Skip to main content

Scanning Transmission Electron Microscopy and Related Techniques for Research on Actinide and Radionuclide Nanomaterials

  • Chapter
  • First Online:
Actinide Nanoparticle Research

Abstract

The physical and chemical properties of actinide-bearing materials, as well as other radionuclides, such as fission product elements from the nuclear fuel cycle, depend greatly on their electronic configuration, crystal structure, thermochemical parameters, and the amount of impurity elements at the atomic scale. Further, nanoscale particles may have distinctly different properties from the bulk composition. In order to understand the properties of such materials, direct characterization at the nanoscale is essential. This chapter reviews relevant methods for direct analysis of nanoscale materials using a focused electron beam, scanning transmission electron microscopy (STEM), in which the electron probe can be less than an Å size with the current high enough to perform elemental analysis. High-angle annular dark-field STEM (HAADF-STEM) provides an incoherent image by which the intensity correlates with the atomic number. The HAADF-STEM image can be greatly enhanced by a theoretical filtering method, such as the maximum entropy method. Electron energy-loss spectroscopy (EELS) allows the investigation of the chemical state including oxidation state and the electron density of states at the nanoscale. Three dimensional electron tomography with STEM or TEM imaging is another useful method for obtaining morphological and topological information of nanoscale materials. In addition, the recent development of the aberration corrector for spherical aberration (C S) has achieved a sub-Å probe as small as ~0.5 Å in STEM, which greatly improves the spatial resolution of images and chemical analyses. The application of C S-corrected STEM has not been explored in actinide research; however, it has great potential in the investigation of the properties of actinide materials at the atomic-level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lutze W, Malow G, Ewing RC, Jercinovic MJ, Keil K (1985) Alteration of basalt glasses: Implications for modelling the long-term stability of nuclear waste glasses. Nature 314:252–255

    CAS  Google Scholar 

  2. Murakami T, Ewing RC, Bunker BC (1988) Analytical electron microscopy of leached layers on synthetic basalt glass. In: Apted MJ and Westerman RE (eds) Scientific Basis for Nuclear Waste Management XI. Mater Res Soc Proc 112:737–748

    Google Scholar 

  3. Murakami T, Jercinovic MJ, Ewing RC (1989) Formation and evolution of alteration layers of borosilicate and basaltic glasses I: Initial stage. In: Lutze W, Ewing RC (eds) Scientific Basis for Nuclear Waste Management XII. Mater Res Soc Proc 127:65–72

    CAS  Google Scholar 

  4. Bates JK, Bradley JP, Teetsov A, Bradley CR, Tenbrink MB (1992) Colloid formation during waste form reaction: implications for nuclear waste disposal. Science 256:649–651

    CAS  Google Scholar 

  5. Thomas LE, Beyer CE, Charlot LA (1992) Microstructural analysis of LWR spent fuels at high burnup. J Nucl Mater 188:80–89

    CAS  Google Scholar 

  6. Williams DB, Carter CB (1996) Transmission electron microscopy. A Textbook for Materials Science. Springer, New York

    Google Scholar 

  7. Fultz B, Howe JM (2007) Transmission Electron Microscopy and Diffractometry of Materials, 3rd edition. Springer, New York

    Google Scholar 

  8. Kirkland EJ (1998) Advanced Computing in Electron Microscopy, 1st editon. Plenum Press, New York

    Google Scholar 

  9. Utsunomiya S, Ewing RC (2003) Application of high-angle annular dark field scanning transmission electron microscopy, scanning transmission electron microscopy-energy dispersive X-ray spectrometry, and the energy-filtered transmission electron microscopy to the characterization of nanoparticles in the environment. Environ Sci Technol 37:786–791

    CAS  Google Scholar 

  10. Krivanek OL, Chisholm MF, Nicolosi V, Pennycook TJ, Corbin GJ, Dellby N, Murfitt MF, Own CS, Szilagyi ZS, Oxley MP, Pantelides ST, Pennycook SJ (2010) Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464:571–574

    CAS  Google Scholar 

  11. Crewe AV, Wall J, Langmore J (1970) Visibility of single atoms. Science 168:1338–1340

    CAS  Google Scholar 

  12. Isaacson M, Kopf D, Ohtsuki M, Utlaut M (1979) Atomic imaging using the dark-field annular detector. Ultramicroscopy 4:101–104

    CAS  Google Scholar 

  13. Liu J, Cowley JM (1990) High-angle ADF and high-resolution SE imaging of supported catalyst clusters. Ultramicroscopy 34:119–128

    CAS  Google Scholar 

  14. Pennycook SJ (1989) Z-contrast STEM for materials science. Ultramicroscopy 30:58–69

    Google Scholar 

  15. Pennycook SJ, Boatner LA (1988) Chemically sensitive structure-imaging with a scanning transmission electron microscope. Nature 336:565–567

    CAS  Google Scholar 

  16. Chisholm MF, Pennycook SJ (2006) Direct imaging of dislocation core structures by Z-contrast STEM. Philos Mag 86:4699–4725

    CAS  Google Scholar 

  17. Wang ZL, Cowley JM (1989) Simulating high-angle annular dark-field STEM images including inelastic thermal diffuse scattering. Ultramicroscopy 31:437–454

    Google Scholar 

  18. Pennycook SJ, Jesson DE (1991) High-resolution incoherent imaging of crystals. Phys Rev Lett 64:938–941

    Google Scholar 

  19. Treacy MMJ, Gibson JM (1993) Coherence and multiple scattering in “Z-contrast” images. Ultramicroscopy 52:31–53

    CAS  Google Scholar 

  20. Hillyard S, Loane RF, Silcox J (1993) Annular dark-field imaging: resolution and thickness effects. Ultramicroscopy 49:14–25

    CAS  Google Scholar 

  21. Yamazaki T, Watanabe K, Recnik A, Ceh M, Kawasaki M, Shiojiri M (2000) Simulation of atomic-scale high-angle annular dark field scanning transmission microscopy images. J Electron Microsc 49:753–759

    CAS  Google Scholar 

  22. Kirkland EJ, Loane RF, Silcox J (1987) Simulation of annular dark field stem images using a modified multislice method. Ultramicroscopy 23:77–96

    Google Scholar 

  23. Stadelmann PA (1987) EMS – A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21:131

    CAS  Google Scholar 

  24. Ishizuka K (2002) A practical approach for STEM image simulation based on the FFT multislice method. Ultramicroscopy 90:71–83

    CAS  Google Scholar 

  25. McGibbon AJ, Pennycook SJ, Jesson DE (1999) Crystal structure retrieval by maximum entropy analysis of atomic resolution incoherent images. J Microsc 195:44–57

    CAS  Google Scholar 

  26. Gull SF, Skilling J (1984) Maximum entropy method in image processing. IEE Proc 131:646–659

    Google Scholar 

  27. Gull SF (1989) Developments in maximum entropy data analysis. In Maximum Entropy and Bayesian Methods. Skilling J (ed) 53–71 Kluwer Academic, Boston

    Google Scholar 

  28. Chisholm MF, Pennycook SJ (1991) Structural origin of reduced critical currents at YBa2Cu3O7-δ grain boundaries. Nature 351:47–49

    CAS  Google Scholar 

  29. Utsunomiya S, Jensen KA, Keeler GJ, Ewing RC (2002) Uraninite and fullerene in atmospheric particulates. Environ Sci Technol 36:4943–4947

    CAS  Google Scholar 

  30. Lovley DR, Phillips EJP, Gorby YA, Landa ER (1991) Microbial reduction of uranium. Nature 350:413–416

    CAS  Google Scholar 

  31. Abdelouas A, Lutze W, Nuttall HE (1999) Uranium contamination in the subsurface: characterization and remediation. In: Burns PC and Finch R (eds) Uranium: Mineralogy, Geochemistry and the Environment. Mineral Soc Am 38:433–473

    CAS  Google Scholar 

  32. Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. In: Burns PC and Finch RJ (eds) Uranium: Mineralogy, Geochemistry and the Environment. Rev Miner 38:393–432

    CAS  Google Scholar 

  33. Suzuki Y, Kelly SD, Kemner KM, Banfield JF (2002) Nanometre-size products of uranium bioreduction. Nature 419:134

    CAS  Google Scholar 

  34. Fayek M, Utsunomiya S, Pfiffner SM, Anovitz L, White DC, Riciputi LR, Ewing RC, Stadermann FJ (2005) Predicting the stability of nano-scale bio-precipitated uranium phases. Can Mineral 43:1631–1641

    CAS  Google Scholar 

  35. Finch RJ, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns PC and Finch RJ (eds) Uranium: Mineralogy, Geochemistry and the Environment. Rev Miner Geochem 38:91–179

    CAS  Google Scholar 

  36. Deditius AP, Utsunomiya S, Ewing RC (2008) The chemical stability of coffinite, USiO4•nH2O; 0 <  n < 2, associated with organic matter: A case study from Grants uranium region, New Mexico, USA. Chem Geol 251:33–49

    CAS  Google Scholar 

  37. Deditius AP, Utsunomiya S, Pointeau V, Ewing RC (2010) Precipitation and alteration of coffinite (USiO4•nH2O) in the presence of apatite. Eur J Mineral 22:75–88

    CAS  Google Scholar 

  38. Deditius AP, Utsunomiya S, Wall MA, Pointeau V, Ewing RC (2009) Crystal chemistry and radiation-induced amorphization of P-coffite from the natural fission reactor at Bangonbé, Gabon. Am Mineral 94:827–836

    CAS  Google Scholar 

  39. McCarthy JF, Zachara JM (1989) Subsurface transport of contaminants-mobile colloids in the subsurface environment may alter the transport of contaminants. Environ Sci Technol 23:496–502

    CAS  Google Scholar 

  40. Kim JI (1994) Actinide colloids in natural aquifer systems. Mater Res Soc Bull 19:47–53

    CAS  Google Scholar 

  41. Kim JI (1993) The chemical behavior of transuranium elements and barrier functions in natural aquifer systems. Mater Tes Soc Symp Proc 294:3–21

    CAS  Google Scholar 

  42. Utsunomiya S, Kersting AB, Ewing RC (2009) Groundwater nanoparticles in the far-field at the Nevada test site: mechanism for radionuclide transport. Environ Sci Technol 43:1293–1298

    CAS  Google Scholar 

  43. Novikov AP, Kalmykov SN, Utsunomiya S, Ewing RC, Horreard F, Merkulov A, Clark SB, Tkachev VV, Myasoedov BF (2006) Colloid transport of plutonium in the far-field of the Mayak Production Association, Russia. Science 314:638–641

    CAS  Google Scholar 

  44. Kersting AB, Efurd DW, Finnegan DL, Rokop DJ, Smith DK, Thompson JL (1999) Migration of plutonium in groundwater at the Nevada Test Site. Nature 397:56–59

    CAS  Google Scholar 

  45. Arnold T, Utsunomiya S, Geipel G, Ewing RC, Baumann N, Brendler V (2006) Adsorbed U(VI) surface species on muscovite by TRLFS and HAADF-STEM. Environ Sci Technol 40:4646–4652

    CAS  Google Scholar 

  46. Ilton ES, Haiduc A, Moses CO, Heald SM, Elbert DC, Veblen DR (2004) Heterogeneous reduction of uranyl by micas: crystal chemical and solution controls. Geochim Cosmochim Acta 68:2417–2435

    CAS  Google Scholar 

  47. Ewing RC, Lutze W, Weber WJ (1995) Zircon: a host-phase for the disposal of weapons plutonium. J Mater Res 10:243–246

    CAS  Google Scholar 

  48. Ewing RC (1999) Nuclear waste forms for actinides. Proc Natl Acad Sci USA 96:3432–3439

    CAS  Google Scholar 

  49. Utsunomiya S, Palenik CS, Valley JW, Cavosie AJ, Wilde SA, Ewing RC (2004) Nanoscale occurrence of Pb in an Archean zircon. Geochim Cosmochim Acta 68:4679–4686

    CAS  Google Scholar 

  50. Valley JW (2003) Oxygen isotopes in Zircon. In: Hanchar J (ed) Zircon. Mineralogical Society of America, Washington, DC. Rev Mineral Geochem 53:343–385

    Google Scholar 

  51. Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    CAS  Google Scholar 

  52. Utsunomiya S, Ewing RC (2006) The fate of the epsilon phase (Mo-Ru-Pd-Tc-Rh) in the UO2 of the Oklo natural fission reactors. Radiochim Acta 94:749–753

    CAS  Google Scholar 

  53. Utsunomiya S, Yudintsev S, Ewing RC (2005) Radiation effects of ferrate garnet. J Nucl Mater 336:251–260

    CAS  Google Scholar 

  54. Weber WJ (1991) Self-radiation damage and recovery in Pu-doped zircon. Radiat Effect Defects Solids 115:341–349

    CAS  Google Scholar 

  55. Weber WJ, Ewing RC, Wang LM (1994) The radiation-induced crystalline-to-amorphous transition in zircon. J Mater Res 9:688–698

    CAS  Google Scholar 

  56. Mitsuishi K, Kawasaki M, Takeguchi M, Yasuda H, Furuya K (2001) High-angle annular dark-field STEM observation of Xe nanocrystals embedded in Al. Ultramicroscopy 88:25–31

    CAS  Google Scholar 

  57. Egerton RF (1996) Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd edition. Plenum, New York

    Google Scholar 

  58. Moore KT (2010) X-ray and electron microscopy of actinide materials. Micron 41:336–358

    CAS  Google Scholar 

  59. Moore KT, van der Laan G (2009) Nature of the 5f states in actinide metals. Rev Mod Phys 81:235–298

    CAS  Google Scholar 

  60. Moore KT, Chung BW, Morton SA, Schwartz AJ, Tobin JG, Lazar S, Tichelaar FD, Zandbergen HW, Soderlind P, van der Laan G (2004) Changes in the electronic structure of cerium due to variations in close packing. Phys Rev B 69:193104

    Google Scholar 

  61. Colella M, Lumpkin GR, Zhang Z, Buck EC, Smith KL (2005) Determination of the uranium valence state in the brannerite structure using EELS, XPS, and EDX. Phys Chem Min 32:52–64

    CAS  Google Scholar 

  62. Butterfield MT, Moore KT, van der Laan G, Wall MA, Haire RG (2008) Understanding the O4,5 edge structure of actinide metals: Electron energy-loss spectroscopy and atomic spectral calculations of Th, U, Np, Pu, Am, and Cm. Phys Rev B 77:113109

    Google Scholar 

  63. Moore KT, van der Laan G, Wall MA, Schwartz AJ, Haire RG (2007) Rampant changes in 5f5/2 and 5f7/2 filling across the light and middle actinide metals: Electron energy-loss spectroscopy, many-electron atomic spectral calculations, and spin-orbit sum rule. Phys Rev B 76:073105

    Google Scholar 

  64. Garvie LAJ, Buseck PR (1998) Ferrous/ferric ratios from nanometer-sized areas in minerals. Nature 396:667–670

    CAS  Google Scholar 

  65. Garvie LAJ, Buseck PR (1999) Determination of Ce4+/Ce3+ in electron-beam-damaged CeO2 by electron energy-loss spectroscopy. J Phys Chem Solids 60:1943–1947

    CAS  Google Scholar 

  66. Ilton ES, Haiduc A, Cahill CL, Felmy AR (2005) Mica surfaces stabilize pentavalent uranium. Inorg Chem 44:2986–2988

    CAS  Google Scholar 

  67. Buck EC, Finn PA, Bates JK (2004) Electron energy-loss spectroscopy of anomalous plutonium behavior in nuclear waste materials. Micron 35:235–243

    CAS  Google Scholar 

  68. Buck EC, Bates JK (1999) Microanalysis of colloids and suspended particles from nuclear waste glass alteration. Appl Geochem 14:635–653

    CAS  Google Scholar 

  69. Buck EC, Douglas M, Wittman RS (2010) Verifying the presence of low levels of neptunium in a uranium matrix with electron energy-loss spectroscopy. Micron 41:65–70

    CAS  Google Scholar 

  70. Cormack AM (1963) Representation of a function by its line integrals with some radiological applications. J Appl Phys 34:2722–2727

    Google Scholar 

  71. De Rosier DJ, Klug A (1968) Reconstruction of three dimensional structures from electron micrographs. Nature 217:130–134

    Google Scholar 

  72. Hoppe W, Langer R, Knesch G, Poppe C (1968) Protein crystal structure analysis with electron rays. Naturwissenschaften 55:333

    CAS  Google Scholar 

  73. Midgley PA, Weyland M (2003) 3D electron microscopy in the physical science: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96:413–431

    CAS  Google Scholar 

  74. Friedrich H, McCartney MR, Buseck PR (2005) Comparison of intensity distributions in tomograms from BFTEM, ADF STEM, HAADF STEM, and calculated tilt series. Ultramicroscopy 106:18–27

    CAS  Google Scholar 

  75. Midgley PA, Thomas JM, Laffont L, Weyland M, Raja R, Johnson BFG, Khimyak T (2004) High-resolution scanning transmission electron tomography and elemental analysis of zeptogram quantities of heterogeneous catalyst. J Phys Chem B 108:4590–4592

    CAS  Google Scholar 

  76. Mobus G, Inkson BJ (2001) Three-dimensional reconstruction of buried nanoparticles by element sensitive tomography based on inelastically scattered electrons. Appl Phys Lett 79:1369–1371

    CAS  Google Scholar 

  77. Weyland M, Midgley PA (2003) Extending energy-filtered transmission electron microscopy (EFTEM) into three dimensions using electron tomography. Microsc Microanal 9:542–555

    CAS  Google Scholar 

  78. Kawase N, Kato M, Nishioka H, Jinnai H (2007) Transmission electron microtomography without the “missing wedge” for quantitative structural analysis. Ultramicroscopy 107:8–15

    CAS  Google Scholar 

  79. Sadan MB, Houben L, Wolf SG, Enyashin A, Seifert G, Tenne R, Urban K (2008) Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures. Nano Lett 8:891–896

    Google Scholar 

  80. Xin HL, Muller DA (2009) Aberration-corrected ADF-STEM depth sectioning and prospects for reliable 3D imaging in S/TEM. J Electron Microsc 58:157–165

    CAS  Google Scholar 

  81. Scherzer O (1949) The theoretical resolution limit of the electron microscope. J Appl Phys 20:20–29

    CAS  Google Scholar 

  82. Cowley JM (1976) Scanning transmission electron microscopy of thin specimens. Ultramicroscopy 2:3–16

    CAS  Google Scholar 

  83. Smith DJ (2008) Development of aberration-corrected electron microscopy. Microsc Microanal 14:2–15

    CAS  Google Scholar 

  84. Haider M, Rose H, Uhlemann S, Kabius B, Urban K (1998) Towards 0.1 nm resolution with the first spherically corrected transmission electron microscope. J Electron Microsc 47:395–405

    CAS  Google Scholar 

  85. Urban K (2008) Studying atomic structures by aberration-corrected transmission electron microscopy. Science 321:506–510

    CAS  Google Scholar 

  86. Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K (1998) Electron microscopy image enhanced. Nature 392:768–769

    CAS  Google Scholar 

  87. Crewe AV, Isaacson M, Johnson D (1969) A simple scanning electron microscope. Rev Sci Instrum 40:241–246

    Google Scholar 

  88. Crewe AV (2004) Some Chicago aberrations. Microsc Microanal 10:414–419

    CAS  Google Scholar 

  89. Beck VD (1979) A hexapole spherical aberration corrector. Optik 53:241–255

    Google Scholar 

  90. Crewe AV (1980) Studies on sextupole correctors. Optik 57:313–327

    Google Scholar 

  91. Rose H (1981) Correction of aperture aberrations in magnetic systems with threefold symmetry. Nucl Instrum Methods 187:187–199

    Google Scholar 

  92. Zach J (1989) Design of a high-resolution low-voltage scanning electron microscope. Optik 83:30–40

    Google Scholar 

  93. Zach J, Haider M (1995) Aberration correction in a low-voltage SEM by a multipole corrector. Nucl Instrum Methods A 365:316–325

    Google Scholar 

  94. Krivanek OL, Dellby N, Lupini AR (1999) Towards sub-Å electron beams. Ultramicriscopy 78:1–11

    CAS  Google Scholar 

  95. Krivanek OL, Nellist PD, DellbyN, Murfitt MF, Szilagyi Z (2003) Towards sub-0.5 Å electron beams. Ultramicroscopy 96:229–237

    CAS  Google Scholar 

  96. Rose H (2005) Prospects for aberration-free electron microscopy. Ultramicroscopy 103:1–6

    CAS  Google Scholar 

  97. Batson PE, Dellby N, Krivanek OL (2002) Sub-angstrom resolution using aberration corrected electron optics. Nature 418:617–620

    CAS  Google Scholar 

  98. Rose H (2009) Historical aspects of aberration correction. J Electron Microsc 58:77–85

    Google Scholar 

  99. Muller DA, Kourkoutis LF, Murfitt M, Song JH, Hwang HY, Silcox J, Dellby N, Krivanek OL (2008) Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073–1076

    CAS  Google Scholar 

  100. Batson PE (2008) Motion of gold atoms on carbon in the aberration-corrected STEM. Microsc Microanal 14:89–97

    CAS  Google Scholar 

  101. Pennycook SJ, Jesson DE, Browning ND (1995) Atomic-resolution electron energy loss spectroscopy in crystalline solids. Nucl Instrum Methods B 96:575–582

    CAS  Google Scholar 

  102. Browning ND, Wallis DJ, Nellist PD, Pennycook SJ (1997) EELS in the STEM: determination of materials properties on the atomic scale. Micron 28:333–348

    CAS  Google Scholar 

  103. Varela M, Oxley MP, Luo W, Tao J, Watanabe M, Lupini AR, Pantelides ST, Pennycook SJ (2009) Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79:085117

    Google Scholar 

  104. Crewe AV, Isaacson M, Johnson D (1971) A high resolution electron spectrometer for use in transmission scanning electron microscopy. Rev Sci Instrum 42:411–420

    CAS  Google Scholar 

  105. Batson PE (1993) Simultaneous STEM imaging and electron energy-loss spectroscopy with atomic-column sensitivity. Nature 366:727–728

    CAS  Google Scholar 

  106. Oxley MP, Varela M, Pennycook TJ, van Benthem K, Findlay SD, D’Alfonso AJ, Allen LJ, Pennycook SJ (2007) Interpreting atomic-resolution spectroscopic images. Phys Rev B 76:064303

    Google Scholar 

  107. Pennycook SJ, Varela M, Lupini AR, Oxley MP, Chisholm MF (2009) Atomic-resolution spectroscopic imaging: past, present and future. J Electron Microsc 58:87–97

    CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the staff of the high voltage electron microscopy (HVEM) laboratory at Kyushu University for their technical support and daily maintenance. SU also thanks the members of the nanogeoscience group in the Department of Chemistry at Kyushu University for their help and constructive discussion. R.C. Ewing acknowledges support from the Energy Frontier Research Center, Materials Science of Actinides, funded by the U.S. Department of Energy, Office of Science, Basic Energy Sciences under Award Number DE-SC0001089.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satoshi Utsunomiya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Utsunomiya, S., Kogawa, M., Kamiishi, E., Ewing, R.C. (2011). Scanning Transmission Electron Microscopy and Related Techniques for Research on Actinide and Radionuclide Nanomaterials. In: Kalmykov, S., Denecke, M. (eds) Actinide Nanoparticle Research. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11432-8_2

Download citation

Publish with us

Policies and ethics