Skip to main content

Replication Techniques for Availability

  • Chapter
Replication

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5959))

Abstract

The chapter studies how to provide clients with access to a replicated object that is logically indistinguishable from accessing a single yet highly available object. We study this problem under two different models. In the first, we assume that failures can be detected accurately. In the second we drop this assumption, making the model more realistic but also significantly more challenging. Under the first model, we present the primary-backup and chain replication techniques. Under the second model, we present techniques based on voting. We conclude with a discussion on reconfiguration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsberg, P., Day, J.: A principle for resilient sharing of distributed resources. In: Proc. of the 2nd Int. Conf. on Software Engineering, pp. 627–644 (Oct. 1976)

    Google Scholar 

  2. Birman, K.P., Joseph, T.A.: Exploiting virtual synchrony in distributed systems. In: Proc. of the 11th ACM Symp. on Operating Systems Principles, Austin, TX, pp. 123–138 (Nov. 1987)

    Google Scholar 

  3. Budhiraja, N., Marzullo, K., Schneider, F., Toueg, S.: The primary-backup approach. In: Mullender, S. (ed.) Distributed systems, 2nd edn., ACM Press, New York (1993)

    Google Scholar 

  4. Chandra, T., Toueg, S.: Unreliable failure detectors for asynchronous systems. In: Proc. of the 11th ACM Symp. on Principles of Distributed Computing, pp. 325–340. ACM SIGOPS-SIGACT, Montreal (Aug. 1991)

    Google Scholar 

  5. Chockler, G., Keidar, I., Vitenberg, R.: Group communication specifications: a comprehensive study. ACM Computing Surveys 33, 427–469 (1999)

    Article  Google Scholar 

  6. El Abbadi, A., Skeen, D., Cristian, F.: An efficient, fault-tolerant protocol for replicated data management. In: Proc. of the 4th ACM Symp. on Principles of Database Systems, pp. 215–229. ACM SIGACT, Portland (Mar. 1985)

    Google Scholar 

  7. Fischer, M., Lynch, N., Patterson, M.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garcia-Molina, H., Barbara, D.: How to assign votes in a distributed system. J. ACM 32(4), 841–860 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gifford, D.: Weighted voting for replicated data. In: Proc. of the 7th ACM Symp. on Operating Systems Principles, pp. 150–162. ACM SIGOPS, Pacific Grove (Dec. 1979)

    Google Scholar 

  10. Guerraoui, R., Schiper, A.: Software-based replication for fault tolerance. IEEE Computer 30(4) (1997)

    Google Scholar 

  11. Herlihy, M.: A quorum consensus replication method for abstract data types. Trans. on Computer Systems 4(1), 32–53 (1986)

    Article  Google Scholar 

  12. Lamport, L.: Using time instead of timeout for fault-tolerant distributed systems. Trans. on Programming Languages and Systems 6(2), 254–280 (1984)

    Article  Google Scholar 

  13. Lamport, L.: The part-time parliament. Trans. on Computer Systems 16(2), 133–169 (1998)

    Article  Google Scholar 

  14. Naor, M., Wool, A.: The load, capacity, and availabiliity of quorum systems. SIAM Journal on Computing 27(2), 423–447 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Oki, B., Liskov, B.: Viewstamped replication: A general primary-copy method to support highly-available distributed systems. In: Proc. of the 7th ACM Symp. on Principles of Distributed Computing, pp. 8–17. ACM SIGOPS-SIGACT, Ontario (Aug. 1988)

    Google Scholar 

  16. van Renesse, R., Schneider, F.: Chain Replication for supporting high throughput and availability. In: Sixth Symposium on Operating Systems Design and Implementation (OSDI ’04), San Francisco, CA (Dec. 2004)

    Google Scholar 

  17. Schlichting, R., Schneider, F.: Fail-stop processors: an approach to designing fault-tolerant computing systems. Trans. on Computer Systems 1(3), 222–238 (1983)

    Article  Google Scholar 

  18. Thomas, R.: A solution to the concurrency control problem for multiple copy data bases. In: Proc. of COMPCON’78, pp. 88–93 (1978)

    Google Scholar 

  19. Thomas, R.: A majority consensus approach to concurrency control for multiple copy database. ACM Trans. Database Syst. 4(2), 180–209 (1979)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Renesse, R., Guerraoui, R. (2010). Replication Techniques for Availability. In: Charron-Bost, B., Pedone, F., Schiper, A. (eds) Replication. Lecture Notes in Computer Science, vol 5959. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11294-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-11294-2_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-11293-5

  • Online ISBN: 978-3-642-11294-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics