington H, Kerry-Williams S, Bidgood K, Dodsworth N, Peberdy JF, Dobson M, Hinchliffe E, Balance DJ (1990) Expression of the Aspergillus niger glucose oxidase gene in A. niger, A. nidulans and Saccharomvces cerevisiae. Curr Genet 18:531–536

    CAS  Google Scholar 

  • Witteveen CFB, Van de Vondervoort PJI, Swart K, Visser J (1990) Glucose oxidase overproducing and negative mutants of Aspergillus niger. Appl Microbiol Biotechnol 33:683–686

    CAS  Google Scholar 

  • Witteveen CFB, Veenhuis M, Visser J (1992) Localization of glucose oxidase and catalase activities in Aspergillus niger. Appl Environ Microbiol 58:1190–1194

    CAS  Google Scholar 

  • Witteveen CFB, Van de Vondervoort PJI, Van den Broeck HC, Van Engelenburg FAC, De Graaff LH, Hillebrand MHBC, Schaap PJ, Visser J (1993) Induction of glucose oxidase, catalase, and lactonase in Aspergillus niger. Curr Genet 24:408–416

    CAS  Google Scholar 

  • Wohlfahrt G, Witt S, Hendle J, Schomburg D, Kalisz HM, Hecht HJ (1999) 1.8 and 1.9 A resolution structures of the Penicillium amagasakiense and Aspergillus niger glucose oxidase as a basis for modelling substrate complexes. Acta Crystallogr D 55:969–977

    CAS  Google Scholar 

  • Wong CM, Wong KH, Chen XD (2008) Glucose oxidase: natural occurrence, function, properties and industrial applications. Appl Microbiol Biotechnol 78: 927–938

    CAS  Google Scholar 

  • Wongchai V, Jefferson WE, Jr. (1974) Pyruvate carboxylase from Aspergillus niger: partial purification and some properties. Fed Proc 33:1378

    Google Scholar 

  • Woronick CL, Johnson MJ (1960) Carbon dioxide fixation by cell-free extracts of Aspergillus niger. J Biol Chem 235:9–15

    CAS  Google Scholar 

  • Xu D-B, Madrid CP, Röhr, M, Kubicek CP (1989) Influence of type and concentration of the carbon source on citric acid production by Aspergillus niger. Appl Microbiol Biotechnol 30:553–558

    CAS  Google Scholar 

  • Zahorski B (1913) Method of producing citric acid. US Patent 1066358

    Google Scholar 

  • Zehentgruber O, Kubicek CP, Röhr M (1980) Alternative respiration of Aspergillus niger. FEMS Microbiol Lett 8:71–74

    CAS  Google Scholar 

  • Zidwick MJ (1992) Organic acids. In: Finkelstein DB, Ball C (eds) Biotechnology of filamentous fungi. Butterworth–Heinemann, Boston, pp 303–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian P. Kubicek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kubicek, C.P., Punt, P., Visser, J. (2011). Production of Organic Acids by Filamentous Fungi. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_10

Download citation

Publish with us

Policies and ethics